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Dear Dr Meissner, 

Thank you for submit t ing your work to Molecular Systems Biology. We have now heard back from
the three reviewers who agreed to evaluate your manuscript . As you will see below, the reviewers
acknowledge that the presented findings could be relevant as a resource. They raise however a
series of concerns, which we would ask you to address in a major revision. 

Without reiterat ing all the points raised in the reviews below, some of the more substant ial issues
are the following: 

- In light  of reviewers' comments, the statements regarding the overall methodological advance
need to be toned down.
- Addit ional analyses, controls and validat ion experiments are required, in order to enhance the
conclusiveness and the biological insights provided by the study. Reviewer #3 provides construct ive
suggest ions in this regard.

All other issues need to be addressed as well. As you may already know, our editorial policy allows in
principle a single round of major revision, so it  is essent ial to provide responses to the reviewers'
comments that are as complete as possible. Please feel free to contact  me in case you would like
to discuss in further detail any of the issues raised by the reviewers. 

On a more editorial level, please do the following: 
- Please provide a .docx formatted version of the manuscript  text  (including legends for main
figures, EV figures and tables). Please make sure that the changes are highlighted to be clearly
visible.

- Please provide individual product ion quality figure files as .eps, .t if, .jpg (one file per figure).

-Please provide a .docx formatted let ter INCLUDING the reviewers' reports and your detailed point-
by-point  responses to their comments. As part  of the EMBO Press transparent editorial process,
the point-by-point  response is part  of the Review Process File (RPF), which will be published
alongside your paper.



-Please note that all corresponding authors are required to supply an ORCID ID for their name upon
submission of a revised manuscript .

-We replaced Supplementary Informat ion with Expanded View (EV) Figures and Tables that are
collapsible/expandable online (see examples in ht tp://msb.embopress.org/content/11/6/812). A
maximum of 5 EV Figures can be typeset. EV Figures should be cited as 'Figure EV1, Figure EV2"
etc... in the text  and their respect ive legends should be included in the main text  after the legends
of regular figures.

Addit ional Tables/Datasets should be labeled and referred to as Table EV1, Dataset EV1, etc.
Legends have to be provided in a separate tab in case of .xls files. Alternat ively, the legend can be
supplied as a separate text  file (README) and zipped together with the Table/Dataset file. 

For the figures and tables that you do NOT wish to display as Expanded View figures, they should
be bundled together with their legends in a single PDF file called *Appendix*, which should start
with a short  Table of Content. Each legend should be below the corresponding Figure/Table in the
Appendix. Appendix figures and tables should be referred to in the main text  as: "Appendix Figure
S1, Appendix Figure S2, Appendix Table S1" etc. See detailed instruct ions regarding expanded view
here: ht tps://www.embopress.org/page/journal/17444292/authorguide#expandedview. 

-Before submit t ing your revision, primary datasets (and computer code, where appropriate)
produced in this study need to be deposited in an appropriate public database (see
https://www.embopress.org/page/journal/17444292/authorguide#dataavailability).

Please remember to provide a reviewer password if the datasets are not yet  public. 

The accession numbers and database should be listed in a formal "Data Availability " sect ion
(placed after Materials & Method) that follows the model below (see also
https://www.embopress.org/page/journal/17444292/authorguide#dataavailability). Please note that
the Data Availability Sect ion is restricted to new primary data that are part  of this study. 

# Data availability 

The datasets (and computer code) produced in this study are available in the following databases: 

- RNA-Seq data: Gene Expression Omnibus GSE46843
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46843)
- [data type]: [name of the resource] [accession number/ident ifier/doi] ([URL or
ident ifiers.org/DATABASE:ACCESSION])

*** Note - All links should resolve to a page where the data can be accessed. *** 

- We would encourage you to include the source data for figure panels that show essent ial
quant itat ive informat ion. Addit ional informat ion on source data and instruct ion on how to label the
files are available at  < ht tps://www.embopress.org/page/journal/17444292/authorguide#sourcedata
>.

- All Materials and Methods need to be described in the main text . We would encourage you to use
'Structured Methods', our new Materials and Methods format. According to this format, the Material
and Methods sect ion should include a Reagents and Tools Table (list ing key reagents,



experimental models, software and relevant equipment and including their sources and relevant
ident ifiers) followed by a Methods and Protocols sect ion in which we encourage the authors to
describe their methods using a step-by-step protocol format with bullet  points, to facilitate the
adopt ion of the methodologies across labs. More informat ion on how to adhere to this format as
well as downloadable templates (.doc or .xls) for the Reagents and Tools Table can be found in our
author guidelines: <
https://www.embopress.org/page/journal/17444292/authorguide#researchart icleguide>. An
example of a Method paper with Structured Methods can be found here: . 

- Regarding data quant ificat ion:
Please ensure to specify the name of the stat ist ical test  used to generate error bars and P values,
the number (n) of independent experiments (please specify technical or biological replicates)
underlying each data point  and the test  used to calculate p-values in each figure legend. Discussion
of stat ist ical methodology can be reported in the materials and methods sect ion, but figure legends
should contain a basic descript ion of n, P and the test  applied.
Graphs must include a descript ion of the bars and the error bars (s.d., s.e.m.).
Please also include scale bars in all microscopy images.

- Please provide a "standfirst  text" summarizing the study in one or two sentences (approximately
250 characters, including space), three to four "bullet  points" highlight ing the main findings and a
"synopsis image" (550px width and max 400px height, jpeg format) to highlight  the paper on our
homepage.
Here are a couple of examples:
ht tps://www.embopress.org/doi/10.15252/msb.20199356
https://www.embopress.org/doi/10.15252/msb.20209475
https://www.embopress.org/doi/10.15252/msb.209495

When you resubmit  your manuscript , please download our CHECKLIST
(http://bit .ly/EMBOPressAuthorChecklist) and include the completed form in your submission. 
*Please note* that the Author Checklist  will be published alongside the paper as part  of the
transparent process
(ht tps://www.embopress.org/page/journal/17444292/authorguide#transparentprocess).

If you feel you can sat isfactorily deal with these points and those listed by the referees, you may
wish to submit  a revised version of your manuscript . Please at tach a covering let ter giving details of
the way in which you have handled each of the points raised by the referees. A revised manuscript
will be once again subject  to review and you probably understand that we can give you no
guarantee at  this stage that the eventual outcome will be favorable. 

Yours sincerely, 

Jingyi Hou 
Editor 
Molecular Systems Biology 

------------------------------------------------------ 

If you do choose to resubmit , please click on the link below to submit  the revision online *within 90



days*. 

Link Not Available 

IMPORTANT: When you send your revision, we will require the following items: 
1. the manuscript  text  in LaTeX, RTF or MS Word format
2. a let ter with a detailed descript ion of the changes made in response to the referees. Please
specify clearly the exact places in the text  (pages and paragraphs) where each change has been
made in response to each specific comment given
3. three to four 'bullet  points' highlight ing the main findings of your study
4. a short  'blurb' text  summarizing in two sentences the study (max. 250 characters)
5. a 'thumbnail image' (550px width and max 400px height, Illustrator, PowerPoint  or jpeg format),
which can be used as 'visual t it le' for the synopsis sect ion of your paper.
6. Please include an author contribut ions statement after the Acknowledgements sect ion (see
https://www.embopress.org/page/journal/17444292/authorguide)
7. Please complete the CHECKLIST available at  (ht tps://bit .ly/EMBOPressAuthorChecklist).
Please note that the Author Checklist  will be published alongside the paper as part  of the
transparent process
(ht tps://www.embopress.org/page/journal/17444292/authorguide#transparentprocess).
8. Please note that corresponding authors are required to supply an ORCID ID for their name upon
submission of a revised manuscript  (EMBO Press signed a joint  statement to encourage ORCID
adopt ion). (ht tps://www.embopress.org/page/journal/17444292/authorguide#editorialprocess)

Current ly, our records indicate that the ORCID for your account is 0000-0003-1000-7989.

Please click the link below to modify this ORCID:
Link Not Available 

The system will prompt you to fill in your funding and payment informat ion. This will allow Wiley to
send you a quote for the art icle processing charge (APC) in case of acceptance. This quote takes
into account any reduct ion or fee waivers that you may be eligible for. Authors do not need to pay
any fees before their manuscript  is accepted and transferred to the publisher. 

As a matter of course, please make sure that you have correct ly followed the instruct ions for
authors as given on the submission website. 

*** PLEASE NOTE *** As part  of the EMBO Press transparent editorial process init iat ive (see our
Editorial at  ht tps://dx.doi.org/10.1038/msb.2010.72), Molecular Systems Biology publishes online a
Review Process File with each accepted manuscripts. This file will be published in conjunct ion with
your paper and will include the anonymous referee reports, your point-by-point  response and all
pert inent correspondence relat ing to the manuscript . If you do NOT want this File to be published,
please inform the editorial office at  msb@embo.org within 14 days upon receipt  of the present
let ter. 
-------------------------------------------------------- 

Reviewer #1: 

The current manuscript  by Frauenstein et  al. presents a proteomics approach to dissect molecular



signaling pathways through the simultaneous detect ion of protein complexes and post-
t ranslat ional modificat ion. The authors call this methodology MIP-APMS (Modificat ions, Interact ions
and Phenotypes by Affinity Purificat ion Mass Spectrometry) and demonstrate proof-of-concept
through applicat ion of 19 baits (i.e. protein complexes) in monocytes (both immortalized and
primary). MIP-APMS combines tagging of bait  proteins of interest  through a rapid lent ivirus
approach (His tags used here), purificat ion of protein complexes, LC-MS-based proteins detect ion
and bioinformat ic analysis of obtained results. The methodology, mainly through tricks with spectral
matching, at tempts to detect  both protein complexes and all possible post-t ranslat ional
modificat ions at  the same t ime. Computat ional analysis of the result ing data is aimed to provide
detailed insights into immune cell relevant signaling nodes by providing both informat ion on protein
complex ident ify and post-t ranslat ional modificat ions. Rapid genet ic and/or pharmacologic
intervent ion will then enable to specifically invest igate specific signaling nodes. Some higher-level
proof-of-concept results are shown in the manuscript . 

Overall this is an interest ing and technically rigorous manuscript  that  at tempts to find an
appropriate balance between technology, systems biology and proof-of-concept follow-up of novel
discoveries. This manuscript  presents a large amount of data and is appropriate for Molecular
Systems Biology. Below I suggest a couple of minor modificat ions for the authors to further
strengthen this manuscript . 

Comments: 
1) It 's certainly interest ing that putat ive interactors and PTMs are analyzed at  the same t ime.
Pulldowns are somewhat less complex than cellular lysates which would then suggest that  PTMs
can be detected and in an unbiased manner (i.e. without enrichment). I suggest that  the authors
describe the data a bit  more careful.
a. These pulldowns are actually quite complex: > 4000 proteins seem to be detected in each bait
purificat ion. This will certainly limit  the number of PTMs that can be effect ively detected in each
analysis. Many will be missed and would only be detectable if tedious enrichments are performed
(as discussed by the authors).
b. I assume the dependent pept ide algorithm in MaxQuant is similar to an open search (i.e.
MSFragger). It  might be interest ing to run such an algorithm for comparat ive reasons - at  least  on a
subset of these data to provide addit ional confirmat ion.
c. Supplemental Table S1 was not completely clear. I assume the authors ran mult iple replicates
and possibly also a background controls (i.e. lysates without the His-tag)? It  might be appropriate to
show this table with more granularity and show results from all the replicates, rather than a merged
dataset?

2) Figure 2F/G: These figures and result ing data need more explanat ion. As presented data
interpretat ion is unclear. What exact ly went into this heatmap? How do we get from the correlat ion
clusters to these temporal, quant itat ive profiles?

3) There are several data normalizat ions throughout the manuscript  that  require more explanat ion.
a. For example, the data in Fig 3A ("The interactome of TRAF2 (measured 16x in biological
replicates) compared against  all other pull-downs in the control group"). Does this mean that a
pulldown of a given bait  is compared to the pulldowns from all the other baits in this study? So
basically, bait  controls are used to infer bait  specific associat ion. Are there some steps to remove
simple non-specific bead interact ion? These data may have been buried somewhere in the
manuscript , but  were unclear to this reviewer.
b. Fig 3C: For these dynamic protein network analyses a certain prey is normalized to the bait  at
different t ime-points/t reatments. Intuit ively this makes sense, but is the abundance of the bait



actually stable in these dynamic experiments and if not  how would this change results? 

Overall this is an interest ing manuscript  that  presents a pipeline to rapidly generate tagged bait
proteins through viral t ransduct ion. The focus in on 19 baits in immortalized and primary immune
cells, providing a significant resource for immunologist , this alone makes this paper useful to the
community. Asides from individual candidates, the novelty of this study is the parallel generat ion
and analysis of dynamic protein complexes (and PTMs). Proof-of-concept validat ion provide
confidence of the generated data and the MIP-APMS technology. 

Reviewer #2: 

In this manuscript , Frauenstein et  al describe a method in which they pull down a number of known
key players in signalling pathways downstream of Toll-like receptors (TLR). They analyse the
pulldowns not only for protein changes but also for post-t ranslat ional modificat ions. They provide a
number of examples, including 19 proteins followed by dynamics around TRAF2 complex changes
upon TLR act ivat ion. They then show that knocking out proteins of the TAK1 complex affects
NFkB signalling and finally, they show that three different inhibitors of MAPK14 affect  the protein
complex of this protein. 

