iScience, Volume 24

Supplemental information

A polysaccharide deacetylase enhances bacterial

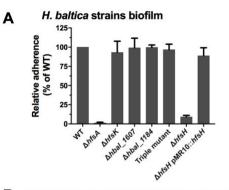
adhesion in high-ionic-strength environments

Nelson K. Chepkwony and Yves V. Brun

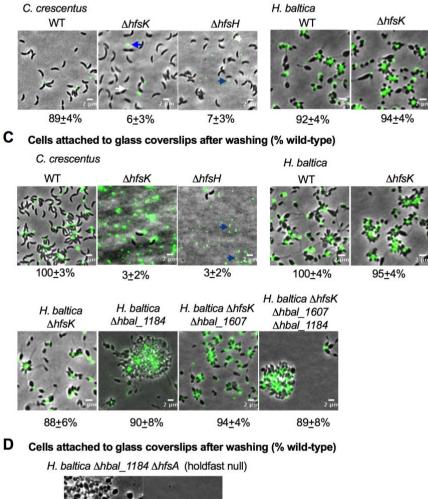
Supplemental information

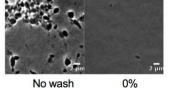
Strain or Plasmid	Description and or genotype	Reference or source
α select	F ⁻ deoR endA1 relA1 gyrA96 hsdR17(r _K ·m _K ⁺) supE44 thi-1 Δ(lacZYA-argFV169) <i>Φ</i> 80 <i>δ</i> lacZΔM15 λ.	Bioline
BL21(DE3)	F^{-} ompT hsdSB (rB-mB-) gal dcm (λ DE3)	New England Biolabs
YB8435	α select /pNPTS139∆ <i>hfsH</i>	This study
YB8432	α select /pNPTS139∆ <i>hfaB</i>	{Chepkwony, 2019 #75}
YB8428	α select/ pMR10::Pcu-hfsH _{HB}	This study
YB9329	α select/ pMR10::Pcu-hfsH _{CC}	This study
YB9328	BL21/pET28a:hfsHcc-His	This study
YB9327 YB8444	BL21/ pET28a:hfsH _{HB} -His	This study This study
YB8443	α select/ pMR10::PhfsE _{CC} -hfsH _{HB} α select/ pMR10::PhfsE _{HB} -hfsH _{CC}	This study
YB9535	α select pMR10::PhsE _{HB} -hhsH _{HB}	This study
YB217	α select/pMR10::Pxylcc-hfsHcc	This study
YB9536	α select/ pMR10::Pxyl _{CC} -hfsH _{HB}	This study
YB9537	α select/ pMR10::Pxyl _{HB} -hfsH _{CC}	This study
YB214	α select/ pMR10::Pxy/ _{HB} -hfsH _{HB}	This study
C. crescentus		
YB135	WT strain CB15	{Poindexter, 1964 #60}
YB9531	WT CB15 pMR10	This study
YB2198	CB15 ∆hfsH	{Toh, 2008 #68}
YB8662	CB15 ∆hfsK	{Sprecher, 2017 #65}
YB4251	CB15 ∆hfaB	{Hardy, 2010 #32}
YB9532	CB15 ∆hfaB pMR10	This study
YB9540	CB15 Δ hfsH pMR10::PhfsEcc-hfsHcc	{Toh, 2008 #68}
YB9534	CB15 Δ hfsH pMR10::PhfsEcc-hfsH _{HB}	This study
YB6887	CB15 ∆hfsH pMR10::Pxylcc-hfsHcc	{Wan, 2013 #71}
YB221	CB15 ∆hfsH pMR10::Pxylcc-hfsH _{HB}	This study
YB9627 YB9533	CB15 Δ hfsH pMR10::Pxylcc-hfsH _{HB} ^{D43A}	This study
YB9538	CB15 ΔhfaB ΔhfsH CB15 ΔhfaB ΔhfsH pMR10::Pxylcc-hfsHcc	This study This study
YB223	CB15 Δ <i>htaB</i> Δ <i>htsH</i> pMR10::P <i>xylcc-htsHcc</i> CB15 Δ <i>htaB</i> Δ <i>htsH</i> pMR10::P <i>xylcc-htsH_{tB}</i>	This study
H. baltica		This study
YB5842	WT strain	{Schlesner, 1990 #61}
YB8438	WT pMR10	{Chepkwony, 2019 #75}
YB8404	YB5842 ∆hfsA	{Chepkwony, 2019 #75}
YB8415	YB5842 ∆hfsH	This study
YB9326	YB5842 D43AhfsH	This study
YB8406	YB5842 ∆hfaB	{Chepkwony, 2019 #75}
YB8412	YB5842	This study
YB8419	YB5842 ∆hbal_hfsK	This study
YB9541	YB5842	This study
YB9542	YB5842 ∆hfsK ∆hbal_1607	This study
YB9543	YB5842 ∆hfsK ∆hbal_1184	This study
YB9544	YB5842 ∆hfsK ∆hbal_1184 ∆hbal_1607	This study
