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Supplementary Material Part 1: Terminology and technical details of the 

pharmacological simulations. 

 

There is potential confusion in the use of identical terms to mean different things in the sequencing 

and “classical” genetic fields. We therefore clarify the terminology used in this paper. 

 

In classical genetics a haplotype can refer to the full genetic complement of a (haploid) malaria 

parasites, as can the term “genotype”. Some existing AmpSeq literature refers to individual gene 

variants as “haplotypes” or microhaplotypes  (see, for example, (1-3)) to distinguish them from 

“genotypes” which is used to refer to a SNP. Similarly, Gruenberg et al. (4), (which we reference 

heavily because we use their methodology as the basis for our in silico analysis methods) defined a 

haplotype as “a unique sequence variant of an entire amplicon”. Elsewhere, AmpSeq literature may 

use the term haplotype in the more traditional sense i.e. to describe a group of alleles that are 

inherited together (5).  

 

In this manuscript we deliberately avoid the ambiguous term “haplotype” and use “alleles” to refer 

to individual gene variants. This  avoids potential confusion, is consistent with “classic” genetic 

terminology,  and ensures  consistency of terminology with previous investigations of different 

markers used for molecular correction (i.e., length-polymorphic markers and microsatellite markers 

(6, 7)).  

 

Mechanistic Pharmacokinetic / Pharmacodynamic (mPK/PD) models use PK/PD equations to 

quantify drug concentration and drug killing and create models of parasite dynamics (numbers) over 

time post-treatment. These differ from “traditional” PK/PD modelling which analyses in vivo data of 

drug concentration and their effects using sophisticated modelling methods to elucidate underlying 

PK/PD parameters. Such parameters can subsequently be used to calibrate mPK/PD models, as we 

do here.   

 

1.1 Pharmacokinetics: partner drug and Artemisinin concentrations over time. 

Five thousand adult patients were dosed with DHA-PPQ or AR-LF using the PK parameters shown in 
Table S1.1. Drug dosing for DHA-PPQ and AR-LF (Table S1.2) reflect the recommended adult dosing 
regimen published by the WHO in 2015 (8). in the mPK/PD models used here each patient is given a 
precise dose according to their body weight (noting that, in practice, tablets contain a fixed weight 
of drugs so doses are given according to patient age or weight bands.  

 

The drug concentration over time profiles produced by the model for PPQ (assuming a two-
compartment model for PPQ) and LF (assuming a one compartment model for LF) are given in 
Figures S1.1 and S1.2. The equivalent profiles for DHA and AR are given in Figures S1.3 and S1.4. The 
methodology used to generate these concentrations is described in (9). 
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1.2 Pharmacodynamics: and relationship between drug concentration and parasite killing. 

The PD parameters determine the rate of parasite killing (at a given concentration of drug) for each 
parasite clone; the mechanistic relationship between these parameters and drug killing is described 
in (9-11) (specifically in (9)). The mPK/PD method requires three parameters: The maximal parasite 
killing constant, Vmax, the slope factor, n, and the “half maximal inhibitory concentration” (IC50), 
which is the concentration of drug at which half-maximal parasite killing occurs. These parameters 
are given in in Table S1.3.  

To calibrate failing drugs, the IC50 of PPQ could be obtained from in vivo data, but the IC50 of 
“failing” LF is a hypothetical value determined by us that results in a ~10% failure rate in the 
mechanistic model. In previous work using mPK/PD models we simulated both failing and non-failing 
drug calibrations (6, 12); in this paper we only simulate failing drugs because we are interested only 
in molecular correction, not other factors such as appropriate duration of follow-up. We have also 
previously altered drug IC50 to allow for  changing MOI (see below); higher MOI (all other things 
being equal) will lead to higher failure rate as there are more initial infections to be cleared by 
treatment, so IC50 was previously increased in lower MOI settings to keep failure rates ~10% (6). 
Such an approach has led to confusion in the past, so here we opt to use a single IC50 value for a 
partner drug with the understanding that there will be a slightly higher true failure rate in higher 
MOI scenarios.  

 

1.3 Multiplicity of infection (MOI).  

Multiplicity of infection (MOI) is the number of genetically distinct malaria clones in a patient’s blood 
sample.  Unsurprisingly, MOI increases with malaria transmission intensity so two MOI distributions 
were modelled. A “high MOI” was representative of the MOI in an area of intense transmission, in 
this case Tanzania where MOIs of 1-8 were assigned with probabilities 0.036, 0.402, 0.110, 0.110, 
0.183, 0.049, 0.061, 0.049 respectively (12). A “low MOI” distribution was based on data from Papua 
New Guinea with probabilities of 0.460, 0.370, 0.150 and 0.020 for an MOI of 1-4 respectively (13, 
14). These two distributions were subsequently used to check if the accuracy of molecular correction 
was consistent between high/low MOI.  