Major points: 
1. The authors t ry to sell AP MS and the subsequent search for PTMs in the pulldowns as a new
method. This has been done since many years in the community and therefore, this is not a new
method and it  definitely does not need a new acronym. If required, this reviewer can start  looking for
papers that are at  least  10 years old where this was done.
It  appears that the authors believe that their "streamlined" cell line generat ion is worth highlight ing,
but then many others, including Anne-Claude Gingras have shown similar approaches for AP-MS.
2. There is an overall connect ing story missing. The manuscript  reads as a collect ion of many, many
experiments that are somehow pulled together.

Minor points: 
1. Supplementary tables should contain the intensity values of all replicates. Suppl Table 1 for
example has only the "difference" and the p-value.
2. Having values with 5 digits in the supplementary tables makes relat ively lit t le sense as the last  3
are definitely not accurate.
3. The transduct ion part  of the paper is valuable, but too long. The authors may want to shorten
this part  significant ly.
4. I don't  understand figure 2G. which protein pulldowns are we looking at  that  see reduct ions in the
PTMs and the complex partners?
5. Figure 3A: please make sure that 8,9,10 aren't  overlaying in the volcano plot .
6. Figure 3C&E. some of the points in this figure are ident ical in their values. Did the authors have
indeed such a reproducibility?
7. Figure 3: please add the protein ID to D. it  is not obvious which proteins these PTMs belong to.
8. ISGylat ion of Traf2: it  is quite harsh mutat ing away lysines. Did the authors find any GlyGly
modificat ions on these residues?
9. Considering that the authors didn't  prove that the change in NFkB act ivat ion in K>R mutants is
really down to ISGylat ion, I suggest that  the statement is a lit t le less strong: Please change
"Funct ional analysis of the K->R mutants revealed reduct ion in NFkB act ivat ion for K277R, K320R,
K364R and K389R mutants, indicat ing ISG15 as a posit ive regulator downstream of TLR2." To
"Funct ional analysis of the K->R mutants revealed reduct ion in NFkB act ivat ion for K277R, K320R,



K364R and K389R mutants, suggest ing that ISGylat ion of TRAF2may act  as a posit ive regulator
downstream of TLR2." 
10. Figure 4 and the associated paragraph: it  is long known (PMID: 10675530) that TAK1 plays a
major role in NFkB signalling and that the knockout has reduced NFkB act ivat ion (PMID: 16186825).
While making all these CRISPR knockouts was certainly a lot  of work, this chapter does not seem to
provide much novelty.
11. How many replicates were made of every pulldown. It  wasn't  clear from the manuscript .
12. What did the authors do when there was only 1 or 2 missing values? Did the authors st ill impute
values?
13. Please add a list  to PRIDE explaining what each RAW file is. I could not find this.

Reviewer #3: 

Summary: 
In their manuscript  "Ident ificat ion of Covalent Modificat ions Regulat ing Immune Signaling 
Complex Composit ion and Phenotype," Frauenstein et  al. have created a framework to define 
"protein communit ies" - PPIs and PTMs associated with affinity purified complexes - and 
invest igate their rearrangement in response to specific perturbat ions. To fully test  the boundaries 
of these methods, the authors have chosen to interrogate molecular signaling in human monocyte 
cell lines and primary cells. Start ing from the cloning of GOIs into His-tagged lent iviral constructs 
for t ransduct ion into a broad spectrum of cell types, to the opt imizat ion of affinity purificat ion and 
sample preparat ion for MS, and MS analysis to simultaneously invest igate PPIs and the PTMs of 
purified proteins, these steps collect ively form MIP-APMS (Modificat ions, Interact ions and 
Phenotypes by Affinity Purificat ion Mass Spectrometry), a "fast  and cost-effect ive pipeline" to 
characterize PPIs and PTMs in an iterat ive manner. 

The authors have delineated a thoughtful strategy to clone GOIs for AP-MS studies. Using a 
previously published method for cloning, SLiCE, a lent ivirus vector was modified to temper gene 
expression (modified weak PGK promoter) and mediate compat ibility with commercial cloning 
systems (flanking ~ 100 bp at tL sites). A major advantage of this protocol is that  PTM analysis 
requires no addit ional enrichment steps; instead, modificat ions are preserved through the mild 
lysis condit ions employed, and their ident ificat ion is enabled through the high sequence coverage 
obtained for bait  proteins. Dependent searches, performed through PEAKS and MaxQuant, 
ident ify ~ 50 novel PTMs. Incorporat ion of a variable modificat ion search allowed the ident ificat ion 
of dynamic N-term phosphorylat ion of TRAF2, with verificat ion of these sites via phosphor variants 
revealing significant interactome remodeling. Frauenstein et  al. further demonstrate the ut ility of 
MIP-APMS to profile drugs and ident ify potent ial off target effects by probing alterat ions of PPI 
networks following treatment with small molecule inhibitors. 

Recommendat ion: 
Although the underlying premise is commendable, the actual execut ion and results fall short  of 
expectat ions due, in part , to technical limitat ions; moreover, the individual parts are not generally 
novel while their sum is overstated with conclusions overreaching at  t imes. Beyond PPIs, MIPAPMS 
reveals both bait  and prey PTMs. However, the correlat ions between PPIs and PTMs are 
generally not convincingly clear in the t ime course experiments. Nevertheless, some of the 
approaches and subsequent findings are interest ing (especially isgylat ion of TRAF2); therefore, 
we would recommend a qualified acceptance pending significant revisions to clarify text  and 
figures and addit ional experiments to further support  conclusions. 



Major Comments: 

1) The author's do not incorporate any negat ive controls into their AP-MS workflow, instead
removing proteins common across samples as background interactors
a) Do the author's incorporate intensity or abundance differences between samples in
determining what gets labeled a background interactor?
b) Interconnected proteins (e.g. TRAF2 and BIRC2) are also baits; how does this affect
determinat ion of background proteins?
c) Similarly, were any scoring systems used when determining interactors (SAINT,
compPASS)? We would suggest incorporat ing negat ive controls along with established
algorithms (SAINT, compPASS) for determining interactors, part icularly as the authors
are introducing MIP-APMS as a novel methodology. Also, are there any challenges in
incorporat ing PTM analysis with these algorithms? We would appreciate a comment
from the authors.

2) The authors ident ify ~4,000 interactors in an experiment, which seems high. Can this be
attributed to the less-stringent lysis methods used to capture PTMs?

3) Do the author's variable modificat ion searches (phosphorylat ion, acetylat ion, methylat ion)
match the modificat ion searches captured by the dependent searches using MaxQuant and
PEAKS?

4) Fig. S4D and Fig. 5D: It  is important to show total p38 (MAPK14) across all samples and
that phosphorylat ion increase is not primarily a change in protein.

5) Fig. 4: MAP3K7
a) Fig. 4B and 4C:
i) Do grey boxes in Fig. 4C indicate missing values?
ii) In general, no clear upward or downward PPI t rends are observed across t ime points
(except perhaps 427_Phospho). Does this reflect  the rapid dynamics of the signaling
pathways?
iii) Do asterisks indicate significant hits at  all "t imepoints"?
b) Fig. 4B and 4C: The authors indicated interplay between PPIs and PTMs, specifically
highlight ing the loss of TAB1 and SNX17 PPIs due to MAP3K7 Ser389
phosphorylat ion. Changes do not clearly correlate in the same t ime points or to the same
degree.
i) In the absence of follow up experiments to confirm this connect ion (such as the S to
D/G point  mutat ions in Fig. 3), this is a bit  premature.
ii) We were also curious about ARHGEF18 and 389_Pi. This looks similar to SNX17 in
heat map, but is not indicated to be significant.
c) Fig. 4D: CRISPR KO in monocyt ic U937 NFKB reporter cells - It  is important to
confirm gene KO/loss of protein by TIDE analysis/western blot , especially since effect  is
only part ial. We did not find any ment ion of this in the text , legend, or materials and
methods.

Minor Comments: 

1) Can the authors comment on the effect  the dependent search has on false discovery rates



(FDR) - as this is a less complex dataset than analysis of whole cell lysate, for example, is 
the effect  on FDR minimized? 

2) How similar are the results obtained with PEAKS and MaxQuant?

3) Are the author's employing any sort  of stringency cutoffs (e.g. minimum number of pept ides)
for PTMs ident ified using the variable search - this informat ion is provided at  the protein
level, but  I'm not clear if the same cutoffs are applied for PTMs ("Each quant ified protein had
to be ident ified with more than one pept ide and in more than 60% of replicates of at  least
one cell line to be considered valid")?

4) It  would be helpful to include a table with the number of PTMs and intensity for each
modificat ion. Is there any downside to high bait  enrichment (do prey IDs suffer?)

5) Please specify western blot  protocol and source of ant ibodies used in Fig. S4D and Fig. 5D
in Materials and Methods.

6) MIP-APMS: the P stands for Phenotypes, the authors also talk about "biochemical and
phenotypic validat ion in primary human immune cells". To us, "phenotype" doesn't  sound
right here. We would rather say "funct ional validat ion", "intracellular pathway dissect ion" or
"network topologies".

7) Page 10, first  line: "To further explore the ut ility of MIP-APMS for discovery, ..." We would
appreciate more precision about which kind of discovery.

8) Fig. 1D: Please explain in more detail in the main text  for clarity.

9) Fig. 2:
a) Fig. 2A: Please add more space between bar charts to separate 'novel vs unknown'
(blue/green) from total interactors (grey) or place bait  labels between bar charts.
b) Fig. 2B:
i) Please reference Table S2 in the main text  and/or figure legend for a clear list  of
proteins in the 19 interactomes.
ii) Upon closer examinat ion, found that nodes are actually labeled; however, blue text
could not be discerned over blue background for novel interact ions. Please change
the text  color to make it  visible.
iii) Are the data for TRAF2, MAP3K8, and MAPK14 the same shown in the volcano
plots (Fig. 3A, 4A, and 5C)? The number of interact ions do not seem the same. If
there is a difference, please clarify the reason.
c) Fig. 2C and 2D:
i) Do these figures show both bait  and prey PTMs? (89 PTMs across 19 baits)
ii) In Table S3, prey PTMs are listed for 8 baits. Please summarize prey PTMs within
Fig. 2C and/or 2D. Since ~ 30% of PTMs are on prey, this would further support
simultaneous PPI and PTM analysis. Most figures focus primarily on bait  PTMs.
d) Fig. 2E:
i) Please label x-axis to indicate "acetylat ion", "methylat ion" and "phosphorylat ion" for
addit ional clarity.
ii) The difference between novel and described should be presented in a clearer
way. Red out line may be difficult  to see.



10) Fig. 3: TRAF2
a) Fig. 3A and 3B: Please refer to general comments on figure presentat ion (below).
b) Fig. 3B-3E: When are UT samples taken relat ive to 5, 15, and 30 minute t ime points? Is
it  essent ially t ime 0?
c) Fig. 3B: Aside from an increase in TANK, ELP2 shows a clear, relat ively stat ic decrease
with act ivat ion. Is ELP2 change not significant during t ime course? Does the
phosphorylat ion status change this interact ion?
d) Fig. 3D: 7_Phospho has very small, but  significant changes. Is 11_Phospho significant
by t -test?
e) Fig. 3F: ISG15 shows as an interactor, but  it  is actually a Ub-like covalent
modificat ion. Can Ub and other similar proteins be detected like this, instead of "Ub
remnant ant ibody" enrichment? Could the author's comment on any difficult ies involved
in ident ifying these novel modificat ions without incorporat ing an enrichment step?
f) Fig. 3J: Should fold differences in primary macrophages be similar to 5F and 5I? Also,
we were not clear on the cell line used for 3A-3I? Was it  U937?

11) Fig. 4: MAP3K7 - Please refer to general comments on figure presentat ion (below) for Fig.
4A, 4B and 4D.
Fig. 4A: Please adjust  data point  labels. They overlap and are not visible at  the bottom.

12) Fig. 5: MAPK14 - MIP-APMS enable ident ificat ion of signaling network rearrangements?
a) Both p38 and MAPK14 names are used, please be consistent in figures and text .
b) Fig. 5B: Please indicate the cell line used for the WB in legend.
c) Fig. 5C: Please refer to general comments on figure presentat ion (below)
d) Fig. 5D: Heat map
We were unclear if the values shown are the intensity values obtained for each
condit ion, or if they were compared to a control? It  seems DMSO is up/down depending
on interact ion?
e) Fig. 5E and 5F: P3C4 is not clearly indicated in the text , legend or materials and
methods - "cellular act ivat ion" is briefly ment ioned in regards to Fig 5E. Please clarify
accordingly.
f) Fig. 5F: Ser2 phosphorylat ion appears to be unaffected by inhibitors and would be a
good control along with total p38. Is there a p38 Ser2 ant ibody? In Fig. 5B, is phospho
p38 against  pY182?

Supplement: 
1) Fig. S1
a) S1A: GFP panel is difficult  to see.
b) S1C: Label data points overlap. Please adjust  to clarify.

