iScience, Volume 24

Supplemental information

DDX3 modulates the tumor microenvironment

via its role in endoplasmic

reticulum-associated translation

Hung-Hsi Chen, Hsin-I Yu, Rudy Rudy, Sim-Lin Lim, Yi-Fen Chen, Shu-Hsing Wu, Shu-Chun Lin, Muh-Hwa Yang, and Woan-Yuh Tarn

SUPPLEMENTARY TABLES

Table S1. List of the Top Growth Factors or Cytokines That Were Down-Re	gulated
by DDX3 Knockdown (Related to Figure 1)	-

Regulator	RIBOseq Log2	q Log2 Molecular A		z-score	p-value of	TE Log2
	(siD#1/siC)	Туре	State		overlap	(siD#1/siC)
AREG	-3.1518	Growth factor	Inhibited	-2.359	1.75E-04	-0.80479
NRG1	-2.21476	Growth factor	Inhibited	-3.087	7.34E-10	-0.53487
EDN1	-2.08081	Cytokine	Inhibited	-2.945	1.64E-05	-0.82668
IL1A	-2.05664	Cytokine	Inhibited	-2.389	4.93E-03	-0.71868
IL1B	-1.84014	Cytokine	Inhibited	-3.249	9.45E-06	-0.70392
TGFA	-1.31945	Growth factor	Inhibited	-2.574	5.49E-04	-1.37732

Table S2. Identification of DDX3-Interacting Partners by Using Immunoprecipitation-Mass Spectrometry (Related to Figure 5) Top 10 candidates in each protein bands (Figure S5) are shown.

Band **TOP10 non-redundant Gene symbol** 1 ZC3H18, ATXN2, EIF3A, THRAP3, PELP1, DCD, MAP7D1, BCLAF1, TJP2, TJP1 2 LARP4, SRPK2, EIF3C, DDX54, SRPK1, YTHDC1, ILF3, NOM1, EIF3B, SND1 3 NUFIP2, EIF4B, ZC3HAV1, ZFP91, FXR2, LCA5, NUMB, SPTY2D1, TDRD3, MAP3K20 4 DDX3X, SRP68, SRP72, HSPA8, DDX17, PABPC1, DDX5, HSPA5, FXR1, DDX1 5 RTCB, TUBB, TUBB4B, IMPDH2, TUBB4A, TUBB3, TUBA1B, SERBP1, TUBA1A, TUBB6 6 RPL4, RPL3, YBX1, BYSL, RBM34, EIF3E, LUC7L2, YBX3, FAM98B, TUBB2A 7 HNRNPA2B1, NPM1, EIF3I, GAPDH, RPSA, HNRNPA3, APOBEC3A, FYTTD1, RPL15, RPL34 RPL5, HNRNPA1, RPLP0, PWP1, CCDC59, CCDC137, RACK1, TRA2B, ABT1, FAM60A 8 9 PYCR1, MRPS18B, UTP23, RBM7, TAF15, RPL22, HIST1H1C, FGFBP1, PCDHGC4, C6orf136 RPL8, RPL7, RPS6, RPL7A, RPS3A, RPS4X, RPS2, CHTOP, ALYREF, RPS3 10 11 RPL18, RPS8, RPL10, RPL13, RPL19, RPL9, RPL14, RPL17, PYCR2, RPL13A RPL24, RPS5, RPL18A, RPL11, RPL21, RPL29, RPL23A, RPS9, RPS7, RPL6 12 13 RPL26, RPL28, RPL26L1, RPL32, RPS10, RPS13, RPL12, RPS11, RPL27A, RPS14

Table S3. GO Analysis of Potential DDX3-Interacting Partners Identified by Immunoprecipitation-Mass Spectrometry (Related to Figure 5)

Dislagical success (CO)	Oheermood	Declement	Develope
Biological process (GO)	Observed	Background	P value
	count	count	
Translational initiation	78	142	8.37E-70
Translation	99	362	1.34E-66
SRP-dependent cotranslational protein targeting to membrane	64	92	5.69E-62
mRNA metabolic process	114	667	3.64E-59
Nuclear-transcribed mRNA catabolic process, nonsense-mediated	65	118	1.94E-58
decay			
Peptide metabolic process	101	497	4.69E-58
Protein localization to endoplasmic reticulum	65	123	1.24E-57
Amide biosynthetic process	100	495	2.71E-57
Nuclear-transcribed mRNA catabolic process	71	191	7.43E-55
Ribonucleoprotein complex biogenesis	90	409	6.51E-54

Table S4. GO Analysis of Potential DDX3-Interacting Partners Identified by SILAC (Related to Figure 5)