YB8417	YB5842 <i>∆hfaB</i> pMR10	{Chepkwony, 2019 #75}
YB8416	YB5842 AhfaB AhfsH	This study
YB9318	$YB5842 \Delta hfsH pMR10::Pcu-hfsH_{cc}$	This study
YB8422	YB5842 ∆hfsH pMR10::Pcu-hfsH _{HB}	This study
YB8423	$YB5842 \Delta hfsH pMR10::PhfsE_{HB}-hfsH_{CC}$	This study
YB8421	$YB5842 \Delta hfsH pMR10::PhfsE_{HB}-hfsH_{HB}$	This study
YB8420 YB218	YB5842 ΔhfsH pMR10::Pxyl _{HB} -hfsH _{CC} YB5842 ΔhfsH pMR10::Pxyl _{HB} -hfsH _{HB}	This study This study
YB222	YB5842 Δ hfsH pMR10::Pxyl _{HB} -hfsH _B YB5842 Δ hfsH pMR10::Pxyl _{HB} -hfsH _{CC}	This study
YB219	$YB5842 \Delta h faB \Delta h fsH pMR 10:: P xyl_{HB}-h fsH_{HB}$	This study
YB9539	YB5842 $\Delta h faB \Delta h fsH pMR10::PxyHB-h sHBYB5842 \Delta h faB \Delta h fsH pMR10::Pcu-h fsH_{cc}$	This study
YB185	$YB5842 \Delta hfaB \Delta hfsH pMR10::Pcu-hfsH_{HB}$	This study
YB9332	YB5842 ΔhfsH pMR10::Pcu-hfsH _{HB} -X3FLAG	This study
YB9331	YB5842 ∆hfsH pMR10::Pcu-hfsH _{CC} -X3FLAG	This study
Plasmids		1110 01009
pET28a(+)	Vector carrying an N- and C-terminal His-tag/ thrombin/T7-tag for protein overexpression	Novagen
pET28a <i>hfsH_{CC}</i>	Protein overexpression vector that carries the hfsH _{CC}	This study
pET28a <i>hfsH_{HB}</i>	Protein overexpression vector that carries the hfsH _{HB}	This study
pMR10	Mini-RK2 cloning vector; RK2 replication and stabilization functions	R. Roberts and C. Mohr
pMR10::Pcu-hfsH _{HB}	pMR10 containing <i>hfsH_{HB}</i> under copper inducible promoter	This study
pMR10::Pcu-hfsHcc	pMR10 containing <i>hfsH_{cc}</i> under copper inducible promoter	This study
pMR10::PhfsEcc-hfsHcc pMR10::PhfsE _{HB} -hfsHcc	Complementation vector that carries <i>hfsH</i> _{cc} under its native promoter	This study This study
pMR10::PhisE _{HB} -hisH _{CC} pMR10::PhisE _{CC} -hisH _{HB}	Complementation vector that carries hfsH _{CC} under its H. baltica native promoter Complementation vector that carries hfsH _{HB} under its C. crescentus native promoter	This study
pMR10::PhfsE _{HB} -hfsH _{HB}	Complementation vector that carries <i>hfsH_{HB}</i> under its native promoter	This study
pMR10::Pcu-hfsH _{HB} -X3FLAG	Triple FLAG tagged HfsH _{HB}	This study
pMR10::Pcu-hfsHcc-X3FLAG	Triple FLAG tagged HfsHcc	This study
pNPTS139	pLitmus 39 derivative, or/T, sacB, Kan ^r	M.RK Alley
pNPTS139∆ <i>hfsH</i>	pNPTS139 containing 500 bp fragments upstream and downstream of hfsH	This study
pNPTS139∆ <i>hfaB</i>	pNPTS139 containing 500 bp fragments upstream and downstream of hfaB	{Chepkwony, 2019 #75}

