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Supplementary Method 1. Simulations 

1.1 Proof of concept 

This experiment is easily reproduced by running: https://tinyurl.com/y8hh8rul online1. 

The first experiment is a simple experiment designed to show the working principle and how to 

interpret the results. 200 SNPs are simulated by drawing from a binomial distribution. These 

SNPs are assigned to 10 genes. The first 5 are set to be causal for our phenotype while the last 5 

function as controls. The sizes of the genes are varied to observe the effects of different sizes on 

the importance, for every causal gene there is a control gene with the same size. (Gene sizes = 

[50, 30, 10, 5, 5, 50, 30, 10, 5, 5].  The training, validation and test set consist of 10000, 2000 

and 2000 subjects respectively (50 % cases vs 50% controls). To ensure equal importance of the 

genes (even with different gene size) only 1 SNP per gene is set to be causal. Therefore, there are 

5 different subtypes of the disease each subtype prevalent in 1/5th of the simulated population.  

 

This is a relatively simple problem and the neural network performs as expected with a near 

perfect score (AUC of 0.99) in the test set. It can be seen in figure 1 that the network identifies 

the first five genes to be causal and the last five control genes to be of insignificant importance. 

Inspection of the weights between SNPs and genes identifies the causal SNPs without any 

unambiguity for all causal genes. The direction of effect is easily derived by the sign of the 

weights. Subtypes of the simulated phenotype can be distinguished by activation patterns. 

 
Supplementary Figure 1: A simple, non-linear proof of concept. In this simulation, each gene in 

the causal region has two causal SNPs that cause the simulated disease. The magnitude of the 

learned weight is represented by the line thickness (contributing causal connections in red, non-

contributing control connections in grey). The right side shows how this converts to a sunburst 

plot. 

 

https://tinyurl.com/y8hh8rul
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1.2 Synthetic data  

In this simulation the performance of the network is evaluated when heritability, polygenicity 

and training set sample size are varied. 100,000 SNPs are simulated for N subjects by drawing 

from a binomial distribution (n=2, p=0.3). Causal SNPs are selected randomly and assigned 

equal effect size. The number of causal SNPs is controlled by the polygenicity variable. Liability 

is calculated according to: 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = √ℎ22
𝑔 + 𝑞 √1 − ℎ22

 with ℎ2 as heritability, 𝑔 as genomic 

risk (effect size multiplied by genotype matrix) and with 𝑞 as random noise. 

Phenotype is based on a liability-threshold model with the threshold half a standard deviation 

above the mean liability.   

 

 

 
 

Supplementary Figure 2: Simulations with synthetic data showing the performance of GenNet 

expressed in the area under the curve for increasing levels of heritability, training set size and 

the number of causal SNPs (polygenicity). In total 540 simulations have been run with each 

100,000 input variants In black the theoretical maximum of the AUC versus heritability.2  

 

Supplementary Figure 2 gives an indication of the expected performance of a 3-layer network for 

different heritability, polygenicity and sample sizes. The indications are conservative, the 

network performed better in human genotype than in the simulated data. In genotype data the 

network obtained better performance for smaller sample sizes and for phenotypes with more 

causal SNPs than suggested by these simulations. This could be due to the absence of linkage 

disequilibrium in the simulated data or it could be an artifact of how the phenotype is constructed 

in the simulations.  

 

1.3 Genotype data, simulated phenotype 

The simulations are constructed from real data, the genotype matrix from the schizophrenia 

Sweden study served as a basis for this simulation. New labels were generated for each patient 

based on the following pseudo code: 
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Randomly select a set of 𝐏 genes.  

Randomly sample a number of SNPs in each gene (𝐍). 

Effect of causal SNPs:   𝐄 =
2

𝐍𝐏
  

Effect of non-causal SNPs: 𝐄 = 0 

 

Phenotype risk = 𝐄 𝐌 (Genotype matrix Sweden 𝐌) 

Threshold for cases is the median phenotype risk, in order to obtain an equal case control ratio. 

 

This experiment was designed to show the effect of LD blocks on the behavior of the neural 

network. Similar as seen in genome wide association studies, the found genes are not guaranteed 

to be causal.   

 

 

 
Supplementary Figure 3. Behavior of the Network for LD. Causal genes are in red, non-causal 

genes are in black. We can observe that the neural network tags SNPs similar to GWAS. The LD 

structure adds predictive value to non-causal genes due to the linkage disequilibrium.   
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Supplementary Note 2. Overview of the experiments 

2.1 Gene networks 

Dataset 

(type) 

Number of 

input 

variants  

Trait Subjects & 

phenotype 

AUC 

LASSO 

(val) 

AUC 

LASSO 

(test) 

AUC 

GenNet 

(val) 

AUC  

GenNet 

(test) 

 

GenNet: top 

three most 

important 

genes   Class I 

 

Class II 
  

 

Rotterdam 
(genotype 

array) 

113,241 
(exonic) 

inputs of 

16,628 genes 

Eye color 4041 
Blue 

2250 
Other 

0.68 0.69 0.74 0.75 HERC2, OCA2, 
LAMC1 

UK 
Biobank 

(exome) 

6,986,636 
input variants 

of 15,827 
genes 

Hair color 4501 
Blond 

 

4518 
Other 

0.62 0.61 0.65 0.66 OCA2, TC2N, 
SLC45A2 

 15684 

Dark 
brown 

 

15918 

Other 

0.57 0.59 0.69 0.70 OCA2, TC2N, 

SPIRE2 

 1734 
 Red 

 

1727 
Other 

0.67 0.70 0.94 0.93 MC1R*, SHOC2, 
DCTN3  

 16208 

Light 

brown 
 

16029 

Other 

0.61 0.62 0.62 0.62 OCA2, TC2N, 

NOX4 

  3762 

Black 

3753 

Other 

0.85 0.82 0.83 0.81 OCA2, 

RPL23AP87, 
SPIRE2 

 Skin color 1883 

Fair 

1894 

Dark 

0.97 0.98 0.98 0.98 RPL23AP87, 

SMARCAD1, 

GLP1R 

 Male balding 

pattern 

3454  

Balding 
pattern 1 

 