These MOI distributions are identical to those previously used for simulation of length-polymorphic 
markers msp-1, msp-2 and glurp (6). Note that the MOI distributions were derived, in the first 
instance, from in vivo data using length-polymorphic markers, not AmpSeq. Given that AmpSeq 
provides a higher detectability of minority clones (2, 15), MOI estimates from a given population 
with AmpSeq should be higher than MOI estimates with length-polymorphic markers. However, use 
of AmpSeq for this purpose is extremely novel, and useable MOI distributions obtained with AmpSeq 
are limited. To the best of our knowledge, the only available MOI distributions obtained using 
AmpSeq are across multiple countries or study sites (5) and would not be appropriate to generate 
MOI distributions.  

 

1.4 Force of infection (FOI). 

The force of infection (FOI) is the rate at which patients in endemic countries acquire new malaria 
infections. We incorporate FOI by defining the mean of a Poisson distribution from which the 
number of reinfections that occur (per year) in a patient is randomly selected. The number of 
reinfections is then scaled to reflect the time-frame of the follow-up period (i.e., an FOI of 12 in a 
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year would relate to an average of 1 reinfection in a 4 week follow-up period). The FOI parameters 
investigated were 0, 2, 8 and 16, broadly representing an area with no, low, medium and high 
ongoing transmission, respectively. A full discussion of the relationship between FOI and important 
epidemiological parameters such as the annual entomological inoculation rate (aEIR) can be found in 
the supplementary material of (6).  

 

1.5 Initial parasite numbers and relationship with parasites densities. 

We quantify parasitaemia as the total number of parasite in the adult patienst,  rather than parasite 

densities in blood samples (as previously e.g.(12)). We do not assign parameters to patients in a way 

that would allow us to easily convert total parasite numbers to parasite densities (i.e., patients do 

not have parameters assigned for blood volume, white blood cell [WBC] count, red blood cell count, 

etc.), nor would including these parameters aid the mechanistic simulation of the model or improve 

the accuracy of the results. For reference, assuming a patient with 4.5 litres of blood and a WBC 

count of 8,000/μl of blood, parasitaemias of 1010 and 1011 would correspond to densities of 2,222 

parasites/μl of blood and 22,222 parasites/μl of blood, respectively, according to the WHO counting 

procedure (16). For additional independent discussion Simpson, Zaloumis and colleagues (17, 18) 

equate 2.5 x 108 total parasites to 50 parasites per μL such that 1010 parasites would equate to  

2,000 parasites per μL i.e. almost identical to our value of 2,222. Previous modelling approaches 

used 1012 parasites as the upper limit of parasitaemia; this level of parasitaemia is likely to be lethal 

or at least exceed the maximum parasite density exclusion criterion in a clinical trial (typically 

100,000 parasites/μl); hence, we used 1011 as the upper limit for any single clone at the time of 

treatment. A value of 1010 was used as the lower limit in previous work on length-polymorphic and 

microsatellite markers (6, 12) in order to correctly represent the MOI because although it is possible 

for patients to harbour low-density clones, these clones would not be detected with these methods 

and consequently not be included in the MOI count. AmpSeq improves detection of low-density 

clones so, to avoid any doubt, we model a lower limit of 108.   

1.6 Detection of recurrence during follow-up. 

The model checked each day of scheduled follow-up to determine whether a patient had 
parasitaemia sufficiently high that a recurrence would be detectable by light microscopy (LM). 
Detection by LM was assumed to occur if the total number of parasites in the patient was ≥ 108 on 
that day (19). This corresponded to a parasite density of roughly 20 parasites/μl of blood.  Detection 
by LM varies according to the skill of the microscopist (16) and this this limit reflects that of an 
“expert” microscopist  

If total parasitaemia exceeded 108  on day 3 but was <25% of the total parasitaemia of the initial 
sample, the patient continued in the trial; if parasites were present at >25% of initial parasitaemia, 
that patient was classed as an early treatment failure and withdrawn from the study as per WHO 
procedure (20). Note that for subsequent calculations and analysis, an early treatment failure is 
considered a recrudescence.  

1.7 The blood sampling limit 

A finite volume of blood enters the genotyping procedure. A parasite clone will remain undetected if 
its density is so low that none of its constituent parasites were physically included in the blood 
sample analysed. Thus, the parasite density and volume of the processed blood sample defined the 
limit of detection and we quantify this as the “blood sampling limit”. Obviously, this blood sampling 
limit differs between methods and laboratories. Typically, the equivalent of 1 μl of whole blood is 
introduced into a PCR.  Assuming 5 L of blood in the human body gives a total of 5 x 106 μl of blood. 
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For a clone to be detected a minimum of 1 parasite (which carries a single DNA template) would 
need to be present in 1 μl of blood so there would need to be at least 5 x 106 of a given clone 
present for that clone to be physically sampled in the genotyping process. In practice, we need to 
allow for the fact that sub-optimal storage conditions (such as temperature) frequently occurs in the 
field, which can lead to DNA template breakages. Finally, there is periodical absence of sequestered 
parasites from the peripheral blood. Consequently, the limit of detection will be much higher than 1 
parasite per 1μl of blood. It was therefore assumed 10 to 20 parasites per μl  would be required to 
reliably ensure its detection, corresponding to a total parasitaemia of 5 x 107 to 108; the upper limit 
i.e. 108 was selected to ensure reliable detection of that clone and because it is consistent with the 
microscopy  detection limit. 