TABLE S1: Bacterial strains and plasmids, related to STAR Methods

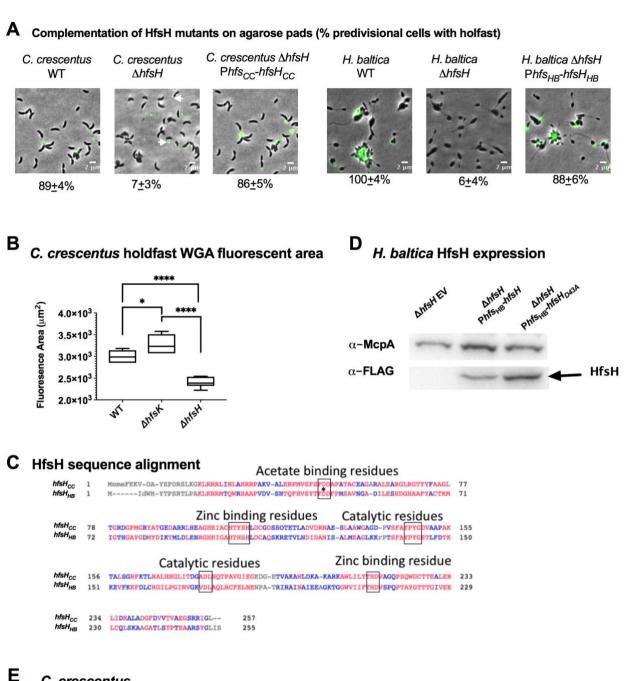

Primers	Sequence (5'→3')	Description	
hbal <i>hfsH</i> pupF	GCCAAGCTTCTCTGCAGGATGGGCCCCCAGAATATGCTTTGCATCGG	5' region for deletion of hfsH	
hbal <i>hfsH</i> upR	CAATTCTTCGACGATCCCAGTGTTGCTCACATCAACTGGC		
hbal <i>hfsH</i> dwF	GCCAGTTGATGTGAGCAACACTGGGATCGTCGAAGAATTG	3' region for deletion of hfsH	
hbal <i>hfsH</i> pdwR	GCGAATTCGTGGATCCAGATCATCAAGGAAAGCATTTCCACAGCCAAAAG		
PhfsE _{HB} _hfsH _{HB} upF	CCATGATTACGCCAAGCTTCCATGGGATGGCCATACAAATATAAGCGGTGCTC	Complementation of hfsH using Phfs	
PhfsE _{HB} _hfsH _{HB} upR	GAGGGTGTGTAATGCCAATCAATCATTCACGAAGAACACAGAGTGTCTC	promoter from H. baltica	
PhfsE _{HB} _hfsH _{HB} dwF	GAGACACTCTGTGTTCTTCGTGAATGATTGATTGGCATTACACACCCTC	·	
PhfsE _{HB} _hfsH _{HB} dwR	CTAGAGCTCTGCAGGAGATCTCGATTCATGAGATTAGGCCGTAGCTTCTTG		
Pcu_hfsHnBupF CCATGATTACGCCAAGCTTCCATGGGATTATACACGGATCGCACGCCTG		Complementation of hfsH _{HB} using	
Pcu hfsH _{HB} upR	GGGTGTGTAATGCCAATCAATCATGATGTTCTCCTTCTTGCGTTGGAC	copper promoter Pcu from H. baltica	
Pcu hfsH _{HB} dwF	GTCCAACGCAAGAAGGAGAACATCATGATTGATTGGCATTACACACCC		
Pcu hfsH _{HB} dwR	CTAGAGCTCTGCAGGAGATCTCGATAAAGCAGCATCCGTCATATTCAGAATGC		
PhisE _{HB_} hisH _{CC} upF CCATGATTACGCCAAGCTTCCATGGGATGGCCATACAAATATAAGCGGTGCTC		Cross complementation of hfsHcc	
PhfsE _{HB} hfsH _{CC} upR	CCGCTGCTGTGATGATGATGATGATGATGATGCATTCACGAAGAAGACACAGAGTGTCTC using <i>H. baltica</i> prom		
PhfsE _{HB} _hfsH _{CC} dwF	GAGACACTCTGTGTTCTTCGTGAATGCATCATCATCATCATCACAGCAGCGG		
PhfsE _{HB} hfsH _{cc} dwR	CCATGATTACGCCAAGCTTCCATGGGATTTAGAGCCCGATCCGCCGCGAGCC		
Pcu_hfsHccupF	CTAGAGCTCTGCAGGAGATCTCGATGGAAAGCGACAATAATCCAGTGTTCGAG	Cross complementation of hfsHcc	
Pcu hfsHccupR	GACCTTCTCGAATTCCATCGGCATCCCCCACATGCAGATTGCCATTGTC	using <i>H. baltica</i> copper promoter	