Biological process (GO)	Observed	Background	P value
	count	count	
Translational initiation	45	142	9.23E-53
Translation	49	362	2.51E-42
SRP-dependent cotranslational protein targeting to membrane	34	92	2.84E-41
Amide biosynthetic process	52	495	1.37E-40
Peptide metabolic process	52	497	1.42E-40
Nuclear-transcribed mRNA catabolic process, nonsense- mediated decay	33	118	4.44E-37
Cellular amide metabolic process	55	732	2.21E-36
Establishment of protein localization to organelle	43	396	1.13E-33
mRNA catabolic process	35	207	6.86E-33
Nuclear-transcribed mRNA catabolic process	34	191	1.40E-32

Table S5. List of shRNA Target Sequences (Related to STAR Methods)

shRNA	Sense target sequence							
shC	AACUUUCGCUUAUUGGACUAA							
shDDX3	ACAUUGAGCUUACUCGUUAUA							
shAREG	GACCUCAAUGACACCUACUCU							
shSRP9	GGCAUUCUGAUGGGAACUUGU							
shSRP14	GCACAGUAAAGGGCAUACAUU							
shSRP19	GAAGGCGAAUCCCCAUAAGUA							
shSRP54	GGUAUUGAAUGCUAUGCUAAA							
shSRP68	GAGCUUCUGACCGAUAAUAGA							
shSRP72	GCGCUCUCAAGACCGUCAAUA							
shALYREF	GCUUGUCACGUCACAGAUUGA							
shATXN2	GGUUCAUAUACUUACAUCAGU							
shCASC3	GAACGGUGAGCGGCUAAACAA							
shDDX6	GGUAGGGAUAUCUUAGCUAGA							
shDDX42	GUUCGAUCCAUAGCAAGUCAU							
shDDX55	GGAAGAGUCAUACAUCAAUUU							
shEIF2B3	GCAGUAGUGAUGGCAGUAGGU							
shEIF2S3	GCCCUUAGCCGAAGAGUUGAA							
shEIF4E	GGAAACCACCCCUACUCCUAA							
shEIF4H	GAUCUCAGCAUAAGGAGUGUA							
shEIF5	GACGUUGCAAAGGCGCUUAAU							
shEIF5A	GUAAGAUCGUCGAGAUGUCUA							
shEIF5B	GAGAAGAGGAAGAACGUAUAA							
shEIF6	GUGCUUAUCGCCUGGAUCUAU							
shELAVL1	GAUCAAAGACGCCAACUUGUA							
shIGF2BP1 GCUGGCUCAGUAUGGUACAGU								
shLARP4	LARP4 GCCAGAAGCAAGGGCUAGUAA							
shMETAP2	GAAGACUGUUCACGCAAGUUA							
shSYNCRIP	GACGGUGCAUUGGCAGUUCUU							
shYBX3	GAAUAACCCACGGAAAUAUCU							

Primer	Sequence								
SRP9 qPCR F	CTGCCGAGAAGCTTTACCTC								
SRP9 qPCR R	GGGCTTCCTTGGCTACCATA								
SRP14 qPCR F	AGCTAACATGGATGGGCTGA								
SRP14 qPCR R	GTTGTTGCTGCTGTTGTTGG								
SRP19 qPCR F	GAAGACCATCGCAGAGGGAA								
SRP19 qPCR R	GGCTCCCATCTTCCTGTTTG								
SRP54 qPCR F	CAGTACGGATGGTGCCAAAG								
SRP54 qPCR R	GACATGTCGCCACCTTTGAA								
SRP68 qPCR F	CAAGTGCGGTCAGAGAAGTG								
SRP68 qPCR R	ACCGTTCAACCAGAGGCTTA								
SRP72 qPCR F	ATCTCGTCCGAAACTCCCAA								
SRP72 qPCR R	CCAGGTTCTCTGGAACCACT								
hRL qPCR F1	CCAAGCAAGATCATGCGGAA								
hRL qPCR R1	TAACCTCGCCCTTCTCCTTG								
hFL qPCR F1	CTTTCATCTGCCAGGCATCC								
hFL qPCR R1	CACCTTGGCCTCGAAGAATG								
AREG qPCR F	GGTGCTGTCGCTCTTGATAC								
AREG qPCR R	TTCACGCTTCCCAGAGTAGG								
ACTB qPCR F	GAGGCACTCTTCCAGCCTT								
ACTB qPCR R	AAGGTAGTTTCGTGGATGCC								
GAPDH qPCR F	ATGGGTGTGAACCATGAGAA								
GAPDH qPCR R	GTGCTAAGCAGTTGGTGGTG								
IL1B qPCR F	AGCTGAGGAAGATGCTGGTT								
IL1B qPCR R	GTGATCGTACAGGTGCATCG								
IL23A qPCR F	AGTCAGTTCTGCTTGCAAAGG								
IL23A qPCR R	AGTAGGGAGGCATGAAGCTG								
MAF qPCR F	CTTGCACTTTGCACAGAGGT								
MAF qPCR R	CCTCTTCTGCTTGGCTCTCT								
VEGFA qPCR F	ACAAGATCCGCAGACGTGTA								
VEGFA qPCR R	TCACATCTGCAAGTACGTTCG								
EDN1 qPCR F	AGACAAACCAGGTCGGAGAC								
EDN1 qPCR R	TGTGGGTCACATAACGCTCT								
NRG1 qPCR F	AACGTCATCTCCAGTGAGCA								
NRG1 qPCR R	GATGCTTTCAGTGTGTCCGT								
TGFA qPCR F	CTGCCATTCTGGGTACGTTG								
TGFA qPCR R	GTGATGGCCTGCTTCTTCTG								
XBP1 qPCR F	CAGACTACGTGCACCTCTGC								
XBP1 qPCR R	CTGGGTCCAAGTTGTCCAGAAT								
CD163 qPCR F	AATTCCTCAGGAGGCCATTC								
CD163 qPCR R	TGCTCCATTCAATAGTCCAGG								
IL10 qPCR F	GTGGAGCAGGTGAAGAATGC								
IL10 qPCR R	GCCACCCTGATGTCTCAGTT								