The blood sampling limit was lowered to 107 as part of a sensitivity analysis on model parameters.  

 

1.8 Genetic diversity at Ampseq loci. 

Each malaria clone in patients in our simulated data-sets had genotypes defined by alleles at 5 
AmpSeq markers (cpmp, ama1-D3, cpp, csp and msp-7). Genetic diversity at these five markers was 
obtained by  data presented in (4) which included (i) Details of the identification, sequencing and 
additional information for the 5 markers ama1-D3 (PF3D7_1133400), cpmp (PF3D7_0104100), csp 
(PF3D7_0304600), cpp (PF3D7_1475800) and msp-7 (PF3D7_1335100) (ii) A summary of  each 
marker, including expected heterozygosity (He) as given in their Table 1 (iii)  full allele frequency 
distributions which are also included in their supplemental material. Note that the diversity of each 
marker in vivo will vary between TES sites, but diversity can be assessed bioinformatically for each 
study site from the global P. falciparum genome in the MalariaGen data base i.e. 
https://www.malariagen.net/data/terms-use/p-falciparum-community-project-terms-use   

 

 
 

  

https://www.malariagen.net/data/terms-use/p-falciparum-community-project-terms-use
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Table S1.1.   PK Parameter summary. A summary of the PK parameters used to simulate parasite 
dynamics post-treatment, adapted from Hodel et al. (10). The table shows mean values with 
coefficient of variation in brackets while square brackets are citations in support of the parameter 
values. 

 

Drug Dihydroarteminisin-
Piperaquine  
(2 compartment model) 

Artemether-Lumefantrine 

DHA PPQ AR DHA LF 

Vd (L/kg) 1.49 (0.48) 
[9, 10]  

346 (0.93) 
[21]  

46.6(0.82) 
[10]  

15(0.48) 
 [9, 10]  

21(2.63) 
[9, 10] 

Vd1 (L/kg) - 443 (1.70 
)[21) 

- - - 

ka (/day) - 11.2 (2.17) 
[21]  

23.98(0.68)  
[9, 10] 

- - 

z (/day) - - 11.97(0.65) [9, 
10] 

- - 

Q1(L/day/k
g) 

- 69.7(1.01) 
[21]  

- - - 

k (/day) 19.8(0.23) 
[10, 11]  

0.02*[21, 22]  - 44.15(0.23) [9, 
10] 

0.16(0.05) [9, 
10] 

PK: Pharmacokinetic, BW: Patient bodyweight, DHA: Dihydroartemisinin, PPQ: Piperaquine, AR: 
Artemether, LF: Lumefantrine, Vd: Volume of Distribution (central compartment for PPQ), Vd1: 
Volume of Distribution (peripheral compartment), Q1: Intercompartmental clearance (central-
peripheral 1), ka: Absorption rate constant, z: Conversion rate of AR/AS into DHA, - : No data / not 
applicable.  

*  elimination rate for PPQ is calculated from clearance (CL) / Vd.  CL is not shown here but is 4.5 * 
BW0.75 as in (22); This means that elimination rate varies with body weight ( a common PK 
observation) so  the value presented here is illustrative and represents a bodyweight of 42kg (the 
median bodyweight in previous studies (21, 22)). Partner drug IC50 values are not shown here; they 
vary between and within chapters, see individual chapters for these values. Piperaquine (PPQ) here 
follows a two-compartment model as described in Kay, Hodel & Hastings (21). Patient bodyweight 
(BW) in all simulations was drawn from a uniform distribution between 45-75 kg and is involved in 
the calculations for PPQ parameters (see (21, 22)).  
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Table S1.2. Drug dosing of the artemisinin and partner drug components of the ACTs for the 
mechanistic simulation of DHA-PPQ, AR-LF and AS-MQ. 

Drug DHA-PPQ AR-LF 

DHA PPQ AR LF 

Dose at 0 days (mg/kg) 4 18 1.7 12 

Dose at 0.5 days 
(mg/kg) 

  
1.7 12 

Dose at 1 days 
(mg/kg) 

4 18 1.7 12 

Dose at 1.5 days 
(mg/kg) 

  
1.7 12 

Dose at 2 days 
(mg/kg) 

4 18 1.7 12 

Dose at 2.5 days 
(mg/kg) 

  
1.7 12 

DHA: Di-hydroartemisinin, PPQ: Piperaquine, AR: Artemether, LF: Lumefantrine. Dosages listed are 
mg/kg, e.g., for a 45kg patient, a dose of 180mg of DHA would be given at each interval.  
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Table S1.3. A summary of the PD parameters used to generate parasite dynamics in vivo with an 
mPK/PD model. The table shows mean values with coefficient of variation in brackets while square 
brackets are citations in support of the parameter values. 