2) Characterizat ion of induced cell lines:
S2A: Is this based on pept ides against  bait  protein itself? Is "bait  expression" the sum of
endogenous, untagged protein and tagged bait?

3) Comparison of enrichment strategies: We are interested in the details of the various
enrichment strategies and would appreciate the inclusion of addit ional details.
a) Please add details on epitope tags compared in Materials and Methods (e.g. 1x FLAG or
3x FLAG; 1xStrep-tag II or 2xStrep-tag II; 6xHis).
b) How do backgrounds of FLAG, Strep, and His beads compare?
c) Fig. S3A:



i) Were on-bead digests for FLAG beads and His elut ions with imidazole performed
and analyzed? If so, how do they compare to on-bead digests of Strep and His
beads and FLAG and Strep elut ions?
ii) Were proport ional amounts of bead and elut ion analyzed?
iii) How complete were the various bead elut ions? Would incomplete elut ion result  in
lower numbers of significant ly interact ing proteins?
d) Fig. S3B: Sequence coverage is not that  different. Are there differences in intensit ies?
e) Fig. S3F: Please label Y-axis.

4) Fig. S4D: WB for MAPK14 phospho-p38 following PAM3CSK4 act ivat ion.
a) MAPK14 (right) shows clear p38 increase, while wild type (left ) is not as clear.
b) Do two bands in MAPK14 represent both untagged (endogenous) and tagged MAPK14?
c) It  is important to show total p38 (MAPK14) across all samples to support  the conclusion
that the phosphorylat ion increase is not primarily a change in protein levels.

5) Fig. S5
a) Fig. S5A: Why is ISG15 increased under denaturing condit ions? Should it  be the same
as nat ive. Since there is less total protein under denaturing condit ions, is more ISG15
able to be detected by MS?
b) Fig. S5D and S5E: MAP3K7 and TRAF2
Similar to Fig. 5D, we were unclear if the values shown are the intensity values obtained
for each condit ion, or if they were compared to a control? It  seems DMSO is up/down
depending on interact ion?

Minor correct ions: 
Please adjust  following on page 5: 
1) Change at t l to at tL.
2) NEB Builder to NEBuilder
3) Hutt lin, Ting et  al. 2015 is "doubly cited"; one should be deleted
On page 8:
1) "... and I nduces ..."

General comments on figure presentat ion: Applies to Figures 3-5 and S3A, S6-S19. 

1) Is a volcano plot  the best way to show interactome of specific baits (bait  vs all others)? It
would be nice for all interactomes to be presented as in Figure 2B.

2) Suggest ions to clarify labeling of interactomes, volcano plots and heat maps:
a) Novel vs Known is clearer than Interactor (blue) vs STRING/Biogrid (green). (Fig. 2A,
2B, 3A, 3B, 4A, 4B and 5C)
b) Do numbers have any significance aside from being a way to label data points on
volcano plot  and use heat map labels as a legend? Bait  is not always first .
c) Numbers overlap in volcano plots in Fig. 4A and supplement. Please adjust
accordingly.
d) For PPI heat maps, it  might be useful to add color convent ions defined in volcano plot  to
protein labels.
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Revision: MSB-2020-10125 

Identification of Covalent Modifications Regulating Immune Signaling Complex 
Composition and Phenotype 

We thank the reviewers for their valuable comments and constructive feedback. We have carefully 
addressed all reviewer’s concerns point by point. In the revised manuscript, we include a series of novel 
experiments and analyses, as suggested. We have also changed several sections in the main text and 
methods to better present the focus and novelty of our work. We hope you agree that our extensive 
revision has strengthened the manuscript significantly.   

Major improvements include: 

(1) Systematic comparison of open search (e.g. MsFragger, PEAKS/ Taggraph, dependent peptides of
MaxQuant) to specific search for identification of post-translational modifications

(2) In-depth analysis of the interdependency of PPIs and PTMs in TLR2 activation time-course
experiments

(3) Combination of MIP-APMS with GlyGly enrichment to identify GlyGly-sites on TRAF2
(4) Detailed validation and explanation of our experimental strategy to distinguish between bait/

prey and background proteins, including a comparison to the SAINT algorithm
(5) Confirmation of CRISPR-KOs of MAP3K7 interactors by Western Blot
(6) Validation of TLR2 cell activation and inhibition with MAPK14 small molecules by Western blots

using antibodies against p38 and phospho-p38
(7) Addition, redesign and optimization of Figures, including an interaction network for every bait

protein visualizing interconnected interaction hubs

A point-to-point response is provided below and all edits are highlighted in the text. 

Reviewer #1: 

The current manuscript by Frauenstein et al. presents a proteomics approach to dissect molecular 
signaling pathways through the simultaneous detection of protein complexes and post-translational 
modification. The authors call this methodology MIP-APMS (Modifications, Interactions and Phenotypes 
by Affinity Purification Mass Spectrometry) and demonstrate proof-of-concept through application of 19 
baits (i.e. protein complexes) in monocytes (both immortalized and primary). MIP-APMS combines tagging 
of bait proteins of interest through a rapid lentivirus approach (His tags used here), purification of protein 
complexes, LC-MS-based proteins detection and bioinformatic analysis of obtained results. The 
methodology, mainly through tricks with spectral matching, attempts to detect both protein complexes 
and all possible post-translational modifications at the same time. Computational analysis of the resulting 
data is aimed to provide detailed insights into immune cell relevant signaling nodes by providing both 
information on protein complex identify and post-translational modifications. Rapid genetic and/or 

17th Jun 20211st Authors' Response to Reviewers
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pharmacologic intervention will then enable to specifically investigate specific signaling nodes. Some 
higher-level proof-of-concept results are shown in the manuscript. 

 
 
Overall this is an interesting and technically rigorous manuscript that attempts to find an appropriate 
balance between technology, systems biology and proof-of-concept follow-up of novel discoveries. This 
manuscript presents a large amount of data and is appropriate for Molecular Systems Biology. Below I 
suggest a couple of minor modifications for the authors to further strengthen this manuscript. 

Comments: 

1) It's certainly interesting that putative interactors and PTMs are analyzed at the same time. Pulldowns 
are somewhat less complex than cellular lysates which would then suggest that PTMs can be detected 
and in an unbiased manner (i.e. without enrichment). I suggest that the authors describe the data a bit 
more careful. 

a. These pulldowns are actually quite complex: > 4000 proteins seem to be detected in each bait 
purification. This will certainly limit the number of PTMs that can be effectively detected in each analysis. 
Many will be missed and would only be detectable if tedious enrichments are performed (as discussed by 
the authors). 

This is an interesting point, which we now elaborate further. We agree, that the proteomic complexity 
may limit the number of identified sub-stoichiometric PTMs on bait/ prey proteins to some degree.  
However, we detected PTMs on more than 70% of the bait proteins and also dynamic regulations upon 
cell activation. In response to this comment and a question raised by reviewer 2, we have now performed 
a ‘tedious’ additional enrichment after His-IMAC to detect selected substoichiometric PTMs on selected 
baits. In particular, we performed GlyGly enrichment post TRAF2 IP and identified two covalently modified 
sites (see Fig. 3I). We have added a passage in the discussion, to raise the awareness to challenges 
associated with MIP-APMS. It reads: 

“As MIP-APMS does not include a second enrichment step, the method preferentially quantifies abundant 
PTMs on bait and prey proteins. Ubiquitinylation and neddylation are known as sub-stoichiometric PTMs 
and special biochemical enrichment or MS methods are commonly used for their detection (Kim, Bennett 
et al. 2011, Wagner, Beli et al. 2011, Bustos, Bakalarski et al. 2012, Hansen, Tanzer et al. 2021). We show 
that MIP-APMS combined with Gly-Gly enrichment facilitates the bait-centric identification 
ubiquitinylation or isgylation sites, exemplified for TRAF2.”  

b. I assume the dependent peptide algorithm in MaxQuant is similar to an open search (i.e. MSFragger). 
It might be interesting to run such an algorithm for comparative reasons - at least on a subset of these 
data to provide additional confirmation. 

We thank the reviewer for this question. The dependent search algorithm implemented in MaxQuant 
detects mass shifts in comparison to unmodified peptides, which can be the result of unknown chemical 
modifications, protease cleavages or amino acid substitutions. For the revision, we have compared the 



3 

dependent peptide algorithm of MaxQuant and other open search algorithms (MSFragger and Peaks/ 
Taggraph). Exemplified for MAPK14, we show that most modifications were identified by MSfragger, 
followed by Peaks/Taggraph and MaxQuant (Figure EV4G). We observed the highest overlap between 
MSFragger and MaxQuant (300), followed by MSFragger and Peaks/Taggraph (102) and MaxQuant and 
Peaks/Taggraph (65) (Figure EV4H). 26 peptides were identified by all three algorithms, corresponding to 
21 unique modifications. We highlight the 26 reproducibly identified modifications across algorithms 
(dependent peptides, PEAKS/taggraph and MSfragger) in Figure EV4I. Interestingly, when we compared 
the MaxQuant specific search to the open search engines, of the 15 PTMs identified on MAPK14 
(Phosphorylation, Acetylation and Methylation) only 6 were detected with PEAKS/Taggraph and 2 by 
PEAKS/Taggraph and specific search (Figure EV4J).  

We are pasting the new panels of Figure EV4 below: 

The corresponding legend reads: 

“(G) Number of modifications on MAPK14 detected with the indicated open search algorithms in at least 
one replicate. Open search was performed in MaxQuant (dependent peptide mode), MS Fragger and 
Peaks/Taggraph on the drug mode of action dataset of MAPK14 (Figure 5). Mass offsets detected at 
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distinct amino acid positions were kept separately. (H) Venn diagram showing the overlap of modifications 
identified with open search algorithms in at least one replicate. (I) Number of distinct modifications on 
MAPK14, identified in at least 70% of the replicates with MaxQuant (red), Peaks/Taggraph (violet), 
MaxQuant & Peaks/Taggraph (green) and with less than 70% valid values (turquoise) in all searches.  (J) 
Comparison of MaxQuant specific searches for MAP3K7, MAPK14 and TRAF2 to dependent peptide 
analysis (MaxQuant) and PEAKS/Taggraph. Identified and quantified sites are depicted in turquoise, not 
identified sites in red.” 

We have edited the main text accordingly: 

“Furthermore, an unbiased analysis of covalent peptide modifications using the dependent peptide 
algorithm in MaxQuant, the string-based search algorithm Taggraph - based on a de novo search in PEAKS 
and MS-Fragger (Devabhaktuni, Lin et al. 2019) revealed a series of less well-described covalent 
modifications on MAPK14 (Figure EV4G). 26 modifications were shared between search engines (2.3 % of 
all modifications for dependent peptides, 1.5 % PEAKS/taggraph and 0.9 % MS-Fragger, Figure EV4H). Out 
of these 26 modifications, 6 were reproducibly identified and quantified in all replicates (Figure EV4I). To 
distinguish biologically regulated from other - for example - sample preparation-introduced modifications, 
we quantified the identified modifications upon cell activation with specific searches in MaxQuant. 
Notably, only MAPK14 phosphorylation was differentially regulated between conditions. Moreover, 
acetylation, methylation and phosphorylation detected on TRAF2, MAPK14 and MAP3K7 with specific 
searches were missed by open searches (dependent peptides of MaxQuant and PEAKS/Taggraph) (Figure 
EV4J).  This demonstrates that MIP-APMS can discover novel PTMs in signaling complexes, however, 
comparisons across search engines and confirmation with specific search strategies are advisable to 
increase confidence.” 

c. Supplemental Table S1 was not completely clear. I assume the authors ran multiple replicates and 
possibly also a background controls (i.e. lysates without the His-tag)? It might be appropriate to show this 
table with more granularity and show results from all the replicates, rather than a merged dataset? 

We have addressed this point and we are now reporting all replicates and respective controls in 
Supplementary Table 1/ Table EV1. Additionally, we have updated the other Supplementary Tables and 
report the LFQ intensity values for all replicates. 

2) Figure 2F/G: These Figures and resulting data need more explanation. As presented data interpretation 
is unclear. What exactly went into this heatmap? How do we get from the correlation clusters to these 
temporal, quantitative profiles? 