3454 

Balding 
pattern 4  

0.57 0.57 0.56 0.57 NGEF, 

NKRD18B, 
SYNJ2 

 Atrial 
fibrillation 

192 
Cases 

194 
Controls 

0.64 0.43 0.59 0.56 ** BRINP1, 
SORBS3, 

ELM0D3  

 Coronary 

Artery Disease 

1563 

Cases 

1600 

Controls 

0.57 0.55 0.58 0.57 ** STARD7-AS1, 

VWC2L, NSD2 

 Bipolar 

disorder 

343 

Cases 

 

347 

Controls 

 

0.56 0.59 0.56 0.60 LINC00266-1, 

CSMD1, 

TCERG1L 

  Diabetes 2557 

Cases 

2555 

Controls 

0.55 0.54 0.57 0.54 **DNAH10, 

SNAR-I, PSMD13 

  Dementia 139 

Cases  

142 

Controls 

0.55 0.58 0.65 0.61 RPL23AP87, 

CTNNA3, 
LINC01003 
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  Allergies 10242 
Cases 

10187 
Controls 

0.51 0.51 0.53 0.52 **AC025039.1, 
AC004052.1, 

VPS45  

  Breast cancer 1070 

Cases 

1082 

Controls 

0.53 0.52 0.56 0.52 RPL23AP87, 

LINC00266-1, 

HPSE2 

  Asthma 4229 

Cases 

4214 

Controls 

0.53 0.51 0.57 0.55 HLA-DQB1, 

HCG9, 
LINC00266-1 

Sweden 
(exome) 

1,288,701 
input variants 

of 21,390 

genes 

Schizophrenia 4969 
Cases 

 

6245 
Controls  

0.65 0.65 0.73 0.74 ZNF773, PCNT, 
DYSF 

Supplementary Table 1. Summary of the experiments and results in this study for the simplest 

network in our framework that contains the input SNPs, the gene layer and the output layer. 

Genes were annotated using ANNOVAR.3 Manhattan plots for gene importance can be found in 

Supplementary Materials 3,4 & 5. *MC1R was not present in gene annotations but was 

identified by linkage disequilibrium. **Many genes contributed to the prediction without clear 

separation between genes, see Supplementary Materials 4.  

2.2 Pathway networks 

Dataset 

(type) 

Trait Subjects & 

phenotype 

AUC 

GenNet 

pathway 

(val) 

AUC  

GenNet 

pathway 

(test) 

GenNet: top three most important pathways 

 

 Class I Class II Global Mid  Local 

Rotterdam 

(genotype 

array) 

Eye color 4041 

Blue 

2250 Other 0.52 0.50 Organismal 

Systems (78.4%), 

Cellular Processes 
(17.9%), Human 

Diseases (3.0%) 

Systems (11.7%) 

Digestive system 

(72.6%), Transport 

and catabolism 
(17.9%), 

Circulatory system 

(5.7%) 

Pancreatic secretion 

(59.1%), Vitamin 

digestion and 
absorption (13.3%), 

Autophagy - animal 

(9.5%) 
UK 

Biobank 
(exome) 

Hair color 4501 

Blond 
 

4518 

Other 

0.57 0.58 

 

Organismal 

Systems (70.2%), 
Environmental 

Information 

Processing 
(21.4%), Cellular 

Processes (3.5%) 

Endocrine system 

(30.1%), Signal 
transduction 

(19.6%), Immune 

system (14.8%) 

Adrenergic 

signaling in 
cardiomyocytes 

(4.1%), Olfactory 

transduction (3.9%), 
Insulin signaling 

pathway (3.6%) 

 15684 
Dark 

brown 

 

15918 
Other 

0.55 0.56 Human Diseases 
(37.2%), 

Metabolism 

(27.2%), Cellular 
Processes (26.1%) 

Metabolism of 
cofactors and 

vitamins (26.7%), 

Substance 
dependence 

(17.9%), Transport 

and catabolism 
(17.2%) 

Thiamine 
metabolism 

(26.2%), 

Endocytosis 
(17.0%), Parkinson 

disease (9.6%) 

 1734 

 Red 
 

1727 

Other 

0.77 0.77 Genetic 

Information 
Processing 

(87.4%), Human 

Replication and 

repair (83.4%), 
Translation (2.5%), 

Infectious diseases: 

Fanconi anemia 

pathway (79.7%), 
Homologous 

recombination 
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Diseases (9.6%), 
Metabolism 

(2.8%) 

Bacterial (2.3%) (2.2%), 
Legionellosis 

(2.0%) 

 16208 

Light 

brown 
 

16029 

Other 

0.57 0.57 

 

Environmental 

Information 

Processing 
(55.1%), Human 

Diseases (28.3%), 

Cellular Processes 
(8.6%) 

Signal transduction 

(54.3%), Infectious 

diseases: Bacterial 
(7.8%), Cancers: 

Overview (5.9%) 

MAPK signaling 

pathway (8.1%), 

Rap1 signaling 
pathway (7.2%), 

Calcium signaling 

pathway (6.1%) 

  3762 

Black 

3753 

Other 

0.78 0.76 Organismal 

Systems (46.9%), 
Human Diseases 

(29.7%), Cellular 

Processes (16.9%) 

Endocrine system 

(18.6%), Cellular 
community - 

eukaryotes (12.7%), 

Nervous system 
(10.9%) 

Axon guidance 

(5.0%), Focal 
adhesion (3.7%), 

Tight junction 

(3.1%) 

 Breast cancer 1070 

Cases 

20545 

Controls 

0.56 0.51 Human Diseases 

(57.1%), 
Organismal 

Systems (27.1%), 

Metabolism 
(8.5%) 

Infectious diseases: 

Viral (16.6%), 
Cancers: Overview 

(16.4%), Cancers: 

Specific types 
(14.1%) 

Pathways in cancer 

(6.5%), Metabolic 
pathways (4.2%), 

Gastric cancer 

(3.4%) 
 

 Diabetes 2557 

Cases 

2555 

Controls 

0.54 0.54 Environmental 

Information 
Processing 

(43.5%), 

Organismal 
Systems (26.1%), 

Human Diseases 

(18.3%) 

Signal transduction 

(40.5%), Nervous 
system (8.4%), 

Cancers: Specific 

types (6.9%) 