 

Drug 
parameter 

Di-hydroarteminisin-iperaquine  
(2 compartment model) 

Artemether-Lumefantrine 

DHA PPQ AR DHA LF 

IC50 (mg/L) 0.009 (1.17) 
[9, 10)] 

0.02 (0.3) [23] 0.0023(0.79)  
[9, 10]  

0.009(1.17) 
[9, 10]  

10 (1.02) 

Vmax 27.6 [9, 10] 3.45 [11] 27.6 [9, 10] 27.6 [9, 10] 3.45 [9, 10] 

n 4 [9-11] 6 [11] 4 [9-11] 4 [9-11] 4 [9-11] 

IC50: Half maximal inhibitory concentration, Vmax: Maximal parasite killing constant, n: Slope factor. 
Half maximal inhibitory concentration (IC50) is shown for all artemisinins but not for partner drugs 
The coefficient of variation (CV) is provided in brackets where appropriate. Citations are provided in 
square brackets in support of parameter values.  
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Figure S1.1. PPQ concentration (in μg/L) over time for a population of 5,000 patients, treated with 
DHA-PPQ parameterized as in Table S1.1 with drug dosing as in Table S1.2. The solid line is the 
median population concentration at each day and the dashed lines are the 5% and 95% quantiles. 
The figure follows patients for 63 days (the maximum length of patient follow-up investigated).  
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Figure S1.2. LF concentration (in μg/L) over time for a population of 5,000 patients, treated with AR-
LF parameterized as in Table S1.1 with drug dosing as in Table S1.2. The solid line is the median 
population concentration at each day and the dashed lines are the 5% and 95% quantiles. The figure 
follows patients for 63 days (the maximum length of patient follow-up investigated).  
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Figure S1.3. DHA concentration (in μg/L) over time for a population of 5,000 patients, treated with 
DHA-PPQ parameterized as in Table S1.1 with drug dosing as in Table S1.2. The solid line is the 
median population concentration at each day and the dashed lines are the 5% and 95% quantiles. 
The figure follows patients for 4 days (after which all artemisinins have decayed to non-effective 
and/or zero concentrations). 
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Figure S1.4.  AR concentration (in μg/L) over time for a population of 5,000 patients, treated with 
AR-LF parameterized as in Table S1.1 with drug dosing as in Table S1.2. The solid line is the median 
population concentration at each day and the dashed lines are the 5% and 95% quantiles. The figure 
follows patients for 4 days (after which all artemisinins have decayed to non-effective and/or zero 
concentrations). 
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Supplementary Material Part 2: Additional Results and discussion. 

 

2.1 Additional results obtained when changing model parameters. 

Four important model parameters were varied to assess their impact on results: The BIC value, the 
blood sampling limit, the lower limit of the parasite number distribution in the patient sample taken 
at treatment, the number of Ampseq loci genotyped.  

 

2.1.1 Changing the bioinformatics cut-off (BIC) value. 

(see Figures S2.1 and S2.2) 

The value BIC=1% was used in the baseline calculations (i.e., minority alleles were detected if they 
exceeded 1% of total reads). This threshold is user-defined by the genotyping software when 
AmpSeq markers are genotyped (3) so assessing the impact of this parameter on the accuracy of 
molecular correction is important. As noted by Gruenberg et al., “a stringent cut-off is required for 
excluding sequencing errors; on the other hand, a less stringent cut-off would be desirable for 
maximized detection of minority clones”. Here, we increased this threshold to 2% to assess the 
impact of a higher cut-off point. We also reduced it to 0% to assess the difference between 1% and 
2% cut-offs from the hypothetical perfect detection of minority clones that would occur at BIC->0%, 
noting that BIC->0% is unfeasible in practice because such a cut-off permits the inclusion of 
sequencing errors and contaminations.  

Failure rate estimates for DHA-PPQ and AR-LF with low and high MOI and a range of FOI values are 
shown in Figure S2.1 for BIC->0% and Figure S2.2 for BIC=2%. When compared to BIC=1% (Figure 1 of 
main text), a BIC-> 0% resulted in slightly higher failure rate estimates and BIC=2% resulted in slightly 
lower failure rate estimates. In both cases, the difference was negligible and failure rate estimates 
obtained using BICs of ->0%, 1% and 2% were very close.  In other words, the currently proposed 
threshold of BIC=1% has negligible difference to a hypothetical perfect detection scenario. If 
genotyping errors were to necessitate a higher BIC, our results indicate that BIC=2% could be used 
with minimal loss of accuracy compared to BIC=1%.  

 

2.1.2 Changing the blood sampling limit. 

(see Figures S2.3) 

The blood sampling limit (the parasitaemia of a clone required for it to be physically included in a 
finger-prick blood sample used for genotyping) was 108 total parasites in the baseline model. This 
limit was calculated based on realistic blood sampling processes (see Supplementary Material, Part 
1, section 1.7) but given the ability of AmpSeq to detect low frequency alleles, it was necessary to 
check this assumption was not biasing results. The blood sampling limit was therefore reducing to 
107 total parasites (i.e. a lower density clones would be included in the blood sample).  

Failure rate estimates obtained with the lower blood sampling limit are shown for DHA-PPQ and AR-
LF in Figure S2.3. Results were qualitatively extremely similar to the baseline model (Figure 1 of main 
text). There was an extremely small increase in failure rate estimates at higher FOI (8 and 16) of 
~0.02% when using lower number of matches (≥1 or ≥2) to classify a recrudescence. In short, results 
were functionally identical to the baseline assumption of a blood sampling limit of 108, so the 
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assumed value of the blood sampling limit did not appear to affect the failure rate estimates 
obtained using AmpSeq markers.   