We thank the reviewer for this question and have revisited the analysis and visualization of this panel. 
Now, all PPIs (357) and PTMs (37) identified on baits and preys from time course experiments, with at 
least 70% valid values in all replicates are included in the heat map. The median intensity (log2) of each 
PPI and time-point was calculated and z-scored. For the hierarchical clustering, we performed a row-wise 
correlation analysis (Pearson correlation) and plotted smoothed medians (in blue) of 7 emerging clusters 
for all PPIs and PTMs (method=loess, y~x, confidence interval=0.95). We now show all 7 clusters in Fig 2G, 
as pasted below.  
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We have also included an additional Supplementary Table (Table EV3, tab PPI PTM interdependency) 
showing the results of the correlation analysis and clusters for each PPI and PTM. Additionally, we have 
updated the Figure legend and the methods section for clarity. We have updated the main text as such:  

“Next, to study PTM and PPI interdependency, we correlated all PTM and PPI intensities and clustered 
them unbiasedly over the time-course of TLR2 activation (Fig. 2G, Table EV3). We detect the dynamic co-
regulation on both molecular layers (PPIs and PTMs), identifying correlating and anti-correlating PTMs 
and PPIs during signaling pathway activation. We identified seven clusters with distinct kinetics, some 
peaking early (Fig. 2H, Cluster: 4,5) and others late (Fig. 2H, Cluster: 7) upon pathway activation, as well 
as up- (Fig. 2H, Cluster: 4,5,6,1) vs. down-regulated (Fig. 2H, Cluster: 1,2,3) PTMs and PPIs.  Interestingly, 
interactors identified in more than one MIP-APMS experiment (e.g., CDC37: Cluster 1) were in close 
network proximity. Our approach facilitated an unbiased discovery of time-resolved molecular 
connections between dynamic PTMs and PPIs, exemplified by the correlated interaction of MAP3K8 
interactors (NFKB1, NFKB2) and NFκB1 phosphorylation (Cluster 4,7), or the anti-correlated relationships 
of phosphorylation of the C-terminal kinase domain of AKT1 and the interaction with CDC37 (Cluster1, 5). 
This demonstrates that the sensitivity and robustness of MIP-APMS enables the simultaneously 
determination of cellular signaling network rearrangements by PPIs, PTMs, and their interplay.“ 

The Figure legend now reads: 

“(G) Unsupervised clustering (Pearson correlation) of the z-scored intensity profiles of all PPIs (357 

) and PTMs (37) upon TLR2 activation, partitioned in seven clusters. (H) Dynamic profiles of co-regulated 
PTMs and PPIs with close network proximity, from the indicated clusters; median z-scored intensity of each 
time-point (blue: median, grey: confidence interval =0.95, method: loess), n, number of proteins in clusters 
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1 to 7. Selected proteins from each cluster are indicated, with the bait proteins in parentheses. See also 
Figure EV3, Table EV2 for PPIs and Table EV3 for PTMs.” 

The method section now reads: 

“Unsupervised clustering 
Intensities of dynamically regulated PPIs (357) and PTMs (178) upon TLR 2 activation were filtered for at 
least 70% valid values and normalized per time-point (PPIs to bait protein intensity and PTMs to protein 
intensity of the modified protein as explained above). The median of each time-point was calculated and 
then Z-scored. Pearson correlation was calculated between each of the PPIs and PTMs and results were 
visualized by hierarchical clustering. The data was clustered and median z-scored intensities (Confidence 
interval: 0.95) were plotted against the time-course of TLR2 activation (method=loess, y~x). N shows the 
number of PPIs/PTMs corresponding to each cluster.” 

3) There are several data normalizations throughout the manuscript that require more explanation. 
a. For example, the data in Fig 3A ("The interactome of TRAF2 (measured 16x in biological replicates) 
compared against all other pull-downs in the control group"). Does this mean that a pulldown of a given 
bait is compared to the pulldowns from all the other baits in this study? So basically, bait controls are 
used to infer bait specific association. Are there some steps to remove simple non-specific bead 
interaction? These data may have been buried somewhere in the manuscript, but were unclear to this 
reviewer. 

We take the opportunity to explain our bioinformatics strategy for interactor calling in more detail. We 
use a concept termed AE-MS introduced by (Keilhauer, Hein et al. 2015), which is based on the premise, 
that the majority of quantified proteins in the interactome derives from non-specifically bead-binding 
proteins (= background) under low detergent (= low stringent) conditions. In AE-MS, background proteins 
- as opposed to real bait/ prey proteins - have stable intensities across experiments. Accordingly, standard 
statistical testing of all protein LFQs per bait versus all LFQs from all other MIP-APMS experiments 
discriminates significantly enriched outlier proteins versus background binders. Notably, in contrast to 
other approaches, low affinity-binding proteins are preserved under low stringency washing conditions. 
Moreover, quantification by a label-free (such as MaxLFQ) algorithm - which assumes a certain degree of 
similarity between samples - is more accurate. Accordingly, we did not apply additional in silico processing 
steps, to remove non-specific bead binders. 

We now show three additional subfigures in the Supplement to illustrate the distinct differences between 
specific and background protein LFQ intensities and p-values.  
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The new Figure EV4A-C legend reads: 

“(A) Pie-chart showing the proportion of quantified bait and prey proteins (blue) in comparison to 
background binding proteins (red) (B) Boxplots with enrichment differences (log2) of bait and prey versus 
background proteins. (C) Boxplots with p-values (-log10) of bait and prey proteins versus background 
proteins.” 

Additionally, we have updated the main-text for clarity. It now reads: 

“We generated 19 transgenic monocytic U937 cell lines and analyzed them with MIP-APMS, as described 
above. This identified and quantified an average of 4106 proteins per measurement, including non-
specifically binding proteins as expected for non-stringent AP-MS conditions (Trinkle-Mulcahy, Boulon S 
Fau - Lam et al. , Rees, Lowe et al. 2011). We observed high median intra-bait and inter-bait Pearson 
correlations (>0.9) between biological replicates (Figure EV3I) and between different cell lines (Figure 
EV3J). This highlights the overall reproducibility of the devised workflow. To discriminate specifically 
interacting proteins from background binders common to all baits, we compared enrichments from single 
vs. all other cell lines with a standard statistical test (two-sided T-test) at a stringent false discovery rate 
(FDR) of 1% to correct for multiple-hypothesis testing (Hein, Hubner et al. 2015, Keilhauer, Hein et al. 
2015, Hubel, Urban et al. 2019). This resulted in a small fraction of significantly interacting proteins (378 
proteins in total, with a median of 16 interactors per bait) compared to a large proportion of background 
binders (Table EV1, Figure EV4A), Notably, distinct protein intensity differences and p-values clearly 
distinguish specific bait and prey from unspecific background proteins (Figure EV4B, C).” 

 b. Fig 3C: For these dynamic protein network analyses a certain prey is normalized to the bait at different 
time-points/treatments. Intuitively this makes sense, but is the abundance of the bait actually stable in 
these dynamic experiments and if not how would this change results? 

We reanalysed the data to address this interesting point. We have calculated the difference between the 
replicates of each bait protein and plotted the distribution in a boxplot (Figure EV3H: Bait intensity 
variation). The LFQ intensity of the bait proteins is largely stable across the replicates and the median 
difference in time series experiments varies by 0 +/- 0.89. This tight correlation between bait and prey 
intensity profiles has been previously observed by Keilhauer et al. (Keilhauer, Hein et al. 2015). As we 
normalize prey intensities to bait intensity (as explained in detail in materials and methods), even in case 
a bait protein changed abundance (e.g. in case of degradation upon cellular activation), we assume MIP-
APMS is not prone to false-positive dynamic interactor calling. 
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Overall this is an interesting manuscript that presents a pipeline to rapidly generate tagged bait proteins 
through viral transduction. The focus in on 19 baits in immortalized and primary immune cells, providing 
a significant resource for immunologist, this alone makes this paper useful to the community. Asides from 
individual candidates, the novelty of this study is the parallel generation and analysis of dynamic protein 
complexes (and PTMs). Proof-of-concept validation provide confidence of the generated data and the 
MIP-APMS technology. 

We thank the reviewer for the enthusiasms for our work. 
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Reviewer #2: 

In this manuscript, Frauenstein et al describe a method in which they pull down a number of known key 
players in signalling pathways downstream of Toll-like receptors (TLR). They analyse the pulldowns not 
only for protein changes but also for post-translational modifications. They provide a number of examples, 
including 19 proteins followed by dynamics around TRAF2 complex changes upon TLR activation. They 
then show that knocking out proteins of the TAK1 complex affects NFkB signalling and finally, they show 
that three different inhibitors of MAPK14 affect the protein complex of this protein. 

Major points: 

1. The authors try to sell AP MS and the subsequent search for PTMs in the pulldowns as a new method. 
This has been done since many years in the community and therefore, this is not a new method and it 
definitely does not need a new acronym. If required, this reviewer can start looking for papers that are at 
least 10 years old where this was done. It appears that the authors believe that their "streamlined" cell 
line generation is worth highlighting, but then many others, including Anne-Claude Gingras have shown 
similar approaches for AP-MS. 

We appreciate this comment. We do acknowledge that PTMs were detected previously in AP-MS 
experiments and have already cited 20 papers both, AP-MS and PTM-MS only in the introduction, an 
altogether four publications from Anne-Claude Gingras. To still aim to address this point, we have 
extended the text as follows to more clearly endorse previous work (Page 3, paragraph 4):   

“By contrast, PTM analyses generally focus on a single modification type (e.g., phosphorylation), wherein 
modified peptides of all cellular proteins are affinity-enriched. Alternatively, in order to classify PTMs on 
specific proteins, affinity purification mass spectrometry (APMS) approaches with stringent washing and 
lysis conditions have been performed at the expense of PPI elucidation (Stutz, Kolbe et al. 2017, Pankow, 
Bamberger et al. 2019, Karayel, Tonelli et al. 2020).” 

Conversely, we also include a dedicated passage about previously performed AP-MS approaches including 
transduction, citing the Gingras and Gygi labs (Page 5, paragraph 3):  

“As shown previously, employing lentiviral transduction for amphotrophic gene transfer extends the 
scope from readily transfectable cell lines, e.g., human embryonic kidney (HEK) cells, to non-dividing and 
terminally differentiated cells of primary origin (Huttlin, Ting et al. 2015, Samavarchi-Tehrani, Abdouni et 
al. 2018).” 

While carefully re-screening the literature, however, we did not find a study where the dynamic interplay 
of PTMs and PPIs is studied systematically upon cell activation.  In particular for immune or primary cells, 
streamlined approaches are challenging and have not been reported. We hope the reviewer agrees that 
our method describes a distinct step towards MS-based investigations of signal transduction mechanisms 
in physiological and primary cell systems.  

We are surprised about the comment referring to the use of acronyms for methods. We do not intend to 
promote our method by giving it a name. We were inspired by common practice in the field of proteomics 
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to name methods or tools, e.g. AE-MS (Keilhauer, Hein et al. 2015), EASYPhos (Humphrey, Karayel et al. 
2018), CiRCus (Seefried, Schmidt et al. 2019), SEC-SWATH-MS (Bludau, Heusel et al. 2020).  

In our opinion, names facilitate unambiguous denominations and discussions among researchers. 
Accordingly, MIP-APMS is ‘just’ a name with no further implications what our method provides or does 
not provide. We carefully re-examined the manuscript to omit statements, where merits of MIP-APMS 
may be perceived subjectively. In this context, we replaced the term ‘framework’ by ‘method’ or ‘strategy’ 
throughout the text. Importantly, we do not mention MIP-APMS in the title (although this would help to 
reduce the word count), but use it as an abbreviation for the method in the manuscript.  

2. There is an overall connecting story missing. The manuscript reads as a collection of many, many
experiments that are somehow pulled together.

We interpret this comment as a suggestion to optimize the flow and provide additional guidance to the 
reader. We have addressed the comment in two aspects. To assist the reader in navigating through our 
manuscript, we have now included a graphical roadmap connecting individual experiments in Figure EV1A, 
as pasted below.  

Moreover, we have carefully edited and expanded the final section of the introduction to highlight our 
focus on monocyte immune activation and inhibition, and how our method provides unique insights. 

“We evaluated and technically optimized all steps of MIP-APMS, comprising (1) the epitope-tagging of 
proteins of interest and mammalian cell transduction, (2) affinity purification conditions for optimal 
interaction network and PPI enrichment, (3) followed by MS-based PTM and PPI quantification and 
identification and (4) ultimate biochemical and phenotypic validation of interactors and PTMs in primary 
human immune cells. Integration of multiple MIP-APMS experiments generates dynamic signal 
transduction networks and pinpoints time-resolved co-regulations of PTMs and PPIs in sequential signal 
transduction steps. We show the discovery potential of our pipeline by interrogating dynamically 
assembling protein communities in human monocyte immune signaling using Toll-like receptor (TLR) 2 
activation and MAP kinase MAPK14 inhibition as paradigms. Our screen encompassing 19 protein 
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complexes identified more than 50 previously undescribed PTMs, including phosphorylation, acetylation, 
methylation, isgylation as well as other less well described chemical modifications and elucidated an 
interaction network spanning more than 300 PPIs. We used the modular concept of MIP-APMS to test 
emerging data-driven hypotheses to validate PTMs and PPIs regulating immune signaling in reporter and 
primary cells. In this way, MIP-APMS enables the streamlined validation of cross-talk between different 
layers of protein regulation with broad applicability.” 

Minor points: 

1. Supplementary tables should contain the intensity values of all replicates. Suppl Table 1 for example 
has only the "difference" and the p-value 

As suggested, we have now included the LFQ intensity values of all replicates in the supplementary tables.  

2. Having values with 5 digits in the supplementary tables makes relatively little sense as the last 3 are 
definitely not accurate. 

We have updated the supplementary table and rounded the numbers to two digits by changing the view 
settings. 

3. The transduction part of the paper is valuable, but too long. The authors may want to shorten this part 
significantly. 