Ras signaling 

pathway (7.9%), 
cAMP signaling 

pathway (7.2%), 

MAPK signaling 
pathway (5.9%) 

 Atrial 

fibrillation 

192 

Cases 

194 

Controls 

0.63 0.57 Organismal 

Systems (39.6%), 

Environmental 
Information 

Processing 

(21.0%), Human 

Diseases (18.6%) 

Signal transduction 

(11.2%), Transport 

and catabolism 
(10.7%), Immune 

system (9.7%) 

Cytokine-cytokine 

receptor interaction 

(4.4%), Endocytosis 
(3.8%), Axon 

guidance (2.9%) 

 

 Coronary 

Artery 
Disease 

1563 

Cases 

1600 

Controls 

0.56 0.54 Environmental 

Information 
Processing 

(29.5%), 
Organismal 

Systems (23.7%), 

Cellular Processes 
(15.8%) 

Signal transduction 

(27.7%), Cellular 
community - 

eukaryotes (8.8%), 
Immune system 

(5.5%) 

PI3K-Akt signaling 

pathway (4.6%), 
Focal adhesion 

(3.7%), Tight 
junction (2.5%) 

 Bipolar 

disorder 

343 

Cases 
 

347 

Controls 
 

0.55 0.47 Organismal 

Systems (76.9%), 
Cellular Processes 

(16.4%), 

Metabolism 
(5.7%) 

Endocrine system 

(46.5%), Transport 
and catabolism 

(16.4%), Immune 

system (11.8%) 

Melanogenesis 

(32.9%), Thyroid 
hormone signaling 

pathway (12.2%), 

Phagosome (9.0%) 

 Dementia 139 

Cases 

142 

Controls 

0.58 0.55 Human Diseases 

(39.8%), 
Environmental 

Information 

Processing 
(26.5%), 

Organismal 

Systems (22.8%) 

Signal transduction 

(22.2%), Cancers: 
Overview (13.3%), 

Endocrine system 

(7.3%) 

Pathways in cancer 

(5.6%), PI3K-Akt 
signaling pathway 

(4.1%), 

Proteoglycans in 
cancer (2.8%) 

 

 Male balding 

pattern 

3454  

Balding 

pattern 1 
 

3454 

Balding 

pattern 4  

0.55 0.54 Organismal 

Systems (34.6%), 

Human Diseases 
(22.7%), 

Metabolism 

(20.8%) 

Nervous system 

(9.7%), Global and 

overview maps 
(8.9%), Transport 

and catabolism 

(8.3%) 

Metabolic pathways 

(8.7%), Endocytosis 

(4.3%), Axon 
guidance (4.1%) 

 Asthma 4229 

Cases 

4214 

Controls 

0.54 0.51 Genetic 

Information 

Processing 
(52.3%), 

Folding, sorting and 

degradation 

(41.5%), 
Cardiovascular 

Ubiquitin mediated 

proteolysis (22.0%), 

Protein processing 
in endoplasmic 
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Metabolism 
(23.6%), Human 

Diseases (23.2%) 

diseases (12.6%), 
Amino acid 

metabolism (12.2%) 

reticulum (11.8%), 
RNA transport 

(10.8%) 

Sweden 

(exome) 

Schizophrenia 4969 

Cases 

 

6245 

Controls  

0.67 0.68 Human Diseases 

(30.8%), 

Organismal 
Systems (26.7%), 

Genetic 

Information 
Processing 

(26.5%) 

Infectious diseases: 

Viral (27.3%), 

Endocrine system 
(16.6%), Folding, 

sorting and 

degradation (13.7%) 

Human 

papillomavirus 

infection (11.7%), 
Ubiquitin mediated 

proteolysis (10.0%), 

Ribosome 
biogenesis in 

eukaryotes (4.4%) 

 

Supplementary Table 2: Neural networks build with gene and KEGG pathway4 information. The 

pathway information is hierarchical with 3 levels: global, mid and local. In this table the top 

three pathways for each level are displayed in terms of relative contribution. Interactive plots for 

all phenotypes can be found at: https://github.com/ArnovanHilten/GenNet_paper_plots   

https://github.com/ArnovanHilten/GenNet_paper_plots
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2.2 GTEx expression networks 

Dataset 

(type) 

 Number 

of input 

variants  

Trait Subjects & 

phenotype 

AUC 

GenNet 

GTEx 

(val) 

AUC  

GenNet 

GTEx 

(test) 

GenNet: top three most 

important cell types 

   Class 

I 

 

Class 

II 
  

Rotterdam 
(genotype 

array) 

 113,241 
(exonic) 

inputs of 

16,628 
genes 

Eye color 4041 
Blue 

2250 
Other 

0.76 0.76 Esophagus Gastroesophageal 
Junction (10.1%), Colon 

Sigmoid (9.5%), Esophagus 

Muscularis (7.5%) 

UK 

Biobank 

(exome) 

 6,986,636 

input 

variants of 
15,827 

genes 

Hair color 4501 

Blond 

 

4518 

Other 

0.67 0.64 Brain Nucleus accumbens (basal 

ganglia) (4.1%), Brain Putamen 

(basal ganglia) (3.6%), Artery 
Tibial (3.5%) 

  15684 

Dark 
brown 

 

15918 

Other 

0.60 0.62 Brain Frontal Cortex (BA9) 

(4.3%), Brain Hippocampus 
(3.6%), Brain Caudate (basal 

ganglia) (3.5%) 

  1734 
 Red 

 

1727 
Other 

0.76 0.76 Brain Caudate (basal ganglia) 
(4.1%), Esophagus Muscularis 

(4.1%), Brain Amygdala (3.9%) 

  16208 

Light 
brown 

 

16029 

Other 

0.61 0.61 Brain Putamen (basal ganglia) 

(3.9%), Brain Hypothalamus 
(3.7%), Brain Cerebellar 

Hemisphere (3.6%) 

   3762 
Black 

3753 
Other 

0.80 0.80 Artery tibial (4,0%), artery aorta 
(3.7%), esophagus 

gastroesophageal junction 

(3.7%), 

  Diabetes 2557 

Cases 

2555 

Controls 

0.55 0.56 Brain Cortex (4.4%), Esophagus 

Gastroesophageal Junction 

(4.4%), Artery Tibial (4.2%) 