 

2.1.3 Changing the lower limit of the initial parasite number distribution.  

(see Figures S2.4) 

The lower limit of the log-uniform distribution was changed from 1010 parasites (the baseline lower 
limit) to 108 parasites (the upper limit remains as 1011 parasites).  This allows us to investigate 
whether the accuracy of failure rate estimates generated using AmpSeq markers was affected by 
assuming a wider range of initial parasitaemia across clones (which will lead to increase proportions 
of low-density clones). The true failure rate changed as the range of this distribution changed: 8.8% 
and 4.4% for DHA-PPQ in high and low MOI settings respectively and 10% and 6.6% for AR-LF in high 
and low MOI settings respectively.  These true failure rates are slightly lower than the baseline 
scenarios, presumably because MOI is held constant so more low-density clones are present in the 
initial infections, and such low-density clones are less likely to recrudesce. However, the absolute 
change in true failure rate was negligible, so this effect did not appear to be large. The BIC was 1% 
and blood sampling limit was 108, both as for the baseline model.  

Failure rate estimates using a wider initial parasite number distribution (i.e. reducing log distribution 
of initial parasite number down to 108) are shown for DHA-PPQ and AR-LF in Figure S2.4. Failure rate 
estimates were slightly lower in both cases, though this should be considered relative to the slightly 
lower true failure rate. The difference between each estimate and the true failure rate, and thus the 
qualitative conclusions, were identical to the baseline model i.e. classifying a recrudescence at ≥2 or 
3 matches accurately recovered the true failure rate for both drugs, both MOI settings and all FOI 
values. 

 

2.1.4 Increasing the number of Ampseq loci and/or reducing their genetic diversity. 

(see Figures 1B (main text) and S2.5to 2.8) 

We calculated failure rate estimates using 3 loci as the default, but also repeated analysis using 4 
AmpSeq markers (including csp) and 5 AmpSeq markers (including csp and msp-7) – this represents 
inclusion of the less diverse markers in the marker data set. Failure rate estimates obtained using 4 
or 5 AmpSeq markers are shown in Figures S2.5 and in Figure 1B of main text respectively. In 
summary, genotyping 4 or 5 AmpSeq markers does not significantly increase molecular correction 
accuracy compared to genotyping using 3 AmpSeq markers. We do note the practical point that 
genotyping additional markers will be useful in the case that any other markers fail to amplify or are 
otherwise corrupted in the genotyping process. We also note that Bayesian analyses will increase 
discrimination between clonal genotypes (e.g. (7,24)) and we await such analyses with interest. Our 
results imply that simple counting returns such accurate results that it remains to be seen whether 
the improved results that should be obtained by Bayesian analyses will make any difference to 
failure rates estimates obtained by simple counting. 

 

The AmpSeq markers used in these simulations were selected in highly SNP-polymorphic regions so 
there is a high number of alleles for each marker.  A lower allele diversity has only been observed for 
csp in one geographic area i.e. PNG (with only 3 alleles (3)). Populations with low genetic diversity 
have not been genotyped using these markers to date. If/when lower diversity data-sets become 
available, this modelling work can be repeated to quantify the accuracy of failure rate estimates in 
such areas.  Meanwhile we can anticipate these situations by artificially reducing the genetic 
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diversity in or AmpSeq markers. We did this by reducing the number of alleles to 25% to 30% of their 
original value and assuming each allele had equal frequencies. This resulted in the following levels of 
genetic diversity (cf Table 1 of the main text). 

• cpmp: number of alleles reduced from 76 to 20 with He falling from 1.0 to 0.95. 

• Ama 1D3: number of alleles reduced from 51 to 14 with He falling from 0.98 to 0.93. 

• cpp: number of alleles reduced from 63 to 14 with He falling from 1.0 to 0.93. 

• csp: number of alleles reduced from 34 to 10 with He falling from 0.97 to 0.90. 

• msp-7: number of alleles reduced from 31 to 10 with He falling from 0.91 to 0.90. 

Note that He is the conventional measure of genetic diversity and is the probability of two randomly 
selected alleles being different. A more illustrative metric for our purposes is the probability that 
they are identical (which is 1-He) as this determines the probability of samples matching purely by 
chance. Consequently, the probability of a match occurring purely by chance in cmpm increased 
from ~0% to 5%, in ama 1D3 it increased from 2% to 7%, in cpp the increase was from ~0% to 7%, 
and so on. The impact on molecular correction is shown on Figures S2.6, S2.7 and S2.8 which can be 
compared to the results obtained with high diversity markers on Figure 1A, S2.5 and 1B, respectively   

The impact of lower genetic diversity is to increase failure rate estimates due to “identity by chance” 
i.e. more reinfections will be misclassified as recrudescence due to them sharing alleles purely by 
chance. The effect becomes important as transmission intensity increases such that MOI and FOI 
both increase (see 2.2.2 below). Use of AmpSeq in clinical trials requires genotyping the initial blood 
samples and quantifying the level of genetic diversity of those samples, such that informed decisions 
around the total number of markers to analyse and the threshold chosen to define a recrudescence 
can be made. Obtaining accurate MOI and allele diversity estimates is possible with AmpSeq due to 
their high resolution (1). Estimates of FOI can be derived from annual entomological inoculation rate 
(aEIR), see SI of (6); noting that aEIR can, in turn, be estimated from parasite prevalence e.g Figure 1 
of (25) or Figure 1 of (26)). This epidemiological information can then be used to optimize AmpSeq 
analysis for a given TES.   