Table S6. List of Primers Used in the Study (Related to STAR Methods)

MRC1 qPCR F	CAGCGCTTGTGATCTTCATT
MRC1 qPCR R	TACCCCTGCTCCTGGTTTTT
IL1A qPCR F	TTCAAGGAGAGCATGGTGGT
IL1A qPCR R	AAAGGTGCTGACCTAGGCTT
IL18 qPCR F	CAGTCTACACAGCTTCGGGA
IL18 qPCR R	TGCCACAAAGTTGATGCAAT
IL12B qPCR F	GTTTCAGGGCCATTGGACT
IL12B qPCR R	GAGATGCCAGAAAAACCAGG
HLADR qPCR F	TGGAGTCCCTGTGCTAGGAT
HLADR qPCR R	ATAGAACTCGGCCTGGATGA
NOS2 qPCR F	GCCAAGAACGTGTTCACCAT
NOS2 qPCR R	GCCATCCTCACAGGAGAGTT
CDH1 qPCR F	GCGTGTGTGACTGTGAAGGG
CDH1 qPCR R	GTCCCGGGTGTCATCCTCTG
NheI+AREG 5' UTR F	TAT GCTAGC AGACGTTCGCACACCTGGGT
NheI+AREG 5' UTR R	TAT GCTAGC ATTGGTCCTTCGCAGCGGCG
XhoI+AREG 3' UTR F	TAT CTCGAG CTGAAGATAAAATTACAGGATATC
NotI+AREG 3' UTR R	TAT GCGGCCGC TTTGGTTAAAAAAGTTTAATGAGC
HindIII+AREG CDS F	TAT AAGCTT ACG ATGAGAGCCCCGCTGCTACC
BamHI+AREG CDS R	TAT GGATCC TGCTATAGCATGTACATTTCCA

SUPPLEMENTARY FIGURE LEGENDS

Α															в	_	5	siD	_
Γ	Positive	Positive	Negative	Negative	Blank	ADIPOQ	AGRP	ANGPT2	AREG	AXL	FGF2	NGF	BTC	CCL28		siC #	‡1 ;	#2 #	3
h	CCL27	TYRO3	EGFR	CXCL5	FAS	FGF4	FGF9	CSF3	TNFSF18	TNFRSF18	CXCL1/2/3	CXCL1	CCL16	HGF		-	10.5	1.35	DDX3
t	CAM1	ICAM3	IGFBP3	IGFBP6	IGF1	L1RL1	L1R1	L11	L12B	L12A	L17A	L2RA	L6R	CXCL8		10		in the	AREG
Ī	CXCL11	XCL1	MIF	CCL3	CCL4	MIP	MST1	NTF4	TNFRSF11	OSM	PIGF	IL6ST	TNFRSF1B	TNFRSF1A				2	NRG1
	CCL25	TIMP1	TIMP2	THPO	TNFRSF10	TNFRSF10	PLAUR	VEGFA	VEGFD	Blank	Blank	Blank	Blank	Positive	i	Sea.			IL 1A
																12277		1.20	
																1987 199	-**	1000	
															_ !	Berth (7.4	alle -	IL18
																		2010	VEGFA
																	-		Actin

Figure S1. DDX3 is Required for the Expression of Multiple Growth Factors and Cytokines (Related to Figure 1)

(A) The list of antibodies on the array used in Figure 1B. The proteins of which the signals were downregulated or upregulated by \geq 2-fold (Figure 1B) are marked as blue and red, respectively.