Pcu_hfsHccdwF	GACAATGGCAATCTGCATGTGGGGGGATGCCGATGGAATTCGAGAAGGTC		
Pcu hfsH _{CC} dwR	CCATGATTACGCCAAGCTTCCATGGGATCAGTGGTGGTGGTGGTGGTGGTGCTCG		
Pxly _{HB} _hfsH _{HB} upF	CCATGATTACGCCAAGCTTCCATGGGATGCTCGGAAACAGCCGCCAATAC	Complementation of hfsH _{HB} using	
P <i>xly_{HB} hfsH</i> _{HB} upR	GGGTGTGTAATGCCAATCAATCATTATATCAATTCACTCCACTATTTCATG	xylose promoter from <i>H. baltica</i> for overexpression	
P <i>xly_{HB}_hfsH</i> _{HB} dwF	CATGAAATAGTGGAGTGAATTGATATAATGATTGATTGGCATTACACACCCC		
P <i>xly_{HB}_hfsH</i> _{HB} dwR	CTAGAGCTCTGCAGGAGATCTCGATAAAGCAGCAGCATCCGTCATATTCAGAATGC		
PXI/YRE_INSPREDUNK CTAGAGGCTCTGCAGGGAGATCTCGATAAAGCAGGCATCCGGTGATATTCAGAATGC Pxl/ycc_hfsHccupF CCATGATTACGCCAAGGCTTCCATGGGATACCAGGCCACGGGCCCGTGCCGGGAT		Complementation of hfsHcc using	
Pxlycc_hfsHccupR	GCTGCTGTGATGATGATGATGATGCATGGCGTCGTCTCCCCCAAAACTCGAGCGTCT	xylose promoter from C. crescentus for	
Pxly _{cc_} hfsH _{cc} dwF	GACGCTCGAGTTTTGGGGAGACGACGACGCCATGCATCATCATCATCATCACAGCAGC	overexpression	
Pxlycc_hfsHccdwR	ATGATTACGCCAAGCTTCCATGGGATTTAGAGCCCGATCCGCGCGAGCC		
Pxly _{HB} hfsHccupF	CCATGATTACGCCAAGCTTCCATGGGATGCTCGGAAACAGCCGCCAATAC	Cross complementation of hfsHcc	
Pxly _{HB} hfsH _{ccupR}	CCGCTGCTGCTGCATGATGATGATGATGCATTATATCAATTCACTCCCACTATTCATG using <i>H. ballica xylu</i>		
Pxly _{HB} hfsH _{cc} dwF	CATGAAATAGTGGAGTGAATGATGATGATGATGATGATGAT	overexpression	
Pxly _{HB} _hfsH _{cc} dwR	CATGAATAGTGGAGTGAATGATATGCATGATCATCATCATCACAGCAGC		
Pxlycc hfsH _{HB} upF	CCATGATTACGCCAAGCTTCCATGGGATACCAGCCCGAGCCCGTGCCGGGAGCC	Cross complementation of hfsH _{HE}	
Pxly _{CC} _hfsH _{HB} upR	GGGTGTGTAATGCCAATCATCATCGCGTCGTCTCCCCAAAACTCGAGCGTCTG	using C. crescentus xylose promoter for overexpression	
Pxly _{CC} hfsH _{HB} dwF	CAGACGCTCGAGTTTTGGGGAGACGACGACGCCATGATTGAT		
Pxly _{CC} _hfsH _{HB} dwP	CTAGAGGCTCTGCAGGAGACTCTCGATAAAGCAGCATCGTCATATTCAGAACGCCC		