  Atrial 

fibrillation 

192 

Cases 

194 

Controls 

0.65 0.49 Esophagus Muscularis (4.2%), 

Brain Cerebellum (4.1%), Artery 
Aorta (3.6%) 

  Coronary 

Artery Disease 

1563 

Cases 

1600 

Controls 

0.55 0.54 Brain Caudate (basal ganglia) 

(4.2%), Brain Putamen (basal 

ganglia) (4.1%), Brain 
Amygdala (4.0%) 

  Bipolar 

disorder 

343 

Cases 
 

347 

Controls 
 

0.56 0.58 Brain Caudate (basal ganglia) 

(4.6%), Brain Hippocampus 
(4.6%), Brain Cerebellar 

Hemisphere (4.3%) 

   Dementia 139 
Cases 

142 
Controls 

0.52 0.41 Brain Putamen (basal ganglia) 
(4.3%), Brain Caudate (basal 

ganglia) (4.2%), Brain 

Amygdala (4.1%) 

Sweden 

(exome) 

 1,288,701 

input 

variants of 
21,390 

genes 

Schizophrenia 4969 

Cases 

 

6245 

Controls  

0.66 0.66 Uterus (4.2%), Colon Sigmoid 

(3.8%), Breast Mammary Tissue 

(3.7%) 

Supplementary Table 3: Neural networks build with genes and tissue expression (GTEx) only the 

significantly different expressed genes are connected to their tissues Finucane et al. (2018)5  to 
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ensure an interpretable network. Interactive plots for all phenotypes can be found at: 

https://github.com/ArnovanHilten/GenNet_paper_plots 

2.2 ImmGen expression networks 

Dataset 

(type) 

Trait Subjects & 

phenotype 

AUC 

GenNet 

GTEx 

(val) 

AUC  

GenNet 

GTEx 

(test) 

Most important 

immunological cell types 

 Class 

I 

 

Class 

II 
  

 

Rotterdam 
(genotype 

array) 

Eye color 4041 
Blue 

2250 
Other 

0.50 0.50 Tgd.vg2+24ahi.Th (5.3%), 
T.DPsm.Th (5.0%), 

Ep.5wk.MEChi.Th (4.1%) 

UK 
Biobank 

(exome) 

Hair color 4501 
Blond 

 

4518 
Other 

0.50 0.48 proB.FrA.BM (5.5%),  
MF.Microglia.CNS (4.9%),  

SC.CDP.BM (4.7%) 

 15684 

Dark 

brown 
 

15918 

Other 

0.50 0.50 T.8SP24int.Th (0.6%),  

MF.F480hi.ctrl.PC (0.6%), 

DN.SLN.CFA.d6.v2 (0.6%) 

 1734 
 Red 

 

1727 
Other 

0.49 0.47 DC.8+.MLN (2.1%),  
GN.BM (2.1%),  

DC.8-4-11b-.MLN (1.8%) 

 16208 

Light 

brown 
 

16029 

Other 

0.48 0.50 FRC.SLN (0.6%),  

Tgd.vg5-.act.IEL (0.6%), 

MEChi.GFP+.Adult.KO (0.6%) 

  3762 

Black 

3753 

Other 

0.79 0.78 T.8SP24int.Th (0.8%), 

T.4Mem44h62l.LN (0.8%),  
T.4Mem.LN (0.8%) 

 Male balding 
pattern 

3454  
Balding 

pattern 

1 
 

3454 
Balding 

pattern 4  

0.50 0.51 GN.Bl.v2 (1.4%),  
DC.103+11b-.Lv (1.4%),  

DC.8-4-11b+.Sp (1.3%) 

 Atrial 

fibrillation 

192 

Cases 

194 

Controls 

0.53 0.41 Ep.5wk.MEClo.Th (0.8%),  

T.4.Pa.BDC (0.8%),  
Ep.MEChi.Th (0.8%) 

 Coronary 

Artery 

Disease 

1563 

Cases 

1600 

Controls 

0.57 0.53 Tgd.vg2+24ahi.Th (0.8%), 

DC.103-11b+F4/80lo.Kd 

(0.8%), Tgd.vg2+.Sp (0.8%) 

 Bipolar 

disorder 

343 

Cases 
 

347 

Controls 
 

0.54 0.57 FRC.Cad11.WT.v2 (0.8%),  

T.4Mem.Sp (0.8%),  
CD19Control (0.8%) 

 Dementia 139 
Cases 

142 
Controls 

0.54 0.57 FRC.Cad11.WT.v2 (0.8%),  
DN.SLN.v2 (0.8%),  

preB.FrD.BM (0.8%) 

Sweden 
(exome) 

Schizophrenia 4969 
Cases 

 

6245 
Controls  

0.73 0.74 FRC.MLN (1.2%), DN.SLN.v2 
(1.1%), SC.LT34F.BM (1.1%) 

https://github.com/ArnovanHilten/GenNet_paper_plots
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Supplementary Table 4: Neural networks build with genes and Immunological Genome Project 

data6. Only the significantly different expressed genes are connected to their tissues Finucane et 

al. (2018)5  to ensure an interpretable network. Interactive plots for all phenotypes can be found 

at: https://github.com/ArnovanHilten/GenNet_paper_plots 

Supplementary Note 3. Sweden-Schizophrenia population-based case-control study   

All networks applied on the Sweden Schizophrenia Case Control study are trained with similar 

parameters, found by optimizing the performance on the validation set for the ‘gene network’.  

The batch size was chosen to be 200, the optimizer Adam (learning rate of 0.0006), and with 

batch normalization after every tangent hyperbolicus activation.  All networks are trained on a 

single GPU (Nvidia Geforce 1080 GTX) and converged within 3 hours.  

Network AUC 

val. set 

AUC 

test set 

Accuracy 

test set 

Source 

Gene Network 0.73 0.74 0.68 Annovar gene annotations 

Gene Network L1 0.75 0.74 0.68 Annovar gene annotations 

Gene -Pathway 0.67 0.68 0.61 Kegg pathway annotations 

Gene-Tissue expr. 0.66 0.66 0.60 GTEx tissue expr. 

