Supplementary file

Glioblastoma and Primary Central Nervous System Lymphoma: Differentiation using MRI derived First-order texture analysis- A machine learning study

Texture & Machine learning in Glioblastoma & CNS lymphoma

Author names and affiliations

- Sarv Priya^{1*}, MD
- Caitlin Ward², MS
- Thomas Locke¹ MD
- Neetu Soni¹ MD
- Ravishankar Pillenahalli Maheshwarappa¹ MD
- Varun Monga³, MD
- Amit Agarwal⁴, MD
- Girish Bathla¹ MBBS, FRCR
- 1: Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- 2: Department of Biostatistics, University of Iowa, Iowa City, IA, USA
- 3: Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- 4: Department of Radiology, University of South Western Medical Center, Dallas, Texas, USA

Funding: No funding was received for this study.

Type of manuscript: Original research

*Correspondence:

Dr Sarv Priya

Department of Radiology,

University of Iowa Hospitals & Clinics,

200 Hawkins Drive

Iowa City, IA, 52242,

USA +1 319-512-5404

E-mail: sarv-priya@uiowa.eduSupplementary

Supplementary Table 1: Total number of features used in each modeling approach when fit to full data set

	Whole Tumor			Single Slice		
	Full	Corr	PCA	Full	Corr	PCA
All other models	36	19	8	36	20	8
ada	31	18	7	29	19	7
enet	34	10	7	6	12	7
gbrm	31	18	7	21	19	7
lasso	17	8	7	6	6	7
rf	35	18	7	35	19	7

Ada: adaboost; enet: elastic net; gbrm: gradient boost regression model; lasso: (least absolute shrinkage and selection operator); rf: random forest' full: full feature set; corr: high correlation filter; pca: principal component analysis

Supplementary Table 2: Prior studies utilizing texture analysis for differentiating glioblastoma from primary CNS lymphoma

Authors	Number	Sequence(2D/3D	Type of Texture	Discriminating	Machine	Deep
	of	s)		parameters	features	Learning	Learnin
	patients						g/CNN
Priva et	GBM: 97	T1W	2D- all	Filtration-based	LASSO model (high	Yes: three	No
al		contrast	tumor	first order	correlation filter) and	feature	
(current	PCNSL: 46	enhanced	slices (2D	texture features	multilaver perceptron	selection	
study)			volumetr		network (high	and 12	
,,			ic)		correlation filter	machine	
					performed best for	learning	
					whole (AUC 0.924)	classifier	
					and single slice (AUC	models	
					0.914) respectively		
Kunima	GBM-44	T1W	2D-Single	First and second	PCA analysis showed	No	No
tsu et	DONGL 10	contrast	slice	order	first-order entropy,		
al ²⁴	PCNSL-16	enhanced			median, GLRLM-based		
					RLNU, run-percentage		
					(AUC not provided)		
Viao ot	CRM 60	T1\A/		First and second	First order Skowposs	Voci Noïvo	No
		contract	ZD-	order and	first order Kurtesis	Payos:	INO
ai	PCNSL-22	onhancod		goomotric	and Natidm Rusynoss	Dayes.	
		ennanceu		footuros	showed high	Classifier	
				leatures	discriminatory power	model	
					(AUC 0.80).		
						0.50	
Alcaide-	GBM-71	T1W	2D-	First and second	SVM classifier model	Yes;	No
Leon et		contrast	Multislic	order	is non-inferior to		
al ²⁶	PCNSL-35	enhanced	e		expert human	SVM	
					evaluation (p <0.05,		
					mean AUC 0.877)		
Sub et	GBM-23	T1W post	2D-	First order	ALIC of the classifier	Yes.	No
al ²⁷		contrast	Multislic	second order	model (0.921) was	103,	
	PCNSL-54	T2W	ρ	wavelet	significantly higher	Random	
		FLAIR	(contrast		than three radiology	Forest	
			enhancin		readers and ADC		

			g portion	transformed and	values (p< 0.001 for		
			only)	shape features	all).		
Kim et	GBM- 78	11W post	3D-	First and second	Classifier model using	Yes,	No
al ²¹	Discovery cohort-49 Validation cohort-29 PCNSL-65 Discovery cohort-37 Validation cohort-28	contrast, T2W, Diffusion weighted imaging	Contrast enhancin g and contrast enhancin g plus non- enhancin g peritumo ral edema	order and shape features	15 selected features performed well to distinguish between GBM and PCNSL with an AUC OF 0.979 in the discovery cohort with similar performance in the validation cohort (AUC 0.956)	Logistic regression , SVM, and random forest. Logistic regression had highest AUC in validation cohorts	
Wang et al ²²	GBM- 81 PCNSL- 28	T2W	2D- Single slice with maximal dimensio n in axial plane. ROI placed on enhancin g segment only	Second order	Angular second momentum, contrast, correlation, inverse difference moment and entropy were significant in differentiating between GBM and PCNSL (p<0.05). Highest AUC 0.752 for second-order texture "Contrast"	No	No
Nakaga wa et al ²³	GBM-45 PCNSL-25	T2W, ADC maps, rCBV maps and T1W contrast enhanced	2D- Single slice in maximal axial dimensio n	Second-order GLCM	Machine learning model based on histogram and texture features (multivariate regression AUC 0.98) was superior to conventional cut-off	Multivaria te extreme gradient boosting- XGBoost	No

Yun et al ¹⁹	GBM-91 PCNSL-62 Training set: 50 PCNSL, and 73 GBM; Internal validation set: 12 PCNSL, and 18 GBM; External validation set: 14 PCNSL and	T1W contrast enhanced, Diffusion weighted imaging	3D- Contrast enhance d portions only	First order, Second order and wavelet features	method and radiologists (AUC 0.84, and 0.79) (p <0.05) Combination of radiomics and MLP network classifier (AUC 0.947) was best in differentiating between two groups while CNN (AUC 0.486) showed the lowest performance in external validation sets. Performance of MPL network highest in external validation set (AUC 0.947), followed by human readers (AUC 0.913 and 0.930) and machine-learning classifier model (AUC	(AUC 0.980) Yes, Supervise d machine learning	CNN, Multila yer percep tron networ k (MLP)
Kang et al ²⁰	28 GBM Training set: 70 GBM, and 42 PCNSL Internal validation sets:21 GBM, 21 PCNSL; External validation sets: 28 GBM, and 14 PCNSL	Diffusion weighted imaging, T1W contrast enhanced	3D- enhancin g portion only	First and second order, shape and wavelet features	Diffusion radiomics model performed better than conventional radiomics (AUC 0.944 versus 0.819) and similar to human readers (AUC 0.896- 0.930) in external validation set	Yes, 8 classifier models. ADC model, AUC = 0.983. T1W-CE model AUC = 0.976)	No

Yang et al ²⁸	GBM-58, PCNSL-37	Multipara metric (T1W, T2W, FLAIR, T1W contrast- enbanced	Key- slices (not volumetr ic)	Intensity, shape, histogram and texture features	Global accuracy of 96.84% to differentiate GBM and PCNSL	Yes (SVM)	No
Liu et al ²	GBM-107 PCNSL-60	T1W contrast enhanced	2D, multi- slice	Fractal analysis, Fractal dimension (FD) and lacunarity	PCNSL had lower FD values (p < 0.001) and higher lacunarity values (p < 0.001) than GBM	No	No
Nguyen et al ²⁹	Meta- analysis				Machine-learning model lowest AUC 0.878. Machine- learning performed better than radiologists.	Machine- learning performe d poorly when applied to external validation datasets	Yes