PXIVCC_IIISHHBUWK		5' region for deletion of hfsK	
hbal <i>hfsK</i> pupF	GTGCTAGCGAATTCTGGATCCACGATATTCAATTCAATCAA	5 region for deletion of htsk	
hbal <i>hfsK</i> upR	CAGAAATATTTTGCTTCTGGTTTACAGAATGCTCTTCTAACTTCGCAAAC GTTTGCGAAGTTAGAAGAGCATTCTGTAAACCAGAAGCAAAATATTTCTG	3' region for deletion of hfsK	
hbal <i>hfsK</i> dwF		3 region for deletion of hisk	
hbal <i>hfsK</i> pdwR	GGCGCCAGAAAGCTTCCTGCAGGATCTCAAACCTTCACAAAGGGAGTTGATTTG	5' marian fan deletien of hhal 1101	
hbal1184pupF	GCCAAGCTTCTCTGCAGGATATGCAGTTTGAAGTTGTGTCTCCCAGAAG	5' region for deletion of <i>hbal_1184</i>	
hbal1184upR	CTTAAAAAAATGATCCCAACCGACAAGTCATACCCTACAGACAAATC	O'region for deletion of the 1 4404	
hbal1184dwF	GATTTGTCTGTAGGGTATGACTTGTCGGTTGGGATCATTTTTTTAAG	3' region for deletion of <i>hbal_1184</i>	
hbal1184pdwR	GCGAATTCGTGGATCCAGATCGCTGTTTCAATCGCTCTTGGTCG	5' region for deletion of <i>hbal_1607</i>	
hbal 1607pupF	GCCAAGCTTCTCTGCAGGATGTGGTTTTATTTGTTGCAAAAGATATTTC		
hbal 1607upR	GAGGTGAGAGATACAAAATCTTCCGACTAAGCCGCCGAAAG	3' region for deletion of hbal_1607	
hbal 1607dwF	CTTTCGGCGGCTTAGTCGGAAGATTTTGTATCTCTCACCTC		
hbal 1607pdwR	GCGAATTCGTGGATCCAGATGTGATCTCAATCCAACTATCTG		
FlgHfsH _{HB} UpF	GCGCCTTAATTAATATGCATGGTACATGATTGATTGGCATTACACACCCTC	Tagging HfsH _{HB} with 3XFLAG epitope	
FlghfsH _{HB} dwR	CCGGAGCTCGAGATCTTAAGGTACCTGAGATTAGGCCGTAGCTTCTTGCTG	tag	
Pcu_HfsH _{HB} UpR	GAGGGTGTGTAATGCCAATCAATCATGATGTTCTCCTTCTTGCGTTGGACG		
P <i>cu</i> HfsH _{HB} DwF	CGTCCAACGCAAGAAGGAGAACATCATGATTGATTGGCATTACACACCCTC		
flgHfsHccupF	GCGCCTTAATTAATATGCATGGTACATGCCGATGGAATTCGAGAAGGTCG Tagging HfsHcc with 3XFI		
flgHfsHccdwR	CCGGAGCTCGAGATCTTAAGGTACCGAGCCCGATCCGCCGCGAGCC	tag	
Pcu_hfsHccUpR	CGACCTTCTCGAATTCCATCGGCATGATGTTCTCCTTCTTGCGTTGGACG		
P <i>cu</i> HfsH _{cc} DwF	CGTCCAACGCAAGAAGGAGAACATCATGCCGATGGAATTCGAGAAGGTCG		