Gene-Cell. expr. 0.74 0.75 0.68 FUMA 

 

Supplementary Table 5. Overview of the performance for different networks. Area Under the 

Curve (AUC), Precision, Accuracy and F1 score for the different types of networks. The 

theoretical maximum accuracy is ~ 72%. The dataset was split 60/20/20 in training validation 

and with respect to the ratio of cases and controls. All results are reported on the test set with 

the optimum decision threshold determined by the ROC curve of the validation set.  

  

https://github.com/ArnovanHilten/GenNet_paper_plots
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3.1 Gene network 

 

 
Supplementary Figure 4. Gene Importance for Schizophrenia predictions. Area under the curve 

for this model was 0.73 in the validation set and 0.74 in the test set. This was the best run of a 

series of experiments run with the same parameters. These models obtained a mean AUC of 0.70 

± 0.018 in the validation set and 0.72 ± 0.016 in the test set.  
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3.2 Gene network with an L1 constraint on the weights 

 
 

 

Supplementary Figure 5. Similar to lasso logistic regression, the network can be forced to focus 

on only the most important genes by adding L1 regularization, easing interpretation while 

maintaining performance (AUC of 0.74). The network is forced to focus only on the most 

important genes, leaving most genes with a near zero weight.  As a consequence, larger genes are 

selected, such as TTN and MUC16. MIR4436A is therefore interesting since this is a micro-RNA 

of 63 base pairs.   
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3.3 Pathway network 

 
  

Supplementary Figure 6. The gene-pathway network achieved an AUC of 0.68 in the test set 

with only 7204 genes annotated by the KEGG database, leaving more than 14 000 genes 

unconnected.  The performance of this network could thus be artificially inflated due to the same 

LD structure, leaking information of unconnected genes without a pathway. Pathway nodes are 

not as objectively and uniquely defined as gene nodes (see section 2.4). Nonetheless, pathway 

annotations could possibly regulate the network further to assign high weights to important 

pathways, genes and SNPs, guiding the network to select only disease relevant entities.  This 

would ease interpretability, avoid tagging and will definitely increase performance. Moreover, 

pathway annotations allow us to create deeper networks, carrying more information about how; 
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from important SNPs to genes, genes to pathways and from pathways to the eventual trait 

everything relates to each other with respect to the trait.  

3.4 Gene-cell network & gene-GTEx networks 

There are multiple variations of these networks depending on the threshold used for defining 

connections (i.e., what is the level of expression required to start defining connections?). 

An interesting point of research and a concern for the interpretability is the uniqueness of the 

connections required to be still interpretable. In the tissue and cell expression the connections are 

not as unique as in the gene layer, where overlap between inputs for neurons is rare. To avoid an 

arbitrary threshold the weights of the connections could be initialized with the level of 

expression. However, there is no guarantee that such a trained network would be interpretable. 

To create more uniquely defined nodes, we chose to group and connect only the significantly 

associated genes per tissue or cell type. For this we used the approach and resources found in 

Finucane et al (2018)5. However, interpretability is still not guaranteed and further research is 

necessary to confirm interpretability. 

Tutorials and examples for creating networks with cell and tissue expression are available on 

GitHub. 

 

 
Supplementary Figure 7: Sunburst of the tissues and their relative importance using the GTEx 

tissue expression layer. 



17 
 

Supplementary Figure 8: Sunburst of the brain tissues and their relative importance using the 

GTEx brain expression layer. 
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Supplementary Figure 9: Sunburst of the immune cell types and their relative importance using 

the ImmGen layer. We used the preprocessed t-statistics made available from Finucane et al. 

(2018) 5 Raw data can be obtained from (http://www.immgen.org/ )6 

 

http://www.immgen.org/
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Supplementary Note 4. UK Biobank 

4.1 Bipolar disorder 

 
Supplementary Figure 10. Gene contribution for the prediction of bipolar disorder. LINC00266-1 

(Long Intergenic Non-Protein Coding RNA 266-1) on chromosome 22 is the greatest 

contributor.  

 

 

 

Supplementary Figure 11. 

Pathway contribution for the 

prediction of bipolar disorder.  
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4.2 Skin color 

 
Supplementary Figure 12. The network to predict skin color obtains a near perfect score (AUC of 

0.98 in the validation and test set) for distinguishing between a fair or a dark skin color 

Predicting skin color (fair vs brown and black) is close to predicting ethnicity. The predictions 

for skin color can serve as a good example why interpretability is a necessity for reliable 

predictions: interpretation of the network showed that the predictions are based on other factors 

such as ethnic background rather than genes related to pigmentation and skin color. Neural 

networks have better predictive capabilities than regular linear methods and can therefore 

identify and exploit biases in the dataset more easily. While using neural networks we should 

thus pay even more attention to confounders. SMARCAD1 is associated with not having 

fingerprints.7 
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4.3 Hair color: one versus all 
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Supplementary Figure 13 to 17: The region on chromosome 16 contains the MC1R gene, a well-

known gene that is associated with red hair color. Even though this gene was not present in the 

annotations, LD structure and the interpretability of the network allowed us to identify this gene. 

OCA2 is a known gene, a melanin precursor, EXOC2 has been identified before by Han et al. 

(2008).8 

 

 

Supplementary Figure 18: Red hair 

color was dominated by the 

Fanconi anemia pathway.  
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4.4 Hair color: one vs one 

 

 
Supplementary Figure 19. OCA2 is a known gene, a melanin precursor, EXOC2 has been 

identified before by Han et al. (2008).8 
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Supplementary Figure 20 & 21: Brown versus red and red versus blond hair. This region on 

chromosome 16 contains the MC1R gene, a well-known gene that is associated with red hair 

color. Even though this gene was not present in the annotations, LD structure and the 

interpretability of the network allowed us to identify this gene.  

4.5 Male balding pattern 

 

 
Supplementary Figure 22. Manhattan plot for genes important for the network for separating 

between balding pattern 1 and 4. 
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4.6 Breast cancer 

 
 

Supplementary Figure 23. Manhattan plot for genes important for the network for separating 

between cases and controls. 