 

2.2 Additional discussion of results. 

2.2.1 Impact of Multiplicity of Infection (MOI) and drug type. 

The multiplicity of infection at time of treatment and drug used (DHA-PPQ or AR-LF) appeared to 
have little impact on the qualitative results (Figure 1 of main text and Figures S2.1 to S2.5 below); 
this is consistent with results obtained when simulating other types of marker (5, 12). 

2.2.2 Impact of transmission intensity, Force of Infection (FOI), and Multiplicity of Infection (MOI). 

The effect of increasing intensity of malaria transmission is to increase both the Force of Infection 
(FOI) and the multicity of infection (MOI). The impacts of FOI and MOI are shown on Figure 1 of main 
text and Figures S2.1 to S2.8 below. 

When FOI is zero, there is no possibility of re-infection and failure rate estimates did not change as 
the matching threshold was altered (an obvious result because, when FOI=0,  all recurrences must 
be recrudescence). In these circumstances, a slight under-estimate of true failure rate (<1%) 
occurred in two scenarios:  

(i) If the recrudescence never reaches patency during follow-up i.e. never grows to >108 
total parasites which is the limit of detection by light microscopy, see methodology in 
(6). This means the patient is erroneously classed as having cleared their initial infection.  
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(ii)  If the recrudescent clone was comparatively low-density clone at treatment so was not 
detected in the initial sample (thus the recurrence is misclassified as a reinfection).  
 

The under-estimate was larger for DHA-PPQ scenarios than AR-LF – consistent with previous work 
indicating that some recrudescences occur later than 42 days after treatment with DHA-PPQ, but 
nearly all have occurred by 28 days following treatment with AR-LF.  

As transmission intensity increases, it starts to have an impact for two reasons: 

(i) There was a higher likelihood of a recurrence containing both recrudescent clone(s) and 
new infections, and thus a higher chance for recrudescent clones to be below the detection 
threshold in the recurrent sample (i.e., some truly recrudescent alleles may not be observed 
in the recurrence). 

(ii) More clones, and hence alleles, are likely to be present in the recurrent blood samples 
i.e. the MOI of the recurrences increase.  Higher transmission intensities also increase the 
MOI of the initial sample taken at treatment. This means that the chance of finding a match 
between the initial infection and recurrence purely by chance is increased. This would result 
in a reinfection being misclassified as a recrudescence, particularly when genetic diversity is 
lower (cf Figures S2.6 to S2.8). This occurred at all matching thresholds, but misclassification 
of reinfection with lower thresholds resulted in higher failure rate estimates. This suggest a 
larger number of AmpSeq loci may be required in areas of very high transmission, 
particularly if genetic diversity is lower. Note however that high transmission intensities tend 
to be associated with high levels of genetic diversity so we do not regard this combination of 
high transmission with low diversity to be particularly likely. We include it as part of  wide 
sensitivity analysis and because we can envisage rare situations in highly seasonal (or 
epidemic) settings where small population sizes in the low-transmission periods bottleneck 
to reduce genetic diversity, and subsequent transmission may be quite intense . The 
appropriate number of Ampseq loci required for molecular correction can be decided 
empirically based on the diagnostic plot proposed in the main text, i.e.  plot results as in 
Figure 1 and Figures S5 to S2.8, and check that failure rate estimates become stable at high 
matching criteria.  
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Figure S2.1. As for Figure 1 of the main text, but with BIC changed from 1% to ->0%. 
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Figure S2.2. As for Figure 1 of the main text, but with BIC changed from 1% to 2%. 
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Figure S2.3.  As for Figure 1 of the main text, but with blood sampling limit changed from 108 to 107.   
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Figure S2.4. As for Figure 1 of the main text, but with initial parasite number range changed from 
1010-1011 to 108 -1011. 
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Figure S2.5. As for Figure 1 of the main text, but with failure rate estimates calculated using 4 

markers (including csp). 
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Figure S2.6. The impact of reduced genetic diversity on molecular correction based on 3 Ampseq 

loci. The reduction is described in Section 2.1.4 and this plot can be compared to Figure 1A (main 

text) which is based on the baseline level of (high) genetic diversity. 
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Figure S2.7. The impact of reduced genetic diversity on molecular correction based on 4 Ampseq 

loci. The reduction is described in Section 2.1.4 and this plot can be compared to Figure S2.5 which is 

based on the baseline level of (high) genetic diversity. 
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Figure S2.8. The impact of reduced genetic diversity on molecular correction based on 5 Ampseq 

loci. The reduction is described in Section 2.1.4 and this plot can be compared to Figure 1B (main 

text) which is based on the baseline level of (high) genetic diversity. 
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Supplementary Material Part 3: Simulating the potential impact of gametocytes on the 

accuracy of molecular correction. 