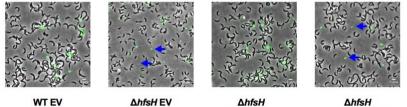
Tables S2: Primers, related to STAR Methods


SUPPORTING FIGURES AND FIGURE LEGENDS


Figure S1. The HfsK acetyltransferase is not required for holdfast adhesion and biofilm

B Predivisional cells with holdfasts on agarose pads (% wild-type)

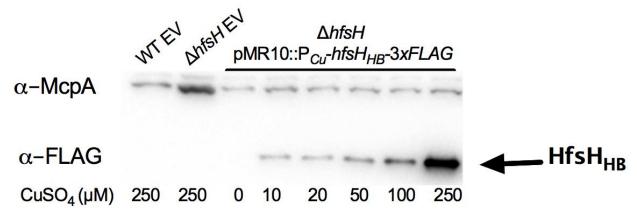



Figure S1. The HfsK acetyltransferase is not required for holdfast adhesion and biofilm formation in *H. baltica*, related to Figure 2

A. Quantification of biofilm formation by the crystal violet assay after incubation for 12 h, expressed as a mean percent of WT crystal violet staining. Holdfast null strain $\Delta hfsA$ was used as a negative control. Error is expressed as the standard error of the mean of three independent biological replicates with four technical replicates each. The triple mutant is H. baltica $\Delta hfsK$ △*hbal_1607* △*hbal_1184.* **B.** Representative images showing merged phase and fluorescence channels of the indicated C. crescentus and H. baltica strains on agarose pads. Holdfast is labeled with AF488-WGA (green). White arrows indicate holdfasts attached to the $\Delta hfsH$ and $\Delta hfsK$ cells, and blue arrows indicate holdfast shed into the medium. Exponential planktonic cultures were used to quantify the percentage of predivisional cells with holdfast. Data are expressed as the mean of three independent biological replicates with four technical replicates each. Error bars represent the standard error of the mean. A total of 3,000 cells were quantified per replicate using MicrobeJ (Images for the WT and hfsH are from Fig. 2). C-D. Representative images showing merged phase and fluorescence channels of C. crescentus and H. baltica strains bound to a glass coverslip. Exponential cultures were incubated on the glass slides for 1 h, washed to remove unbound cells, and holdfast were labelled with AF488-WGA (green). Blue arrows indicate surfacebound holdfasts shed by hfsH mutants. The data showing quantification of cells bound to the glass coverslip are the mean of two biological replicates with five technical replicates each. Error is expressed as the standard error of the mean using MicrobeJ (Images for the WT and hfsH are from Fig. 2).

Figure S2. *H. baltica* and *C. crescentus* holdfast modification enzymes HfsK and HfsH, related to Figure 2.

C. crescentus


Pxyl-hfsH_{HB}

ΔhfsH Pxyl-hfsH_{HB}^{D43A}

Figure S2. *H. baltica* and *C. crescentus* modification enzymes HfsK and HfsH, related to Figure 2.

A. Images showing merged phase and fluorescence channels of the indicated strains of *C*. crescentus (left) and *H. baltica* (right). Holdfast is labeled with AF488-WGA (green). Exponential planktonic cultures were used to quantify the percentage of predivisional cells with holdfast. Data is expressed as the mean of three independent biological replicates with four technical replicates each. Error bars represent the standard error of the mean. B. Box plot showing the area of AF488-WGA fluorescence from holdfast produced by C. crescentus strains. Data is the mean of four biological replicates. The horizontal bar represents the median, the box represents 25th and 75th percentile, and the whiskers represent the full range of data. * and *** represent P values <0.1 and <0.0001 C. Alignment of the C. crescentus and H. baltica HfsH amino acid sequences with conserved carbohydrate esterase family 4 (CE4) motifs indicated by rectangles. The conserved residue involved in acetate binding is indicated with an asterisk (D48 in C. crescentus HfsH and D43 in H. baltica HfsH). D. Western blots of whole cell lysates of the indicated strains showing the expression level of FLAG-tag fusions of HfsH and HfsH^{D43A}. McpA levels were monitored as a loading control. E. Images showing merged phase and fluorescence channels of the indicated strains of C. crescentus and C. crescentus AhfsH crosscomplemented with hfsH from H. baltica: hfsH_{HB} (WT) and hfsH_{HB}^{D43A} (active site mutant). Holdfast is labeled with AF488-WGA (green) and blue arrows indicate shed holdfasts.