 

 

Supplementary Figure 

24. Sunburst plot of 

pathways for cancers. 

Predictive performance 

for the pathway 

network was very low 

with 0.51 in the test set, 

0.56 in the validation 

set. 
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4.7 Asthma 

 

 

Supplementary Figure 25. Manhattan plot for genes important for the network for separating 

between cases and controls for asthma. 

4.8 Dementia 

 

 

 

Supplementary Figure 26. Manhattan plot for genes important for the network for separating 

between cases and controls for dementia. APOE got assigned a (normalized) weight of 0.08 
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4.9 Coronary artery disease 

  

Supplementary Figure 27. Manhattan plot for genes important for the network for separating 

between cases and controls for coronary artery disease. The predictive performance was poor; 

0.56 in the test set and 0.58 in the validation set and we suspect that we are underpowered. More 

data will most likely improve the predictive performance and therefore the interpretation. 

4.10 Atrial fibrillation 

 

Supplementary Figure 28. Manhattan plot for genes important for the network for separating 

between cases and controls for atrial fibrillation. Similarly, to coronary artery disease we suspect 

we need a larger sample size. 



29 
 

4.11 Diabetes 

 
 

Supplementary Figure 29. Manhattan plot for genes important for the network for separating 

between cases and controls for diabetes. Although we are underpowered, there seems to be more 

distinction between genes than for the CAD and AF. 
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Supplementary Note 5. Rotterdam Study 

5.1 Eye color – blue vs rest 

 

Supplementary Figure 30. Manhattan plot for genes important for the network for separating 

between blue and other color eyes. 
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Supplementary Method 6. Estimating upper bound classification accuracy 

Imagine the following hypothetical situation: for every person in our dataset there exists a 

monozygotic twin. In our experiment we use the monozygotic twin for the prediction of a 

phenotype. 

Our first phenotype of interest is schizophrenia. It has a concordance rate = 0.5 in monozygotic 

twins and a prevalence of roughly 1%. We can use these to construct a confusion matrix for our 

phenotype of interest: 

 

What if the first twin is schizophrenic? 

● The chance that the twin in our dataset is also diseased is simply the concordance rate, 

41%.  

● The chance that we misclassify the twin in the real world as a false positive is 1-

concordance rate * 100% = 59 % 

What if the first twin is healthy? 

● The chance that the second twin is healthy is higher than the 1-prevalence. Thus, bigger 

than 99% since the twins share genetically the same code. Let’s make this 100% since we 

are interested in the maximum performance. 

● The chance that we misclassify the twin as a false positive is smaller than the prevalence 

so a maximum of 2%.  

 

Resulting in the following confusion matrix: 

 

True positive (concordance rate) 

0.41 * 4969 = 2037  

False Positive (1- concordance rate) 

(1-0.41) * 4969 = 2931  

False negative (< prevalence) 

0.02* 6245 = 125 

True negative (> (1-prevalence)) 

(1-0.02) * 6245 = 6120 

 

Maximum Accuracy   =
predicted correctly 

Total
 

 

    =
(concordance∗cases)+controls(1−prevalence) 

Total cases and controls
 

 

 =
0.41∗4939+(1−0.02)6245 

4969 + 6245
= 0.73 

The maximum accuracy I can reach with this distribution of cases and controls is ~73%. 

 

This is the perfect classifier if we purely use genetic data. No machine learning or deep learning 

model can do better without adding (environmental) information. 

 

The confusion matrix can be used to calculate more metrics such as sensitivity, specificity and 

F1-score. The sensitivity and specificity can be plotted in the ROC curve to control for 

overfitting.  
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6.1 Overview of the upper bound classification accuracies in this study 

Table with the upper bound accuracy according to the thought experiment in Supplementary 6.1. 

For some phenotypes such as hair color, the estimate might be less reliable due to migration (i.e., 

black hair color was natively not this prevalent in the UK). This methodological approach does 

not take in account migration, because of this the maximum accuracy might be underestimated 

for hair color. 

 
Trait Phenotype Concordance  Prevalence  Cases 

 
Controls 
 

Max. 
Accuracy 

Ref 
Conc. 

Ref 
Prev. 

Eye color Blue 0.98 0.61 4041 2250 0.85 9 9 

Hair color Red 0.94 0.08 1734 1727 0.93 10 9 

 Black 0.94 0.04* 3762 3753 0.95 11 11 

 Brown   0.94 0.78 31892 31947 0.86 11 11 

 Blond  0.94 0.41 4501 4518 0.76 11 11 

Bipolar Case  0.43 0.02 343 347 0.71 12 13 

Atrial 
fibrillation 

Case  0.22 0.03 192 194 0.60 14 15 

CAD Case  0.40 0.03 1563 1600 0.69 16 15 

Dementia Case  0.67 0.02 139 142 0.83 17 13 

Asthma Case  0.50 0.12 4229 4214 0.69 18 19 

Diabetes type 
II 

Case   0.87 0.05 2557 2555 0.91 20 21 

Breast cancer Case  0.28 0.01 1070 1082 0.64 22 23 

Schizophrenia Case  0.41 0.02 4969 6245 0.73 24 25, 13 

Schizophrenia Case  0.65 0.02 4969 6245 0.83 24 25, 13 

 

Supplementary Table 6 Overview of the estimated upper bound of the accuracy for the datasets 

used in this study. This table contains all relevant statistics used for this estimate (See 

supplementary 6). The monozygotic twin concordance and prevalence were obtained from 

literature. *This methodological approach does not take in account migration, because of this 

the upper bound accuracy might be underestimated. 
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Supplementary Discussion 7. Deletion of predictive connections 

In this experiment we evaluate the performance while deleting the connections to the most 

predictive features. We evaluated this for two widely different phenotypes, eye color, where 

HERC2 and OCA2 are the main contributors to the prediction of blue eye color and 

schizophrenia, a polygenic disease with numerous genes contributed to the prediction. As 

expected, the curves in Supplementary Figures 31 & 32 are different for the two phenotypes. The 

prediction for eye color deteriorates quickly, even by only deleting the connections to the 

HERC2 gene, while the predictive performance of schizophrenia is relatively unaffected even if 

the connections to the top thousand predictive genes are deleted. 