 

3.1 Methods: Inclusion of gametocytes in the mechanistic model  

The main manuscript focuses on simulation and analysis of antimalarial drug clinical trials. A 
potential threat to molecular correction in such trials comes from Ampseq genotyping detecting 
genetic signals arising from gametocytes that are present at treatment but decline relatively slowly 
post-treatment (see (4) for further discussion in this context). Space limitations in the main text 
dictate that we provide details of how gametocyte signals were calculated and interpreted as a self-
contained section here in the Supplementary Material.  

 

Both asexual and sexual parasite stages of P. falciparum may circulate in the blood of an infected 
host. Asexual merozoites can produce gametocytes that are the transmission stages which 
subsequently infect the mosquito vector to allow onward transmission of the infection. These 
gametocytes contain the full complement of genetic material including msp-1, msp-2 and glurp, 
microsatellites, and AmpSeq loci. AmpSeq, in common with other DNA genotyping, cannot 
distinguish genetic signals from asexual forms and gametocytes, so the presence and detection of 
gametocyte signals in blood samples may affect molecular correction. The chief concern is that 
gametocyte alleles persisting from initial infections can be detected and cause later reinfections to 
be misclassified as recrudescence (i.e. the gametocytes carry signals that will be shared between 
original and recurrent infections, meaning the latter will be classified as recrudescent). Empirical 
data show gametocytes can remain detectable in a patient’s blood for an average of 55 days (27) 
after ACT drug treatment.  It is therefore important to consider how detection of these gametocyte 
genetic signals may affect molecular correction. We therefore simulate the dynamics of gametocytes 
post-treatment to quantifier the likely implications for molecular correction.  

 

None of the current front-line drugs (apart from primaquine) kill mature P. falciparum gametocytes. 
Drugs will, however, determine gametocyte densities post-treatment, both by killing their merozoite 
‘parents’ and by killing some immature stages of gametocyte development. This cuts off the supply 
of mature gametocytes. Once the supply of mature gametocytes has been cut-off, the gametocytes 
decline at a rate described by their half-life in the circulation. Changes in gametocyte number over 
time post-treatment can therefore be tracked given three pieces of information: 

 

(i)The starting number of mature gametocytes at time of treatment: 

Each clone of malaria parasites in each infected host is assigned an initial asexual 

parasitaemia in our calculations. Clones may also contain gametocytes which are generally 

quantified as a percentage of the total parasitaemia of that clone. Estimates of the starting 

gametocytaemia vary considerably in the literature; data from Kenya indicate that 

gametocyte density may be between 1% and 10% of asexual parasitaemia with patient age 

and symptoms (the presence of fever) affecting this percentage (28). Given the initial 

asexual parasitaemia and percentage gametocytes allows us to calculate the starting 

number of mature gametocytes. 
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(ii) The lag time until gametocyte density starts to decline post-treatment. 

Gametocytes take approximately 10 days to develop into mature sexual parasite stages. 

Antimalarial drugs kill the asexual parasites and hence cut off the supply of gametocytes, so 

the simple expectation is that the lag time before gametocytaemia starts to decline after 

treatment would be around 10 days. The lag period can be directly observed in vivo and is 

not 10 days. Most drugs have a lag time of around 5 to 7 days (implying the drugs kill 

gametocytes in their first 3 to 5 days of maturation). However, artemisinins (and hence 

ACTs) appear to have a lag time of 3 days (implying artemisinins kill gametocytes in their first 

7 days of maturation).  

(iii) The rate of gametocyte decline after the lag period.  

After the lag-period, the number/density of gametocytes decline according to their half-life 

(g1/2). Gametocyte half-life (g1/2) and/or their elimination rate, k, can be extracted from 

published in vivo data on gametocyte circulation dynamics (e.g. (27)) and inter-converted 

using the equation:  

g1/2 = 0.693/k 

The results in Figures 2 and 3 of (27) were analysed in this manner to give g1/2 estimates of 

2.78, 3.27 and 2.15 days based on comparing gametocyte densities on day 3 and 28. The 

authors of (27) also provide “mean circulation times” of 4.6, 5 and 6.5 days. The mean 

circulation time is 1/k, so these figures can be converted into g1/2 estimates of 3.2, 3.5 and 

4.5 days. A mean circulation time of 6.4 days is given in (29); this translates to a g1/2 of 4.4 

days. A mean g1/2 of 2.4 days is reported in (30). Finally, SI Table 3 of (31) allows calculations 

of g1/2 as 6.86, 4.72, 6.12 and 5.77 days when comparing gametocyte numbers on day 7 and 

day 42. In summary, estimates of g1/2 appears to vary between 2.15 and 6.86 days, possibly 

reflecting differences in host immunity.  