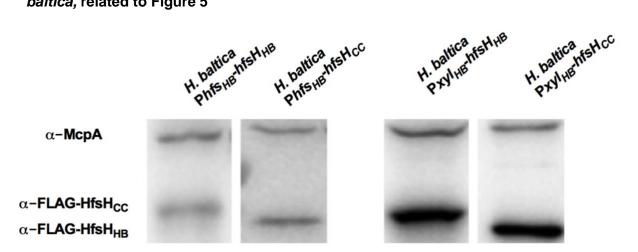
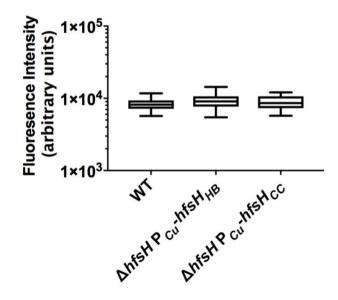

Figure S3. HfsH expression using a copper inducible promoter (P_{Cu}) in *H. baltica*, related to Figure 4

Figure S3. HfsH expression using a copper inducible promoter (P_{Cu}) in *H. baltica,* related to Figure 4

Western blots of whole cell lysates showing the expression levels of FLAG-tagged HfsH under the control of the copper inducible promoter after 4 h of induction with $0 - 250 \mu$ M CuSO₄. McpA levels were monitored as a loading control.

Figure S4. Levels of $HfsH_{HB}$ and $HfsH_{CC}$ expression using P*hfs* and P*xyI* promoters in *H. baltica,* related to Figure 5


Figure S4. Levels of $HfsH_{HB}$ and $HfsH_{CC}$ expression using Phfs and Pxyl promoters in H.

baltica, related to Figure 5

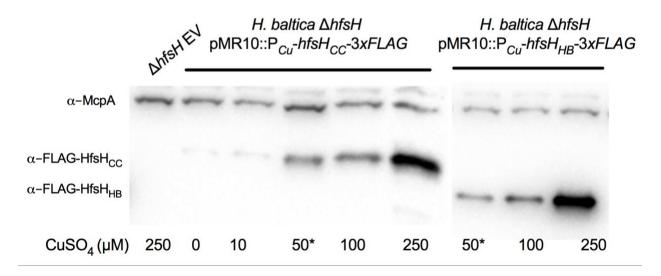

Western blots of whole cell lysates showing the expression levels of FLAG-tagged HfsH_{HB} and HfsH_{CC} under the control of native holdfast synthesis (P*hfs*) and xylose-inducible (P*xyl*) promoters after 4 h of induction with 0.03% xylose. McpA levels were monitored as a loading control.

Figure S5. Cross-complementation of $HfsH_{HB}$ and $HfsH_{CC}$ using the copper inducible promoter, related to Figure 5

A WGA fluorescent intensity of holdfast decetylated by $HfsH_{HB}$ and $HfsH_{CC}$ in *H. baltica* with 50 µM CuSO₄

B HfsH_{CC} and HfsH_{HB} expression using a copper inducible promoter

Figure S5. Cross-complementation of $HfsH_{HB}$ and $HfsH_{CC}$ using the copper inducible promoter, related to Figure 5

A. Box plot showing the integrated intensity of AF488-WGA fluorescence from holdfast produced by *H. baltica* $\Delta hfsH$ pMR10::P_{Cu}-hfsH_{HB} and cross-complemented *H. baltica* $\Delta hfsH$ pMR10::P_{Cu}hfsH_{CC} at 50 µM CuSO₄ induction for 4 h. Data is the mean of four biological replicates. The horizontal bar represents the median, the box represents 25th and 75th percentile, and the whiskers represent the full range of data. **B.** Western blots of whole cell lysates showing the expression level of FLAG-tagged HfsH_{HB} and HfsH_{CC} under the control of the copper inducible promoter after 4 h of induction with 0 – 250 µM CuSO₄. McpA levels were monitored as a loading control. The star indicates HfsH induction at 50 µM CuSO₄, used in comparing *H. baltica* and *C. crescentus* holdfast binding.