 

 

Supplementary Figure 31 & 32. Performance of the network while removing up to 20 000 

connections. The genes are sorted by contribution/importance and deleted in this order, with 

connections to most important genes first deleted. 
 

  



34 
 

Supplementary Discussion 8. Does prior knowledge improve performance? 

 

Embedding prior knowledge allows us to interpret the weights in the neural networks. One could 

speculate that embedding prior knowledge could also help in guiding training, resulting in better 

converged networks with better performance than networks without prior knowledge. 

 

This experiment is designed to test the hypothesis: ‘Embedding prior knowledge (gene 

annotations) in the neural network results in a network with a better performance than an 

equivalent network without prior knowledge’. 

 

In this experiment, we used GenNet networks identical to the network used in the experiments of 

Supplementary Table 2.1 with gene annotations as prior knowledge embedded in the network.  

The randomly connected networks are obtained by randomly shuffling the connectivity matrix in 

the horizontal direction. In the resulting network, all SNPs are randomly connected to nodes in 

the next layer (formerly known as the gene layer, now uninterpretable). All SNPs are thus 

connected to a random node and these nodes are connected to the output. Aside from this, the 

networks are equal in all aspects, they have the same number of trainable parameters (see 

supplementary 8.1 Gene network) and all networks are trained with GenNet’s default 

hyperparameters (Adam with learning rate of 0.01 and L1 penalty of 0.01). We trained ten 

differently randomly connected networks and compared those to an equal number of GenNet 

gene networks for the Rotterdam Study and Sweden Schizophrenia. Due to limitations in 

resources, number of phenotypes and time constraints we decided to train six network per 

phenotype in the UK biobank (three shuffled and three regular). In total 112 networks were 

trained for this experiment. 

 

Inspecting Supplementary Table 7 shows that embedding prior knowledge in the neural network 

architecture does not lead to significantly better performance for all phenotypes. The results are 

inconclusive. For example, for red hair color we observe a non-significant improvement but this 

is not maintained for predicting black or blond hair color. The randomly connected network 

performs significantly better than a network with prior knowledge for schizophrenia but we find 

the opposite for predicting blue eye color in the Rotterdam color, GenNet significantly 

outperforms a randomly connected network. Thus, in general we cannot conclude that prior 

knowledge neither improves or deteriorates the performance. 
 
Dataset 

(type) 

Trait Subjects & 

phenotype 

Number 

of runs 

AUC 

randomly 

connected 

network 

(val) 

AUC 

randomly 

connected 

network 

(test) 

AUC 

GenNet 

(val) 

AUC  

GenNet (test) 

 

P-value 

Difference 

AUC 

(test) 

 

Class I 

 

Class II 

  

Rotterdam 

(genotype 
array) 

Eye color 4041 

Blue 

2250 

Other 

10 0.754±0.007 0.762±0.007 0.761±0.004 0.771 ± 0.002 6.54 × 10-3 

UK Biobank 

(exome) 

Hair color 4501 

Blond 

 

4518 

Other 

3 0.658±0.004 0.652±0.008 0.623±0.024 0.623±0.020 0.250 

  15684 

Dark 
brown 

 

15918 

Other 

3 0.615±0.011 0.624±0.008 0.608±0.010 0.612±0.006 0.359 
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 1734 

 Red 
 

1727 

Other 

3 0.837±0.021 0.834±0.017 0.907±0.018 0.900±0.022 0.084 

 16208 
Light 

brown 

 

16029 
Other 

3 0.601±0.002 0.605±0.003 0.582±0.005 0.593±0.004 0.089 

  3762 
Black 

3753 
Other 

3 0.831±0.003 0.818±0.004 0.820±0.010 0.800±0.011 0.068 

 Atrial 

fibrillation 

192 

Cases 

194 

Controls 

3 0.513±0.047 0.483±0.063 0.466±0.048 0.554±0.032 0.331 

 Coronary 

Artery 

Disease 

1563 

Cases 

1600 

Controls 

3 0.537±0.009 0.547±0.008 0.522±0.029 0.526±0.007 0.151 

 Diabetes 2557 

Cases 

2555 

Controls 

3 0.544±0.003 0.545±0.002 0.527±0.046 0.524±0.020 0.201 

 Dementia 139 

Cases  

142 

Controls 

3 0.466±0.033 0.492±0.069 0.531±0.069 0.464±0.083 0.677 

 Allergies 10242 
Cases 

10187 
Controls 

3 0.522±0.01 0.513±0.004 0.489±0.007 0.505±0.005 0.283 

 Breast 
cancer 

1070 
Cases 

1082 
Controls 

3 0.529±0.017  0.525±0.015 0.529±0.012 0.539±0.020 0.618 

 Asthma 4229 

Cases 

4214 

Controls 

3 0.534±0.009 0.531±0.005 0.507±0.010 0.51±0.020 0.230 

Sweden 
(exome) 

Schizophre
nia 

4969 
Cases 

 

6245 
Controls  

10 0.755±0.01 0.755±0.006 0.740±0.004 0.737±0.006 2.50 × 10-4 
 

Supplementary Table 7. Overview of the experiments to determine if prior knowledge, aside from 

making the network interpretable, also improves performance. Per phenotype, the mean and 

standard deviations of the AUC over three runs for the UK biobank and ten runs for the other 

two datasets are shown. Significant better performance in a two-sided student’s t-test is 

emphasized.  
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Supplementary Note 9. GenNet architectures 

9.1 All architectures: summary table 

 

Dataset 

(type) 

Number of 

input variants  

Network 

type 

Layer  

N of nodes  

(n connections) 

   Total 

number of 

trainable 

parameters   

Rotterdam 

(genotype 

array) 

113,241 input 

variants 
Gene network Gene layer 

16628  

(129869) 

Out 

1 

(16629) 

   146,498 

Pathway network Gene layer 

16628  
(129869) 

Pathway 1 

337 
(21325) 

Pathway2 

44 
(374)  

Pathway 3 

6 
(50) 

Out 

1 
(7) 

151,625 

GTEx expression networks Gene layer 

16356  
(126716) 

Tissue layer 

53 
(96327) 

Out  

1 
(54) 

  223,097 

ImmGen expression 

networks 

Gene layer 

16628 
(126716) 