(B) Immunoblotting of growth factors and cytokines as indicated in the lysates of siC-transfected or siD (#1-3)-transfected SAS cells.

Figure S2. The Potential of AREG in Promoting Cell Migration, Angiogenesis and Macrophage Differentiation (Related to Figure 2)

(A) SAS cells were transfected with pP2A (vec) or pP2A-AREG for 72 hours. Bar graph shows relative cell number; average and standard deviation were from three independent experiments. Immunoblotting was performed using antibodies as indicated.

(B) Morphology analysis of cells transfected with shC or shAREG. The scale bar represents 50 μ m.

(C) Representative images of morphology of indicated cells cultured in control or rAREG-containing medium. The scale bar represents 50 µm.

(D) Immunoblotting of the lysates of control or rAREG-treated OSCC cell lines as in panel C with antibodies against indicated proteins.

(E) Angiogenesis assay of EA.hy926 cells cultured in CM of SAS cells treated with 1 μ g/ml of control IgG or anti-AREG.

(F) RT-qPCR analysis of the indicated mRNAs from THP-1 cells cultured in DMEM with or without 50 ng/ml of rAREG.

(G and H) RT-qPCR analysis of indicated mRNAs from THP-1 cells that were cultured in DMEM or CM of siC or siD#1 SAS cells supplemented with PMA; *P < 0.01.

Figure S3. DDX3 Promotes Cell Growth and Migration of Mouse MOC-L1 Cells and Enhances Their Activity in Remodeling Stromal Cells (Related to Figure 3) (A) ELISA assays of mouse AREG protein in CM of indicated lines of mouse OSCC cells.

(B) RT-qPCR analysis of indicated transcripts in THP-1 cells cultured in CM derived from indicated mouse OSCC cells.

(C) Cell growth assays of MOC-L1 cells transfected with siC or siD#1.

(D) Boyden chamber assays of MOC-L1 cells transfected with siC or siD#1. Image and bar graph are analogous to Figure 2B.

(E) Angiogenesis assays of EA.hy296 cells cultured in DMEM or CM of MOC-L1 transfected with siC or siD#1. Image and bar graph are analogous to Figure 2C.(F) RT-qPCR analysis of indicated transcripts in THP-1 cells that were cultured in

DMEM or CM from MOC-L1 transfected with siC or siD#1. Bar graph is analogous to Figure 2D; *P < 0.01.

(G) MOC-L1 cells were transfected with the control or AREG overexpression vector. The number of cells was counted at different time points as indicated. Bar graph shows the relative cell number of mock or AREG-overexpressed cells at different days, representing cell growth. (H) Cell growth assay was performed as in panel G, except that MOC-L1 cells were mock treated or treated with 50 ng/ml rAREG^m.

(I) Cell growth assay was performed in mock or DDX3 knockown-MOC-L1 cells that were treated rAREG^m as in panel H.

Figure S4. DDX3 Knockdown Has no Effect on AREG Reporter mRNA Levels (Related to Figure 4)

(A) RT-qPCR analysis of reporter mRNAs in the *in vivo* translation reactions (Figure 4B).

(B) RNAfold prediction for the secondary structure of AREG 5' UTR.

(C) RT-qPCR analysis of reporter mRNAs in the *in vivo* translation reactions (Figure 4C).

Figure S5. The SRP is a DDX3-Interacting Partner and Has no Effect on AREG 5' UTR-Mediated Translation (Related to Figure 5)

(A) Immunoprecipitation was performed using anti-DDX3 in SAS cell lysates.Coomassie blue staining shows IgG or DDX3 co-immunoprecipitates that were not treated or treated with RNase. Thirteen bands of RNase-treated immunoprecipitates (lane 4) were subjected to mass spectrometry analysis. The top 10 non-redundant proteins in each band are listed in Table S2.

(B) RT-qPCR analysis of reporter mRNAs in the *in vivo* translation reactions (Figure 5B).

(C) *In vivo* translation assay was performed as in Figure 5B except that the AREG 5' UTR reporter was used.

Figure S6. Identification of Membrane-Associated mRNAs (Related to Figure 6) (A and B) Cell fractionation was performed as in Figure 6. RT-qPCR of the indicated transcripts in the membrane and cytosol fractions. Bar graphs shows relative membrane/cytosol ratios.

(C) RT-qPCR analysis of the indicated mRNAs in both the membrane and cytosol fractions of siRNA-transfected SAS cells. Bar graph shows the membrane-to-cytosol ratio of each mRNA in indicated knockdown (siD#1, siSRP54) cells relative to control (siC).