We thank the reviewer for this suggestion. We have now significantly shortened the transduction part of 
the manuscript. It now reads: 

“Universal Cloning and Transduction Strategy. To enable interrogation of signaling cascades, we employed 
a cost-effective method for epitope-tagging of proteins with a restriction enzyme-free approach, called 
restriction enzyme-free seamless ligation cloning extract (SLiCE) cloning (Zhang, Werling et al. 2012). A 
modified weak phosphoglycerate kinase (PGK) promoter controls the expression of the GOIs, which are 
flanked by attL sites. Thereby, our vector system is compatible with commercial DNA assembly cloning 
strategies such as the NEBuilder platform or Gateway, which had been used before (Lambert, Tucholska 
et al. 2014). As shown previously, employing lentiviral transduction for amphotrophic gene transfer 
extends the scope from readily transfectable cell lines, e.g., human embryonic kidney (HEK) cells, to non-
dividing and terminally differentiated cells of primary origin (Huttlin, Ting et al. 2015, Samavarchi-Tehrani, 
Abdouni et al. 2018). In particular for application with primary immune cells, transduction is advantageous 
as other methods can activate innate immune signaling pathways and induce cell death (Fernandes-
Alnemri, Yu et al. 2009, Hornung, Ablasser et al. 2009, Gaidt, Ebert et al. 2017). As a relevant and 
challenging experimental model system, we chose human monocytes, because these cells are not easily 
transfectable and execute a broad spectrum of cellular programs by the dynamic intracellular propagation 
of molecular signals downstream of cell surface receptors. For method development and phenotypic 
screening, we employed the monocytic cell-line U937 and validated our results with primary cells. We 
achieved 92 (+/- 5)% cellular transduction efficiency after antibiotic marker selection (Figure EV1B). We 
further demonstrated the universality of our approach with primary human macrophages differentiated 
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from peripheral monocytes (Figure EV1C, Figure EV1D, Table EV1) and primary human T-cells (Figure EV1E, 
Table EV1). 

4. I don't understand Figure 2G. which protein pulldowns are we looking at that see reductions in the
PTMs and the complex partners?

We thank the reviewer for this question. We have now updated Figure 2H and G to show a total of seven 
co-regulated clusters. We also included a more detailed description of the analysis in the main text and 
methods section, as this was also requested by reviewer 1. In these panels, we show a selection, of 
regulated PPIs and PTMs, with the respective bait protein indicated in brackets. In addition, Table EV3 tab 
Interdependencies PPIs and PTMs now shows, which proteins and PTMs are localized in each cluster.  

We have updated the main text as follows: 

“Next, to study PTM and PPI interdependency, we correlated all PTM and PPI intensities and clustered 
them unbiasedly over the time-course of TLR2 activation (Fig. 2G, Table EV3). We detect the dynamic co-
regulation on both molecular layers (PPIs and PTMs), identifying correlating and anti-correlating PTMs 
and PPIs during signaling pathway activation. We identified seven clusters with distinct kinetics, some 
peaking early (Fig. 2H, Cluster: 4,5) and others late (Fig. 2H, Cluster: 7) upon pathway activation, as well 
as up- (Fig. 2H, Cluster: 4,5,6,1) vs. down-regulated (Fig. 2H, Cluster: 1,2,3) PTMs and PPIs.  Interestingly, 
interactors identified in more than one MIP-APMS experiment (e.g., CDC37: Cluster 1) were in close 
network proximity. Our approach facilitated an unbiased discovery of time-resolved molecular 
connections between dynamic PTMs and PPIs, exemplified by the correlated interaction of MAP3K8 
interactors (NFKB1, NFKB2) and NFκB1 phosphorylation (Cluster 4,7), or the anti-correlated relationships 
of phosphorylation of the C-terminal kinase domain of AKT1 and the interaction with CDC37 (Cluster1, 5). 
This demonstrates that the sensitivity and robustness of MIP-APMS enables the simultaneously 
determination of cellular signaling network rearrangements by PPIs, PTMs, and their interplay.”  

The Figure legend now reads: 

“(G) Unsupervised clustering (Pearson correlation) of the z-scored intensity profiles of all PPIs (357) and 
PTMs (37) upon TLR2 activation, partitioned in seven clusters. (H) Dynamic profiles of co-regulated PTMs 
and PPIs with close network proximity, from the indicated clusters; median z-scored intensity of each 
time-point (blue: median, grey: confidence interval =0.95, method: loess), n, number of proteins in 
clusters 1 to 7. Selected proteins from each cluster are indicated, with the bait proteins in parentheses. 
See also Figure EV3, Table EV2 for PPIs and Table EV3 for PTMs.“ 

The method section now reads: 

“Unsupervised clustering 
Intensities of dynamically regulated PPIs (357) and PTMs (178) upon TLR 2 activation, were filtered for at 
least 70% valid values and normalized per time-point (PPIs to bait protein intensity and PTMs to protein 
intensity of the modified protein as explained above). The median of each time-point was calculated and 
then Z-scored. Pearson correlation was calculated between each of the PPIs and PTMs and results were 
visualized by hierarchical clustering. The data was divided into seven clusters and median z-scored 
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intensities (Confidence interval: 0.95) were plotted against the time-course of TLR2 activation 
(method=loess, y~x). N shows the number of PPIs/PTMs corresponding to each cluster.” 

5. Figure 3A: please make sure that 8,9,10 aren't overlaying in the volcano plot. 

We have adjusted the plot, as suggested. 
 
6. Figure 3C&E. some of the points in this figure are identical in their values. Did the authors have indeed 
such a reproducibility? 

We have carefully re-inspected and re-plotted all Figures and now also show the intensity values of all 
replicates in the respective supplementary tables. The table includes the measured and normalized 
values. Indeed, upon normalization to bait protein amount as described in materials and methods, we 
sometimes achieve exceptional reproducibility. 

7. Figure 3: please add the protein ID to D. it is not obvious which proteins these PTMs belong to. 

As suggested, we have now added an ID to D. 

8. ISGylation of Traf2: it is quite harsh mutating away lysines. Did the authors find any GlyGly modifications 
on these residues? 

We thank the reviewer for this question. We have now performed GlyGly enrichment on a TRAF2 MIP-
APMS experiment and were able to identify GlyGly sites on TRAF2 (see Fig. 3I).  We have updated the 
main text, accordingly: 

“ISG15 is a ubiquitin-like protein, that covalently modifies target proteins on lysine residues in a process 
called isgylation (Loeb and Haas 1992, Zhang and Zhang 2011). After tryptic digest, isgylated peptides 
harbor GlyGly modifications on lysines, that can be readily detected by LC-MS/MS. As we did not directly 
detect GlyGly-modified peptides, we combined MIP-APMS with GlyGly enrichment and indeed identified 
two GlyGly modification sites on TRAF2 (Positions K27, K320) (Fig. 3I). To deduce the impact of isgylation 
on the TRAF2 interaction network, we performed site-directed mutagenesis of TRAF2 lysines and 
subjected the K->R mutant cell-lines to MIP-APMS. Out of the total 32 K->R mutants, 5 showed strong 
(more than 4x) and significant depletion of ISG15 in the TRAF2 complex (Fig. 3J, Table EV4). Interestingly, 
the most regulated site - K320 – was also identified by our initial GlyGly enrichment, suggesting an 
ISGylation of TRAF2.” 

Additionally, we have updated the discussion: 

“As MIP-APMS does not include a second enrichment step, the method preferentially quantifies abundant 
PTMs on bait and prey proteins. Ubiquitinylation, neddylation and isgylation are known as 
substoichiometric PTMs and special biochemical enrichment or MS methods are commonly used for their 
detection (Kim, Bennett et al. 2011, Wagner, Beli et al. 2011, Bustos, Bakalarski et al. 2012, Hansen, Tanzer 
et al. 2021). We show that MIP-APMS combined with Gly-Gly enrichment facilitates the bait-centric 
identification of ubiquitin-like modification sites, exemplified for TRAF2.” 
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9. Considering that the authors didn't prove that the change in NFkB activation in K>R mutants is really 
down to ISGylation, I suggest that the statement is a little less strong: Please change "Functional analysis 
of the K->R mutants revealed reduction in NFkB activation for K277R, K320R, K364R and K389R mutants, 
indicating ISG15 as a positive regulator downstream of TLR2." To "Functional analysis of the K->R mutants 
revealed reduction in NFkB activation for K277R, K320R, K364R and K389R mutants, suggesting that 
ISGylation of TRAF2may act as a positive regulator downstream of TLR2." 

We thank the reviewer for this comment. We have changed the wording as requested. 

10. Figure 4 and the associated paragraph: it is long known (PMID: 10675530) that TAK1 plays a major role 
in NFkB signalling and that the knockout has reduced NFkB activation (PMID: 16186825). While making all 
these CRISPR knockouts was certainly a lot of work, this chapter does not seem to provide much novelty. 

No doubt, TAK1 is well known as a major regulator of NFkB signaling. This was one of the reasons, why we 
were interested in characterizing it’s interactome in the first place. As we found several proteins not 
previously described as TAK1 interaction partners (ARHGEF18, FOSB), we were curious, whether their 
knockout by CRISPR would impact NFkB signaling. Accordingly, in the CRISPR-KO experiment, MAK3K7 
(TAK1), TLR2 and MYD88 serve as positive controls for the novel candidate protein KOs. As this apparently 
was not so clearly stated, we have rephrased the passage and also included the suggested reference in 
the main text. It now reads: 

“To further explore the utility of MIP-APMS for discovery of new interactors, we evaluated functional 
interactions of MAP3K7. MAP3K7 (TAK1) is a central kinase of the MAPK signaling pathway, with crucial 
roles in the activation of TRAF6 downstream of TLRs and other receptors (B-cell receptor, TNF receptor) 
(Landström 2010) and known as a major regulator of NFkB signaling (Sato, Sanjo et al. 2005).” 

11. How many replicates were made of every pulldown. It wasn't clear from the manuscript. 

We thank the reviewer for this question. We have now included a tab in the Table EV1 indicating how 
many replicates were carried out per pulldown. 16 replicates were carried out for the pulldowns of BCL10, 
BIRC2, CASP7, IFIH1, MAP3K7, RIPK2, RIPK3, TRAF1, TRAF6. 15 replicates were carried out for AKT1, 
MAP3K8, MAPK14, TIRAP, TRAF2. 14 replicates were carried out for MYD88 and SYK. 4 replicates were 
performed for CASP4, CASP5 and IKBKE. 

12. What did the authors do when there was only 1 or 2 missing values? Did the authors still impute 
values? 

We take the opportunity to clarify this point. Missing values were replaced by random numbers calculated 
from a normal down-shifted distribution (down-shift: 1.8), also in the case of only 1 or 2 missing values 
per protein. In this regard, our analysis is very stringent as potentially more interactors could be reported 
when applying distinct strategies to compute missing values. This information is also included in the 
Methods section. 

13. Please add a list to PRIDE explaining what each RAW file is. I could not find this. 
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We thank the reviewer for raising this topic. We have now added an additional supplementary table for 
Pride raw files. 
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Reviewer #3: 

Summary: 
In their manuscript "Identification of Covalent Modifications Regulating Immune Signaling 
Complex Composition and Phenotype," Frauenstein et al. have created a framework to define 
"protein communities" - PPIs and PTMs associated with affinity purified complexes - and 
investigate their rearrangement in response to specific perturbations. To fully test the boundaries 
of these methods, the authors have chosen to interrogate molecular signaling in human monocyte 
cell lines and primary cells. Starting from the cloning of GOIs into His-tagged lentiviral constructs 
for transduction into a broad spectrum of cell types, to the optimization of affinity purification and 
sample preparation for MS, and MS analysis to simultaneously investigate PPIs and the PTMs of 
purified proteins, these steps collectively form MIP-APMS (Modifications, Interactions and 
Phenotypes by Affinity Purification Mass Spectrometry), a "fast and cost-effective pipeline" to 
characterize PPIs and PTMs in an iterative manner. 

The authors have delineated a thoughtful strategy to clone GOIs for AP-MS studies. Using a 
previously published method for cloning, SLiCE, a lentivirus vector was modified to temper gene 
expression (modified weak PGK promoter) and mediate compatibility with commercial cloning 
systems (flanking ~ 100 bp attL sites). A major advantage of this protocol is that PTM analysis 
requires no additional enrichment steps; instead, modifications are preserved through the mild 
lysis conditions employed, and their identification is enabled through the high sequence coverage 
obtained for bait proteins. Dependent searches, performed through PEAKS and MaxQuant, 
identify ~ 50 novel PTMs. Incorporation of a variable modification search allowed the identification 
of dynamic N-term phosphorylation of TRAF2, with verification of these sites via phosphor variants 
revealing significant interactome remodeling. Frauenstein et al. further demonstrate the utility of 
MIP-APMS to profile drugs and identify potential off target effects by probing alterations of PPI 
networks following treatment with small molecule inhibitors. 

Recommendation: 
Although the underlying premise is commendable, the actual execution and results fall short of 
expectations due, in part, to technical limitations; moreover, the individual parts are not generally 
novel while their sum is overstated with conclusions overreaching at times. Beyond PPIs, MIPAPMS 
reveals both bait and prey PTMs. However, the correlations between PPIs and PTMs are 
generally not convincingly clear in the time course experiments. Nevertheless, some of the 
approaches and subsequent findings are interesting (especially isgylation of TRAF2); therefore, 
we would recommend a qualified acceptance pending significant revisions to clarify text and 
figures and additional experiments to further support conclusions. 