 

The number of gametocytes of a clone present in the blood at time t following treatment can thus 
be expressed by the following equations: 

For t≤x (i.e. during the lag period) 

𝐺𝑡 = 𝑃0𝛾    Equation 3.1 

For t>x (i.e. after the lag period) 

𝐺𝑡 = 𝑃0𝛾𝑒
−𝑘(𝑡−𝑥)   Equation 3.2 

Where P0 is the initial asexual parasitaemia of a clone,  γ  is the percentage gametocytaemia of that 

clone, k is   the gametocyte elimination rate, and x is the lag period before gametocyte numbers fall.  

Note that we assume the gametocyte density does not change during the lag period. In fact, it may 
increase slightly as older infections tend to have higher gametocytaemia and there is speculation 
that some drug treatments may stimulate gametocyte production. We could allow gametocytaemia 
to increase during the lag period, but this putative effect is ignored for simplicity.  

These equations allow us to calculate the number of gametocytes from clones present at time of 
treatment and still circulating on the day of recurrence. Their density at the time of recurrence 
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determines whether their genetic signal will be detected and hence potentially affect the decision to 
classify the recurrence as a recrudesce or new infection.  

 

3.2 Main results: gametocyte dynamics post-treatment. 

We did not attempt a full exploration of the impact of gametocytes on molecular correction because 

the results would be rather obvious: assuming high gametocytaemia and long half-lives would result 

in high gametocytes signals at recurrence with a potentially large impact on molecular correction. 

Conversely, assuming low parasitaemia and short half-life would greatly reduce the possible impact. 

We also found that estimates of half-life appear to vary between 2.15 and 6.86 days, possibly 

reflecting differences in host immunity (see above). Here we simply illustrate how gametocyte 

signals start to become detectable with BIC=1% and compare it to the 25% sensitivity of current 

methods based on gel electrophoresis. The calculation requires a three-stage process 

 

(1) We start by recording the parasitaemias of recurrences that occur at various days post treatment 

in our simulated clinical trial. These distributions are the box plots in Figure 2 of the main text; note 

they are identical across each of the four panels. 

 

(2) We then calculate the gametocytaemia persisting from four illustrative clones that were present 

at time of treatment.  We allow initial gametocytaemia at treatment to be 108 or 109; the latter 

value is high but plausible e.g. a clone present at treatment with asexual biomass of 1010 with 10% 

gametocytaemia, or a clone of 1011 parasites with 1% gametocytaemia. Gametocyte circulation half 

life may take either of two values i.e. 2.15 days or 6.86 days which represent the extremes of the 

range of values we extracted from the literature (see above). This enables us to track four illustrative 

clones whose gametocyte numbers are shown as the red lines on their corresponding four panels of 

Figure 2 of the main text. Note that the same blood sampling limit occurs as for asexual forms i.e. 

only clones whose gametocytaemia is above 108 (represented by the horizontal dotted lines in the 

panels of Figure 2) would enter the finger-prick sample and be potentially detectable. 

(3) Finally, we plot lines equal to gametocytaemia multiplied by 4 or by 100; this is represented by 

the green and blues lines respectively in Figure 2. 

 

3.3 Discussion: main implications for gametocyte persistence post-treatment. 

Interestingly, it is the blood sampling limit that is most likely to mitigate the risk of detecting 
gametocyte genetic signals during follow-up  as most clones with low gametocytaemia at treatment 
and/or short gametocyte half-lives, rapidly fall below the blood sampling limit meaning they are 
unlikely to be physically present in the fingerprick blood samples taken at recurrence.  

We let readers decide on how likely high gametocytaemia infections are to occur in their trial  but 
note that high gametocytaemias are usually associated with long-established infections (implying 
some degree of protective immunity) while long-lives may well reflect low levels of acquired 
immunity. Interesting, even methods based on electrophoresis such as the WHO method using 
msp1, msp2 and glurp, and the CDC method using microsatellites may have problems with persisting 
gametocytes (Figure 2, panel D in main text). The practical difference is that the electrophoresis 
techniques only detect gametocytes if they constitute more than around 25% of the parasite 
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biomass and these should be directly observable by light microscopy unless the recurrence is 
extremely low density. In contrast detecting gametocytes at levels down to 1% is extremely arduous 
and may well be overlooked.  

A high gametocytaemia clone may still be detectable at 7 days even if gametocytes have a very short 
half-life. (Figure 2, panel C). There is some debate about whether day 7 recurrences should be 
subjected to molecular correction or be automatically classified as early drug failures; our results 
suggest the latter is the safer course (in practice both methods of classification should be used and 
compared  to see whether they produce different results). The potential threat of misclassification 
comes from clones that are highly gametocytaemia at treatment and whose gametocytes have a 
long half-life (Figure 2, panel D). The magnitude of this threat depends on how likely such clones are 
to exist in the trial. 

These results, although illustrative, suggest that the increased potential (compared to current 
methods) of AmpSeq to detect genetic signals from  persisting gametocyte means that AmpSeq 
should be carefully rolled out for molecular correction with accompanying operational research to 
check whether gametocyte signals are likely to affect the failure rate estimates. A plausible initial 
investigation might therefore compare molecular correction results excluding patients whose blood 
has detectable gametocytaemia at treatment or recurrence using either light microscopy or 
molecular methods (27) and compare the results to those obtained when all patients are included.  
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