Cell layer 

292 
(428174) 

 

Out  

1 
(293) 

 

  555,183 

UK 

Biobank 

(exome) 

6,986,636 input 

variants  

 

 

Gene network Gene layer 

15827 

(6661236) 

 

Out 

1 

(15828) 

 

   6,677,064 

Pathway network 

GTEx expression networks 

Gene layer 

15827  
(6661236) 

 

Pathway 1 

337 
(23550) 

Pathway2 

44 
(374)  

Pathway 6 

(50) 

Out 

1 
(7) 

6,685,217 

GTEx expression networks Gene layer 
21476 

(6668279) 

Tissue layer 
53  

(80249) 

Out  
1 

(54) 

  6,748,582 

ImmGen expression 

networks 

Gene layer 

21476 

(6668279) 

Cell layer 

292 

(316342) 
 

Out  

1 

(293) 

  6,984,914 

Sweden 

(exome 

1,288,701 input 

variants  

 

 

Gene network Gene layer 

21390 

(1310091) 

 

Out  

1 

(21391) 

   1,331,482 

Pathway network 

 

Gene layer 

21390 
(1310091) 

 

Pathway 1 

330 
(30851) 

Pathway2 

44 
(432)  

Pathway 3 

6 
(50) 

Out 

1 
(7) 

1,341,431 

GTEx brain expression 

networks 

Gene layer 
21390 

(1310091) 

Gene layer 
23765 

(1312466) 

Tissue 
layer 

13 

(27253) 

Out  
1 

(14) 

 1,339,733 

GTEx expression networks Gene layer 

21390 

(1310091) 

Tissue layer 

53 

(109458) 

Out  

1 

(54) 

  1,421,978 
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  ImmGen expression 

networks 

Gene layer 
23765 

(1312466) 

Tissue layer 
292 

(468421) 

Out  
1 

(293) 

  1,781,180 

Supplementary Table 8. Overview of the architectures used in this study. With the number of 

nodes in each layer and the number of weights/connections between brackets. The last column 

contains the number of trainable parameters for the architecture. The networks are phenotype 

independent, but do differ per dataset since each dataset contains different input variants. 

9.2 Prior knowledge 

Gene Layer: all SNPs are annotated using Annovar (see 9.3 and bibliography). 3 Using regular 

expression, all genes are filtered and SNPs without gene annotations are dropped. The complete 

pipeline can be found in:  

 

https://github.com/ArnovanHilten/GenNet/blob/master/jupyter_notebooks/2_Define_con

nection_masks.ipynb  

 

Pathway layer: All genes used in the gene layer are annotated using GeneSCF26 and connected 

to their subsequent pathways using the KEGG website 

(https://www.genome.jp/kegg/pathway.html). 

 

ImmGen and GTEx: First we obtained the t-statistic matrices from Finucane et al. (2018) 5. In 

their work Finucane et al computed for each gene a t-statistic for specific expression in the focal 

tissue. The 10% of genes with the highest t-statistic were assigned to the gene set corresponding 

to the focal tissue. The 10% threshold was chosen because it gave the most significant p-values 

in two of their datasets. In their evaluation of this parameter, they showed that their choice was 

valid, results did not change when using a 5% or 20% threshold (their supplementary figures 2a-

c). Following their approach, we connected for each tissue the genes in the top 10% t-statistic tot 

that tissue. 

9.3 URLS 

Trained GenNet architectures deposit:  

https://github.com/ArnovanHilten/GenNet_ModelZoo  

Software 

Annovar 

 https://annovar.openbioinformatics.org/en/latest/ (free to use, sign-up required) 

GeneSCF: 

 https://github.com/genescf 

Data 

https://github.com/ArnovanHilten/GenNet/blob/master/jupyter_notebooks/2_Define_connection_masks.ipynb
https://github.com/ArnovanHilten/GenNet/blob/master/jupyter_notebooks/2_Define_connection_masks.ipynb
https://www.genome.jp/kegg/pathway.html
https://github.com/ArnovanHilten/GenNet_ModelZoo
https://annovar.openbioinformatics.org/en/latest/
https://github.com/genescf
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ImmGen layer: 

https://alkesgroup.broadinstitute.org/LDSCORE/LDSC_SEG_ldscores/tstats/ImmGen.tst

at.tsv  

GTEx expression layer: 

https://alkesgroup.broadinstitute.org/LDSCORE/LDSC_SEG_ldscores/tstats/GTEx.tstat.t

sv  

Brain cell expression layer: 

https://alkesgroup.broadinstitute.org/LDSCORE/LDSC_SEG_ldscores/tstats/GTEx_brain

.tstat.tsv  

scRNA-seq data (FUMA) layer:  

https://github.com/Kyoko-wtnb/FUMA_scRNA_data 

  

https://alkesgroup.broadinstitute.org/LDSCORE/LDSC_SEG_ldscores/tstats/ImmGen.tstat.tsv
https://alkesgroup.broadinstitute.org/LDSCORE/LDSC_SEG_ldscores/tstats/ImmGen.tstat.tsv
https://alkesgroup.broadinstitute.org/LDSCORE/LDSC_SEG_ldscores/tstats/GTEx.tstat.tsv
https://alkesgroup.broadinstitute.org/LDSCORE/LDSC_SEG_ldscores/tstats/GTEx.tstat.tsv
https://alkesgroup.broadinstitute.org/LDSCORE/LDSC_SEG_ldscores/tstats/GTEx_brain.tstat.tsv
https://alkesgroup.broadinstitute.org/LDSCORE/LDSC_SEG_ldscores/tstats/GTEx_brain.tstat.tsv
https://github.com/Kyoko-wtnb/FUMA_scRNA_data
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Supplementary Method 10. Regression 

For regression tasks, mean squared error is used as a loss function in combination with ReLu 

activations. Using the UK biobank WES data, the explained variance for height was 31% using 

linear regression, whereas the network achieved 9% explained variance. We only tested the 

technical implementation, without any optimization. We expect the network to outperform or at 

least match linear regression with optimization, since the network has more modelling 

capabilities than linear regression. In the framework the type of task (regression or classification) 

is automatically determined using the phenotype labels.  
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