We thank the reviewer for the thorough evaluation and appreciation of our approaches and findings. We 
have carefully addressed all points, clarified text and Figures and performed additional experiments to 
support our conclusions as suggested. 

Major Comments: 
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1) The author's do not incorporate any negative controls into their AP-MS workflow, instead
removing proteins common across samples as background interactors.

We thank the reviewer for raising this point, which was also touched upon by reviewer 1. We take the 
opportunity to explain our bioinformatics strategy for interactor calling in more detail. We use a concept 
termed AE-MS introduced by (Keilhauer, Hein et al. 2015), which is based on the premise, that the majority 
of quantified proteins in the interactome derives from non-specifically bead-binding proteins (= 
background) under low detergent (= low stringent) conditions. In AE-MS, background proteins - as 
opposed to real bait/ prey proteins - have stable intensities across experiments. Accordingly, standard 
statistical testing of all protein LFQs per bait versus all LFQs from all others MIP-APMS experiments 
discriminates significantly enriched outlier proteins versus background binders. Notably, in contrast to 
other approaches, low affinity-binding proteins are preserved under low stringency washing conditions. 
Moreover, quantification by a label-free (such as MaxLFQ) algorithm - which assumes a certain degree of 
similarity between samples - is more accurate. Accordingly, we did not apply additional in silico processing 
steps, to remove non-specific bead interactors. 

We now show three additional subfigures in the Supplement to illustrate the distinct differences between 
specific and background protein LFQ intensities and p-values.  

The new Figure EV4A-C legend reads: 

“(A) Pie-chart showing the proportion of quantified bait and prey proteins (blue) in comparison to 
background binding proteins (red) (B) Boxplots with enrichment differences (log2) of bait and prey versus 
background proteins. (C) Boxplots with p-values (-log10) of bait and prey proteins versus background 
proteins.” 

Additionally, we have updated the main-text for clarity. It now reads: 

We generated 19 transgenic monocytic U937 cell lines and analyzed them with MIP-APMS, as described 
above. This identified and quantified an average of 4106 proteins per measurement, including non-
specifically binding proteins as expected for non-stringent AP-MS conditions (Trinkle-Mulcahy, Boulon S 
Fau - Lam et al. , Rees, Lowe et al. 2011). We observed high median intra-bait and inter-bait Pearson 
correlations (>0.9) between biological replicates (Figure EV3I) and between different cell lines (Figure 
EV3J). This highlights the overall reproducibility of the devised workflow. To discriminate specifically 
interacting proteins from background binders common to all baits, we compared enrichments from single 
vs. all other cell lines with a standard statistical test (two-sided T-test) at a stringent false discovery rate 



 18 

(FDR) of 1% to correct for multiple-hypothesis testing (Hein, Hubner et al. 2015, Keilhauer, Hein et al. 
2015, Hubel, Urban et al. 2019). This resulted in a small fraction of significantly interacting proteins (378 
proteins in total, with a median of 16 interactors per bait) compared to a large proportion of background 
binders (Table EV1, Figure EV4A), Notably, distinct protein intensity differences and p-values clearly 
distinguish specific bait and prey from unspecific background proteins (Figure EV4B, C). 

 
a) Do the author's incorporate intensity or abundance differences between samples in 
determining what gets labeled a background interactor? 

We integrate differences in intensities and abundance as described by (Keilhauer, Hein et al. 2015). Briefly, 
in a two-step procedure, first, a two-sided T-test discriminates significantly interacting from background 
binding proteins, and second, a two-sided T-test discriminates dynamically changing interactors. To clarify 
this point, we have added a detailed description of the interactor calling in the methods section on page 
29 paragraph 4.   

b) Interconnected proteins (e.g. TRAF2 and BIRC2) are also baits; how does this affect determination of 
background proteins? 

We appreciate the comment. We determine interactors unbiasedly by statistical testing without a priori 
knowledge. Bait proteins or interconnecting proteins are not treated differently. We now illustrate how 
this analysis strategy impacts interconnectedness, using SYK and MAPK14 as examples, as they share 32 
common interactors: We compared enrichments and p-values from statistical tests (two-sided T-test) 
from single vs. all other cell lines against single vs. all other cell lines excluding SYK/ MAPK14. In the first 
example, where both MAPK14 and SYK are in the same control group (large control group), enrichment 
and p-value (-log10) of bait and prey proteins are smaller than for the second example, where MAPK14 
and SYK are removed from the control group (small control group) (Figure EV4D, pasted below). 
Accordingly, our workflow prioritizes bait-specific interactors, as PPIs present in multiple interactomes 
may not be enriched significantly. 
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The Figure legend reads: 

“Impact of interconnected interactors on enrichment differences and p-values: Interactor calling was 
performed for indicated proteins using big (with SYK and MAPK14) and small (without SYK and MAPK14) 
control groups. Differences of all significant interactors and p-values are shown individually for SYK and 
MAPK14 pulldowns.” 

We have updated the main text, accordingly: 

“MIP-APMS prioritizes bait-specific preys, as proteins enriched in multiple experiments – including 
interconnected interactors - show lower enrichment differences and p-values (Figure EV4D) by unbiased 
statistical interactor calling (see Methods).” 

c) Similarly, were any scoring systems used when determining interactors (SAINT, 
compPASS)? We would suggest incorporating negative controls along with established 
algorithms (SAINT, compPASS) for determining interactors, particularly as the authors 
are introducing MIP-APMS as a novel methodology. Also, are there any challenges in 
incorporating PTM analysis with these algorithms? We would appreciate a comment 
from the authors. 

We thank the reviewer for this interesting comment. We have now integrated a SAINT analysis for a subset 
of our data. By uploading our data to the SAINT-based Crapome pipeline (https://reprint-apms.org/), we 
analyzed the pulldown of MAPK14 versus control (cell line transduced with His-Tag only). We used 
standard parameters and spectral counts for quantification, although the latter is less quantitative than 
ion intensities. We compared the results by plotting the SAINT likelihood (probability of true interaction 
between two proteins) against the p-value obtained from our T-test-based approach (Figure EV4E, pasted 
below). The SAINT and T-test approach reveal five common top outliers. The T-test based approach is 
slightly more sensitive as it captures one additional known interactor of MAPK14 and two novel 
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interactors, for which low SAINT probabilities are reported. The integration of PTM data into the SAINT 
algorithms would require the upload of PTM data together with interaction data, which is currently not 
supported. 

Figure EV4E shows the comparison between the SAINT algorithm and the T-test based approach, we use 
for MIP-APMS: 

The new Figure legend reads: 

“(E) Saint probability (probability of the interactor being a true interactor) plotted against the p-value from 
the Student’s T-test comparing MAPK14 versus control (transduced with His-Tag only). Significant 
interactors from T-test analysis are colored in turquoise, SAINT interactors (75% probability of interactor 
being a true interactor) are above the horizontal line at 0.75. Known interactors are colored green.” 

We have updated the main text: 

“Additionally, we compared our LFQ intensity and T-test-based strategy to the results of the SAINT 
algorithm (spectral count based) exemplary for MAPK14 and identified largely similar interactors (Figure 
EV4E).” 

We have updated the methods section, accordingly: 

“MAPK14 His IPs and controls (U937 transduced with His-Tag) were performed in triplicates and uploaded 
to the SAINT based Crapome server (https://reprint-apms.org)(Mellacheruvu, Wright et al. 2013). As 
Experiment Type, we selected single step epitope tag AP-MS and spectral counts as quantitation Type. As 
external controls, we selected PBMC (Cell/tissue Type), agarose (affinity support) and Q Exactive 
(Instrument type). The primary empirical fold change score (FC-A) was calculated by user controls using 
average for combining replicates (Number virtual controls=10). The secondary fold-change score was 
calculated by all controls (user + external controls) using geometric mean for combining replicates 
(Number virtual controls=3). The probabilistic SAINT Score was calculated by user controls (combining 
replicates: average) and 10 virtual controls. Saint options were 2000 n-burn, 4000 n-iter, 0 LowMode, 1 
MinFold and 1 Normalize.” 
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2) The authors identify ~4,000 interactors in an experiment, which seems high. Can this be 
attributed to the less-stringent lysis methods used to capture PTMs? 

We thank the reviewer for these questions, which were also touched upon by reviewer 1. We indeed 
identify around 4000 proteins per IP, however, we acknowledge, that most of these proteins are 
background binders. A reason for the high background is the low stringent lysis/ washing method. We 
now show that the intensity difference and p-values of background binding proteins are largely stable and 
distinct from specifically interacting proteins (Figure EV4B, EV4C). Notably, in contrast to other 
approaches, such as tandem affinity purifications, low affinity-binding proteins are preserved under low 
stringency washing conditions and quantification by a label-free (such as MaxLFQ) algorithm - which 
assumes a certain degree of similarity between samples - is more accurate. 

We have updated the main text accordingly: 

“We generated 19 transgenic monocytic U937 cell lines and analyzed them with MIP-APMS, as described 
above. This identified and quantified an average of 4106 proteins per measurement, including non-
specifically binding proteins as expected for non-stringent AP-MS conditions (Trinkle-Mulcahy, Boulon S 
Fau - Lam et al. , Rees, Lowe et al. 2011).” 

3) Do the author's variable modification searches (phosphorylation, acetylation, methylation) 
match the modification searches captured by the dependent searches using MaxQuant and 
PEAKS? 

We thank the reviewer for this interesting question. We have now compared the outputs of the MaxQuant 
modification specific search, the dependent peptide search of MaxQuant and the PEAKS/taggraph search 
for the PTMs on MAPK14, TRAF2 and MAP3K7 in detail. Unexpectedly, of the 15 PTMs identified with  
specific searches, we only recapitulate 6 with the dependent search and PEAKS/taggraph and 2 additional 
PTMs in the intersection of PEAKS/taggraph and specific searches.  

To illustrate the comparison between open and specific searches, we now include Figure EV4J: 
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The new Figure legend reads: 

“(J) Comparison of MaxQuant specific searches for MAP3K7, MAPK14 and TRAF2 to dependent peptide 
analysis (MaxQuant) and PEAKS/Taggraph. Identified and quantified sites are depicted in turquoise, not 
identified sites in red.” 

We have updated the main text accordingly: 

“Moreover, acetylation, methylation and phosphorylation detected on TRAF2, MAPK14 and MAP3K7 with 
specific searches were missed by open searches (dependent peptides of MaxQuant and PEAKS/Taggraph) 
(Figure EV4J). This demonstrates that MIP-APMS can discover novel PTMs in signaling complexes, 
however, comparisons across search engines and confirmation with specific search strategies are 
advisable to increase confidence.” 

4) Fig. S4D and Fig. 5D: It is important to show total p38 (MAPK14) across all samples and
that phosphorylation increase is not primarily a change in protein.

We thank the reviewer for this request. We have now included the protein intensity of MAPK14 to the 
respective Figures 5F and 5G – we assume the reviewer meant Figure 5F and 5G, which shows the dynamic 
change of interactors (5F) and PTMs (5G) in response to drug perturbation of MAPK14. Our analysis 
strategy of dynamic interactors/ dynamic PTMs includes the normalization of interactor intensity/ 
modified peptide intensity to the total protein amount of MAPK14 before statistical testing to adjust for 
protein abundance changes, as reported in detail in the methods section. For dynamic PTM analysis, 
phosphorylation of pS2 can be used as an internal control of the normalization, as quantification of this 
site remains unaffected. 
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5) Fig. 4: MAP3K7 
a) Fig. 4B and 4C: 
i) Do grey boxes in Fig. 4C indicate missing values? 

Yes, grey boxes indicate missing values. We have clarified this in the legend, now. 

ii) In general, no clear upward or downward PPI trends are observed across time points (except perhaps 
427_Phospho). Does this reflect the rapid dynamics of the signaling pathways? 

Based on PPI studies in other experimental settings, both, gain and loss of PPIs can be expected upon 
pathway activation. While PPI dynamics occur at various temporal scales, our method allows a temporal 
resolution of 5 min intervals. On average, we detected two statistically significant dynamic PPIs and one 
dynamic PTM per bait (as summarized now in Figure EV5A; Tables EV2 and EV3). 

iii) Do asterisks indicate significant hits at all "timepoints"? 

Asterisks indicate a significant regulation for at least one time point. Individual significantly regulated time 
points are shown in Table EV2, EV3. We have updated the Figure legends for clarity. It now reads: 

“(C) Heatmap of MAP3K7 PTMs (phosphorylation) upon activation, with significant hits (t-test, p-value < 
0.05) in at least one time-point denoted with an asterisk.” 

b) Fig. 4B and 4C: The authors indicated interplay between PPIs and PTMs, specifically highlighting the loss 
of TAB1 and SNX17 PPIs due to MAP3K7 Ser389 phosphorylation. Changes do not clearly correlate in the 
same time points or to the same degree 

c) In the absence of follow up experiments to confirm this connection (such as the S to 
D/G point mutations in Fig. 3), this is a bit premature. 

We agree and have edited the paragraph to avoid overinterpretation of the data. It now reads: 

“Upon TLR2 activation, TAB1 and SNX17 were depleted from the MAP3K7 complex (Fig. 4C), while 
phosphorylation of Ser389 on MAP3K7 increased (Fig. 4D). This revealed dynamic regulation of both PTMs 
and PPIs during pathway execution.” 

ii) We were also curious about ARHGEF18 and 389_Pi. This looks similar to SNX17 in heat map, but is not 
indicated to be significant. 

A p-value < 0.05 was used for calling significance. Accordingly, ARHGEF18 dynamics and phosphorylation 
of 427 were not significant with p-values of 0.23 (-log10: 0.59) and 0.39 (-log10: 0.40), respectively. All 
protein and peptide intensities and p-values can now be inspected in the Tables EV2 and 3.  

c) Fig. 4D: CRISPR KO in monocytic U937 NFKB reporter cells - It is important to 
confirm gene KO/loss of protein by TIDE analysis/western blot, especially since effect is 
only partial. We did not find any mention of this in the text, legend, or materials and 
methods. 
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We thank the reviewer for this comment. We now show Western Blots to verify protein knockouts with 
an orthogonal method (see Figure EV5F). 

We have updated the main text, accordingly: 

‘We verified CRISPR-KO of ARHGEF18 and FOSB by Western Blot analysis (Figure EV5F).” 

We also updated the Figure legend: 

“(F) Western Blot analysis of CRISPR-KO reporter cell-lines with antibodies against MAP3K7, ARHGEF18, 
FOSB. Tubulin was used as a loading control.” 

Minor Comments: 

1) Can the authors comment on the effect the dependent search has on false discovery rates (FDR) - as
this is a less complex dataset than analysis of whole cell lysate, for example, is the effect on FDR
minimized?

The FDR for dependent peptides is determined separately from the FDR on base peptides. Also, here a 
target-decoy method is applied, which counts both forward and reverse hits and applies a cutoff when an 
FDR of 1% is reached. Naturally, this FDR estimate becomes imprecise if only a low number of dependent 
peptides is found. The limitation is given by estimating the number of reverse hits. Since we found in total 
80 000 dependent peptides and > 1100 on MAPK14 we should be able to estimate 1% of these with 
sufficient accuracy. 

2) How similar are the results obtained with PEAKS and MaxQuant?

We thank the reviewer for this question. We now compare the dependent peptide algorithm of MaxQuant 
and other open search algorithms (MSFragger and Peaks/ Taggraph). Exemplified for MAPK14, we show 
that most modifications were identified by MSfragger, followed by Peaks/Taggraph and MaxQuant (Figure 
EV4G). We observed the highest overlap between MSFragger and MaxQuant (300), followed by 
MSFragger and Peaks/Taggraph (102) and MaxQuant and Peaks/Taggraph (65) (Figure EV4H). 26 peptides 
were identified by all three algorithms, corresponding to 21 unique modifications. We highlight the 26 
reproducibly identified modifications across algorithms (dependent peptides, PEAKS/taggraph and 
MSfragger) in Figure EV4I.  

We are pasting the new panels of Figure EV4 below: 
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The corresponding legend reads: 

“(G) Number of modifications on MAPK14 detected with the indicated open search algorithms in at least 
one replicate. Open search was performed in MaxQuant (dependent peptide mode), MS Fragger and 
Peaks/Taggraph on the drug mode of action dataset of MAPK14 (Figure 5). Mass offsets detected at 
distinct amino acid positions were kept separately. (H) Venn diagram showing the overlap of modifications 
identified with open search algorithms in at least one replicate. (I) Number of distinct modifications on 
MAPK14, identified in at least 70% of the replicates with MaxQuant (red), Peaks/Taggraph (violet), 
MaxQuant & Peaks/Taggraph (green) and with less than 70% valid values (turquoise) in all searches.“ 

We have edited the main text accordingly: 

“Furthermore, an unbiased analysis of covalent peptide modifications using the dependent peptide 
algorithm in MaxQuant, the string-based search algorithm Taggraph based on a de novo search in PEAKS 
and MS-Fragger (Devabhaktuni, Lin et al. 2019) revealed a series of less well-described covalent 
modifications on MAPK14 (Figure EV4G). 26 modifications were shared between search engines (2.3 % of 
all modifications for dependent peptides, 1.5 % PEAKS/taggraph and 0.9 % MS-Fragger, Figure EV4H). Out 
of these 26 modifications, 6 were reproducibly identified and quantified in all replicates (Figure EV4I). To 
distinguish biologically regulated from other - for example - sample preparation-introduced modifications, 
we quantified the modifications upon cell activation with specific searches in MaxQuant. Notably, only 
MAPK14 phosphorylation was differentially regulated between conditions.  Moreover, acetylation, 
methylation and phosphorylation detected on TRAF2, MAPK14 and MAP3K7 with specific searches were 
missed by open searches (dependent peptides of MaxQuant and PEAKS/Taggraph) (Figure EV4J).  This 
demonstrates that MIP-APMS can discover novel PTMs in signaling complexes, however, comparisons 
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across search engines and confirmation with specific search strategies are advisable to increase 
confidence.” 

3) Are the author's employing any sort of stringency cutoffs (e.g. minimum number of peptides) 
for PTMs identified using the variable search - this information is provided at the protein 
level, but I'm not clear if the same cutoffs are applied for PTMs ("Each quantified protein had 
to be identified with more than one peptide and in more than 60% of replicates of at least 
one cell line to be considered valid")? 

PTMs are filtered by a 1% FDR on the level of peptide-spectrum matches (PSMs), as reported in the 
Methods section. As PTM identifications and quantifications are based on unique spectral evidences, 
further cut-off criteria are conceptually challenging. Accordingly, we report PTMs on all peptides passing 
the PSM scoring in Table EV3. Significant PTM changes require a minimum of 3 quantifications in at least 
one of the two compared time-points. We updated the methods section to clarify our strategy. It now 
reads: 

“Conversely, intensities of modified peptides of each replicate were normalized to the intensity of the 
respective protein intensity, decreasing the total coefficient of variation (data not shown). Only PTMs 
quantified in at least 3 replicates of at least one time point were considered for quantitative analyses. No 
imputation was performed.” 

4) It would be helpful to include a table with the number of PTMs and intensity for each modification. Is 
there any downside to high bait enrichment (do prey IDs suffer?) 

High bait intensity favors the detection of PTMs and can therefore be perceived as advantage. We now 
include the intensity values of the modifications from the TLR2 time-course experiment in the Table EV3.  

5) Please specify western blot protocol and source of antibodies used in Fig. S4D and Fig. 5D 
in Materials and Methods. 

We have included the relevant information in Materials and Methods. It now reads: 

“One million U937 cells were stimulated, washed in PBS, and lysed in buffer (4% SDS, 40 mM HEPES (pH 
7.4, 10 mM DTT) supplemented with protease inhibitors (Sigma-Aldrich, 4693159001). Samples were 
centrifuged (16 000 g, 10 min), LDS sample buffer was added to a final concentration of 1x and the 
supernatant was incubated (5min, 95%). Proteins were separated on 12% Novex Tris-glycine gels (Thermo  
Fisher  Scientific,  XP00120BOX)  and  transferred  onto  PVDF  membranes  (Merck  Millipore, IPVH00010) 
or Nitrocellulose membranes (Amersham, 10600002). Membranes were blocked in 5% BSA in PBST, and 
antibodies were diluted in 2% BSA in PBST. Antibodies used for immunoblotting were as follows (diluted 
1:1000): Phospho-p38 MAPK (Thr180/Tyr182) Antibody (Cell Signaling, 9211), GAPDH (14C10) Rabbit mAb 
(Cell Signaling, 2118), p38 MAPK (R&D, AF8691), ARHGEF18 (Sigma, HPA042689), MAP3K7 (R&D, 
MAB5307), FOSB (R&D, AF2214), Anti-rabbit IgG, HRP-linked Antibody (Cell Signaling, 7074).” 

6) MIP-APMS: the P stands for Phenotypes, the authors also talk about "biochemical and 
phenotypic validation in primary human immune cells". To us, "phenotype" doesn't sound 
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right here. We would rather say "functional validation", "intracellular pathway dissection" or 
"network topologies". 

We thank the reviewer for the suggestions. ‘P’ refers to (functional and molecular) phenotypes, which can 
be tested with our method. The latter is key difference to established workflows, focusing on biochemical 
evidences in signaling pathways and networks. Accordingly, we prefer to keep the name “MIP-APMS”. 

7) Page 10, first line: "To further explore the utility of MIP-APMS for discovery, ..." We would appreciate
more precision about which kind of discovery.

We have changed the text, as suggested. It now reads: 

“To further explore the utility of MIP-APMS for discovery of new interactors, we evaluated functional 
interactions of MAP3K7.” 

8) Fig. 1D: Please explain in more detail in the main text for clarity.

We edited the text as suggested, which now reads: 

“Dynamic Signaling Network Analysis. To study how signaling networks rearrange upon cellular activation, 
we integrated quantitative PTM and PPI information from multiple MIP-APMS experiments. This enabled 
quantitative analysis of sequential steps in signal transduction, since it allowed for dynamic PTM and PPI 
crosstalk to be resolved providing a basis to identify molecular switches in signal transduction networks. 
We observed enrichments and de-enrichment of prey proteins in protein complex of interest together 
with dynamically regulated PTMs on both bait and prey proteins (Fig. 1D, regulation up/down).” 

9) Fig. 2:

a) Fig. 2A: Please add more space between bar charts to separate 'novel vs unknown'
(blue/green) from total interactors (grey) or place bait labels between bar charts.

We have introduced the requested changes. 

b) Fig. 2B: i) Please reference Table S2 in the main text and/or figure legend for a clear list of proteins in
the 19 interactomes.

We have introduced the requested changes. Table EV2 is now referenced in the main text and in the Figure 
legend of Figure 2. 

ii) Upon closer examination, found that nodes are actually labeled; however, blue text could not be
discerned over blue background for novel interactions. Please change the text color to make it visible.
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As requested, we have changed the text color. It should be better visible now. Also, we now show excerpts 
of this graph for each individual pulldown in the respective Figures (Fig.3, Fig.4, Fig.5, Appendix Figure S1-
S14) to better visualize the interconnectedness between different pulldowns. 

iii) Are the data for TRAF2, MAP3K8, and MAPK14 the same shown in the volcano plots (Fig. 3A, 4A, and 
5C)? The number of interactions do not seem the same. If there is a difference, please clarify the reason. 

We thank the reviewer for noticing this inconsistency. We have updated the input for the network analysis 
to match the volcano plots for TRAF2, MAP3K8 and MAPK14. 

c) Fig. 2C and 2D: 
i) Do these figures show both bait and prey PTMs? (89 PTMs across 19 baits) 

Yes, these Figures show both bait and prey PTMs. We have specified this now in the Figure legend. 

ii) In Table S3, prey PTMs are listed for 8 baits. Please summarize prey PTMs within Fig. 2C and/or 2D. 
Since ~ 30% of PTMs are on prey, this would further support simultaneous PPI and PTM analysis. Most 
Figures focus primarily on bait PTMs. 

We thank the reviewer for raising this point. We have included a new panel in Figure 2 (Figure 2D). It 
shows the percentage of methylations, acetylations and phosphorylations identified on bait/ prey 
proteins.  
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We have updated the Figure legend, accordingly: 

“D) Percentage of PTMs identified on bait proteins and interactors.” 

We have also updated the main text: 

“While the majority of PTMs were detected on bait proteins, some (31 PTMs on ten proteins) were also 
detected on prey proteins (26% of all known PTMs) (Fig.2D).” 

d) Fig. 2E: 
i) Please label x-axis to indicate "acetylation", "methylation" and "phosphorylation" for additional clarity. 

 
We have introduced the requested changes. 

ii) The difference between novel and described should be presented in a clearer way. Red outline may 
be difficult to see. 

We have changed the representation of the data as requested. 
 
10) Fig. 3: TRAF2 
a) Fig. 3A and 3B: Please refer to general comments on Figure presentation (below). 

We have changed the Figures as requested. 

b) Fig. 3B-3E: When are UT samples taken relative to 5, 15, and 30 minute time points? Is it essentially 
time 0? 
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UT samples are untouched control cells, which serve a control for all time points in the time course 
experiments. These samples are not treated with Pam3CSK4 and can be considered a 0 min time point. 

c) Fig. 3B: Aside from an increase in TANK, ELP2 shows a clear, relatively static decrease with activation. 
Is ELP2 change not significant during time course? Does the phosphorylation status change this 
interaction? 

ELP2 enrichment does not change significantly during the time-course. There is a decrease in the median 
of the abundance, but this decrease is not highly reproducible, see Table EV2. This is the reason, why 
these dynamics are insignificant at a p-value < 0.05. In the phosphomimetic experiments, ELP2 dynamics 
are also not significant. Accordingly, we do not define this interaction as phosphorylation dependent 
(Table EV4). 

d) Fig. 3D: 7_Phospho has very small, but significant changes. Is 11_Phospho significant by t-test? 

Indeed, also the 11_Phopho site is not significantly regulated, as the site was not identified reproducibly 
(Table EV3) and is of lower abundance than 7_Phospho. All intensities and p-values can now be inspected 
in Table EV3.  

e) Fig. 3F: ISG15 shows as an interactor, but it is actually a Ub-like covalent modification. Can Ub and other 
similar proteins be detected like this, instead of "Ub remnant antibody" enrichment? Could the author's 
comment on any difficulties involved in identifying these novel modifications without incorporating an 
enrichment step? 

This is an interesting point. MIP-APMS can detect ubiquitin and other ubiquitin-like proteins as interactors. 
To distinguish between ubiquitin and ubiquitin-like proteins functioning as PTMs or interactors, we have 
pursued multiple strategies including size-exclusion based binding assays, site-directed mutagenesis and 
MIP-APMS under denaturing conditions. However, in the TRAF2 experiments, we have not observed 
ubiquitin as a significant interactor, albeit we detect it in the background. We do, however, detect several 
proteins of the ubiquitin/ neddylation machinery on RIPK3, BCL10 and MAP3K8 as significant interactors: 
UBA3, UBAP2L, UBE2K, UBE2S.  

We have updated the discussion in response to this question: 

“As MIP-APMS does not include a second enrichment step, the method preferentially quantifies abundant 
PTMs on bait and prey proteins. Ubiquitinylation, neddylation and isgylation are known as 
substoichiometric PTMs and special biochemical enrichment or MS methods are commonly used for their 
detection (Kim, Bennett et al. 2011, Wagner, Beli et al. 2011, Bustos, Bakalarski et al. 2012, Hansen, Tanzer 
et al. 2021). We show that MIP-APMS combined with Gly-Gly enrichment facilitates the bait-centric 
identification of ubiquitin-like modification sites, exemplified for TRAF2.” 

f) Fig. 3J: Should fold differences in primary macrophages be similar to 5F and 5I?  

We thank the reviewer for this interesting question. Did the reviewer mean 3F and 3I? We answer the 
question assuming this were the implied Figures. As expected for distinct cellular systems, we don’t 
observe exactly the same fold differences as in 3F and 3I. However, we observe the same trend for the 
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K389R mutant (downwards) and S11D mutant (upwards). In contrast to cell lines, primary cells cannot be 
kept viable and functional for extended time frames, presumably selection and biological effects are less 
pronounced. 

 Also, we were not clear on the cell line used for 3A-3I? Was it U937? 

Yes, we have employed the monocytic cell-line U937 in experiments 3A-I. The new Figure legend reads: 

“Experiments in A, B, C, D, E, F, G, H, I were performed in U937 cell-lines.” 

11) Fig. 4: MAP3K7 - Please refer to general comments on figure presentation (below) for Fig. 4A, 4B and 
4D. Fig. 4A: Please adjust data point labels. They overlap and are not visible at the bottom. 

We have introduced the requested changes. 
 
12) Fig. 5: MAPK14 - MIP-APMS enable identification of signaling network rearrangements? 
a) Both p38 and MAPK14 names are used, please be consistent in figures and text. 

We have introduced the requested changes and now only refer to MAPK14. 

b) Fig. 5B: Please indicate the cell line used for the WB in legend. 

We have introduced the requested changes. 

c) Fig. 5C: Please refer to general comments on figure presentation (below) 

We have introduced the requested changes. 

d) Fig. 5D: Heat map: We were unclear if the values shown are the intensity values obtained for each 
condition, or if they were compared to a control? It seems DMSO is up/down depending 
on interaction? 

We thank the reviewer for picking up this inconsistency. The intensity values were not normalized to 
DMSO control. We have now harmonized Figure 5E (former Figure 5D) and Figures EV5G, EV5H (former 
Figure S5G, H), to the data representation of the other Figures. 

e) Fig. 5E and 5F: P3C4 is not clearly indicated in the text, legend or materials and methods - "cellular 
activation" is briefly mentioned in regards to Fig 5E. Please clarify accordingly. 

We have updated the methods section, accordingly. It now reads: 

“Cells (5 Mio) were seeded in deep-well 24-well plates. The cells were treated with MAPK14 inhibitors 
(sorafenib: 10 µM; skepinone-L: 80 nM; and JX-401: 10 µM) for 2 h at 37°C under 5% CO2 in quadruplicate. 
Inhibitor-treated cells and controls either harvested directly or were activated with PAM3CSK3 (P3C4, 0.5 
µg/mL; Invivogen) for 30 min at 37°C under 5% CO2. Cells were harvested by centrifugation, and frozen 
until MIP-APMS.” 

We have updated the Figure legend, accordingly. It now reads: 
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“(F) Intensity profiles of the MAPK14 interactors RPS6KA4 and MAPKAPK2 after treatment with different 
MAPK14 inhibitors, normalized to MAPK14 bait intensity. Drug mode of action was analyzed in the 
presence (P3C4, 0.5 ug/mL, 30 min) or absence of P3C4.  (G) Intensity profiles of MAPK14 phosphorylation 
on positions Ser2 and Tyr182 after treatment with different MAPK14 inhibitors, normalized to MAPK14 
bait intensity. Drug mode of action was analyzed in the presence (P3C4, 0.5 ug/mL, 30 min) or absence of 
P3C4.” 

f) Fig. 5F: Ser2 phosphorylation appears to be unaffected by inhibitors and would be a good control 
along with total p38. Is there a p38 Ser2 antibody? In Fig. 5B, is phosphor p38 against pY182? 

To our knowledge, there is no antibody available for MAPK14 Ser2. The antibody, we have used, 
specifically detects pY182. 

Supplement: 
1) Fig. S1 
a) S1A: GFP panel is difficult to see. 

We have now added quantitative information to the panel and counted % positive GFP cells in three 
replicates.  

b) S1C: Label data points overlap. Please adjust to clarify. 

We corrected the labelling. 

2) Characterization of induced cell lines: 
S2A: Is this based on peptides against bait protein itself? Is "bait expression" the sum of endogenous, 
untagged protein and tagged bait? 

Protein copy numbers per cell scale according to LFQ intensities (Wiśniewski, Hein et al. 2014). This 
analysis is based on the fixed ratio between the total histone signal and cellular DNA. An accurate 
determination of the DNA content in a proteomic sample helps to directly determine the number of cells. 
The MS signal derived from histones is used as a natural standard in a whole proteome dataset. For 
quantification, we used the LFQ intensities of the bait proteins (which is based on the peptide intensities). 
We summarize the intensities of endogenous – untagged – and tagged protein. We now state this 
explicitly in the Figure legend of Figure EV2A. It now reads: 

“Evaluation of bait overexpression on the proteomes of 13 bait cell lines (5752 total protein IDs). 
Comparison of the copy numbers of overexpressed bait proteins in the non-overexpressing cells (U937 
WT) and bait-overexpressing U937 cells. Copy numbers of bait proteins were calculated with the Perseus 
Plugin based on the LFQ intensity of the respective bait protein. LFQ intensities of endogenous protein 
and the overexpressed bait proteins are summarized.” 

3) Comparison of enrichment strategies: We are interested in the details of the various enrichment 
strategies and would appreciate the inclusion of additional details. a) Please add details on epitope tags 
compared in Materials and Methods (e.g. 1x FLAG or 3x FLAG; 1xStrep-tag II or 2xStrep-tag II; 6xHis). 

http://www.coxdocs.org/doku.php?id=:glossary#lfq
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We have included the requested changes. We have used for His-Tag: 9x His, for Flag-tag: 1x Flag, for Strep-
tag: 1x Strep-tag II. 

b) How do backgrounds of FLAG, Strep, and His beads compare? 

We have now included a comparison between backgrounds of His, Strep and Flag beads (Figure EV3B). 
In comparison to Strep and Flag beads, His beads have the highest number of background proteins.  

 

We have updated the Figure legend. It now reads: 

“Comparison of background proteins between His, Flag and Strep beads. Proteins that were identified and 
quantified at least once were included in the Venn Diagram.” 

We have updated the main text. It now reads: 

“Highest number of background proteins were identified for His enrichment and we identified > 1000 
shared proteins between all three enrichments (Figure EV3B).” 

c) Fig. S3A: i) Were on-bead digests for FLAG beads and His elutions with imidazole performed 
and analyzed? If so, how do they compare to on-bead digests of Strep and His 
beads and FLAG and Strep elutions? 

We have not performed elutions for Flag and His beads, accordingly, we cannot make definitive claims. 
However, lower intensity of bait protein and higher standard deviation, argues against an elution-based 
workflow. Moreover, as this is an additional manual step, it may induce additional variation. Additionally, 
the LFQ profits from a largely comparable background between samples, overall suggesting an advantage 
of on-bead digests.  

ii) Were proportional amounts of bead and elution analyzed? 

Yes, proportional amounts of bead and elution were analyzed, which we now state in the Methods 
section.  
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iii) How complete were the various bead elutions? Would incomplete elution result in lower numbers of 
significantly interacting proteins? 

It can be assumed that incomplete elution leads to lower number of significantly interacting proteins or 
reduced bait abundance. We observe that MAPK14 intensity is lower for elution than for strep beads.  

d) Fig. S3B: Sequence coverage is not that different. Are there differences in intensities? 

We have now analysed the intensities, as requested. Intensities are also comparable between different IP 
strategies. However, it seems that by including an additional elution step, the reproducibility of bait 
enrichment is slightly reduced, as standard deviations increase. 

 

This panel is now included in Figure EV3D. We have updated the Figure legend. It now reads: 

“(D) Protein intensity (log2) of MAPK14 after enrichment with different affinity matrices. Each enrichment 
was performed with equal bead amounts (50 uL each) and 5 Mio cells as input. Each bar represents the 
median of three experiments.” 

We have updated the main text: It now reads: 

“However, highest median bait-protein sequence coverage (Figure EV3C), highest intensity of MAPK14 
(Figure EV3D) and highest number of significantly interacting proteins were achieved with His-IMAC.” 

e) Fig. S3F: Please label Y-axis. 

We have introduced the requested changes.  

4) Fig. S4D: WB for MAPK14 phospho-p38 following PAM3CSK4 activation. 
a) MAPK14 (right) shows clear p38 increase, while wild type (left) is not as clear. 

We have repeated the Western blot and used total p38 as requested above as a control. 

b) Do two bands in MAPK14 represent both untagged (endogenous) and tagged MAPK14? 

Yes, we strongly assume, the second band represents tagged MAPK14.  

c) It is important to show total p38 (MAPK14) across all samples to support the conclusion that the 
phosphorylation increase is not primarily a change in protein levels. 

We have now included total MAPK14 as control (see above, Question 4a). 
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5) Fig. S5 

a) Fig. S5A: Why is ISG15 increased under denaturing conditions? Should it be the same as native. Since 
there is less total protein under denaturing conditions, is more ISG15 able to be detected by MS? 

There is indeed more ISG15 enriched under denaturing conditions. We speculate that under denaturing 
conditions also more ISG15 peptides can be detected by MS as the total proteomic complexity is 
decreased.  

b) Fig. S5D and S5E: MAP3K7 and TRAF2 
Similar to Fig. 5D, we were unclear if the values shown are the intensity values obtained for each 
condition, or if they were compared to a control? It seems DMSO is up/down depending on interaction? 

As explained above, (point by point response, page 30, Question 12d) we have now normalized the 
DMSO control to harmonize the presentation with all other Figures. 

Minor corrections: 
Please adjust following on page 5: 
1) Change attl to attL. 
2) NEB Builder to NEBuilder 
3) Huttlin, Ting et al. 2015 is "doubly cited"; one should be deleted 
On page 8: 
1) "... and I nduces ..." 

We have corrected all typos. 

General comments on figure presentation: Applies to Figures 3-5 and S3A, S6-S19. 
1) Is a volcano plot the best way to show interactome of specific baits (bait vs all others)? It would be 
nice for all interactomes to be presented as in Figure 2B. 

Volcano plots present an accurate and honest visualization form for all quantitative information of 
enriched bait and prey proteins and their significance. The reader can directly infer from a volcano plot, 
how strong an interactor was enriched. We prefer to use volcano plots for the presentation of pairwise 
comparisons. In addition, we now display each interactome in a small network. 

2) Suggestions to clarify labeling of interactomes, volcano plots and heat maps: 
a) Novel vs Known is clearer than Interactor (blue) vs STRING/Biogrid (green). (Fig. 2A, 
2B, 3A, 3B, 4A, 4B and 5C) 

We have introduced the requested changes. 

b) Do numbers have any significance aside from being a way to label data points on volcano plot and use 
heat map labels as a legend? Bait is not always first. 

Numbers indicate enrichment ranks. Sometimes, bait proteins are not the most highly enriched proteins 
in the sample, but interacting proteins are. We now include a statement in the Figure legend of the 
volcano plots. It reads: 
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“The results of the T-tests are represented in volcano plots, which show the protein enrichment versus 
the significance of the enrichment. Numbers indicate enrichment ranks with the heatmap labels of (C) 
serving as the legend.” 

c) Numbers overlap in volcano plots in Fig. 4A and supplement. Please adjust accordingly. 

We have checked carefully and corrected all overlaps, accordingly. 

d) For PPI heat maps, it might be useful to add color conventions defined in volcano plot to 
protein labels. 

We have also added color conventions of the volcano plots in the PPI heatmaps. 
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