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Supplementary Information Text 

The agent-based model 

The ODD description (1) of the agent-based model is as follows.  

Purpose: The purpose of the model is to simulate the spread of AMROs in healthcare systems.  

State variables and scales: The model spans three hierarchical levels in hospital: individual, 
ward, and total population. Model dynamics are defined at the individual level, but outcomes can 
be aggregated to any of the three scales. Individuals are characterized by state variables: 
colonization status (susceptible or colonized), hospitalization time, and the location (ward) where 
the patient resides. Hospitalization time and location data provide information on patient transfer 
within healthcare systems. For each ward, an additional state variable is defined: the force of 
infection attributed to environmental contamination 𝜀. Six parameters are introduced: 1) the 
baseline transmission probability upon contact, 𝛽; 2) the importation probability of colonization, 𝛾; 
3) the baseline environmental contamination coefficient, 𝜃; 4) the mean environmental 
decolonization period, 𝐷; 5) the patient decolonization probability, 𝛼; and 6) the probability that a 
carrier is observed, 𝜌. 

Process overview and scheduling: The model proceeds in daily time steps. Within each time 
step, five modules are processed: transmission between patients staying in the same room, 
environmental contamination within each room, transmission from the environment to patients, 
importation of colonized patients from the community, and observation of carriers. Transmission 
in the community is not explicitly simulated but is reflected by the importation rate of colonization. 

Design concepts: Emergence: HAI outbreaks emerge from the movement of individuals within 
healthcare systems. Interaction: HCW-mediated contacts between patients facilitate transmission 
of AMROs. We model HCW-mediated transmission indirectly by assuming that AMROs can 
spread between all pairs of patients staying in the same room at the same time. Colonization of 
patients may spillover to contaminate the environment resulting in indirect transmission to 
patients admitted to the same room at a later time. Nosocomial transmission interacts with the 
community through the admission and discharge of colonized patients. Stochasticity: 
Transmission, importation, decolonization and laboratory testing are all run stochastically 
according to predefined probabilities. Distributions of outcomes can be generated through 
repeated model simulations. Observation: Carriers of AMR pathogens are observed with a given 
probability. 

Initialization: Each patient in hospital at the beginning of a simulation is randomly assigned as a 
carrier with a probability drawn uniformly from [0, 5%]. The environmental force of infection in 
each room is set to zero initially. If colonization/infection information is available for each ward, 
we can randomly assign carriers in wards with reported colonization/infection. 

Input: We use the daily admission-discharge-transfer record from the Swedish hospital dataset 
to inform patient movement within the model.  

Submodels: The contact network within a collection of hospitals is represented by a time-varying 
graph G constructed using the actual hospitalization records (see an example in Fig. 1C). In this 
contact network, nodes represent uniquely labeled patients, connected by undirected links 
among individuals sharing a room at a given time. Individuals are classified into two categories: 
Susceptible (S) and Colonized (C). Within hospital, transitions between these states are 
governed by model transmission dynamics. Contact transmission: A susceptible individual i 
can be colonized, with probability 𝛽/(𝑛!! − 1), upon contact with a colonized person j who is 
directly linked to i in the contact network G. Here 𝑛!! is the capacity of the room in which patient 𝑖 
resides. We use a frequency dependent transmission model here as the chance of person-to-
person contact decreases in larger rooms (with denominator 𝑛!! − 1, to exclude the focal patient) 
(2). Environmental contamination: Each colonized patient in a given room contributes a daily 
𝜃/𝑛!! increment to the environmental force of infection 𝜀!!. Meanwhile, 𝜀!! decays to 1/𝐷 of its 
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prior value per day. A susceptible individual in room 𝑟" becomes colonized with probability 𝜀!! due 
to environmental contamination. Importation: For new admissions, patients are colonized with a 
probability 𝛾. Observation: Each carrier in hospital is tested and observed with probability 𝜌. 

Master equation derivation 

Denote 𝑆"# and 𝐶"# as the probability of individual 𝑖 being susceptible and colonized on day 𝑡, and 
𝐸!!
#  as the colonization probability of ward 𝑟" at time 𝑡. If the states of neighboring individuals in the 

contact network are independent, the evolution of 𝑆"# and 𝐶"# can be described by a set of ordinary 
differential equations: 
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Here 𝛼 is the patient decolonization rate, 𝛽 is the baseline contact transmission rate, 𝑟" is the 
ward in which patient 𝑖 resides, 𝑛!! is the occupancy of ward 𝑟", 𝛽% is the environmental 
transmission rate, 𝛿 is the baseline environmental colonization rate, 𝐷 is the mean environmental 
decolonization period, and 𝜕𝑖 is the set of patients in contact with patient 𝑖 on day 𝑡. Note in Eqs. 
[S1-S2] we omitted the high-order term – the probability that patient 𝑖 is simultaneously colonized 
by contact and environmental contamination. The environmental force of infection in ward 𝑟" can 
be defined as 𝜀!!

# = 𝛽%𝐸!!
# . Using 𝜀!!

# , Eqs. [S1-S3] can be re-written as 
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Define 𝜃 = 𝛽%𝛿 as the baseline environmental contamination coefficient and discretize Eqs. [S4-
S6] using an interval of Δ𝑡 = 1 day, we obtain Eqs. [1-3] in the main text. Note here 𝜃 is the 
product of the environmental transmission rate 𝛽% (the probability that a susceptible individual is 
colonized by the environment) and the baseline environmental colonization rate 𝛿 (the probability 
that the environment is colonized by a colonized patient). Assuming the units of 𝛽% and 𝛿	are 
1/day, the unit of 𝜃 is therefore (1/day)2. 

The sequential individual-level inference algorithm 

Framework. In the SILI algorithm, an ensemble of system states, which represent the distribution 
of probabilities 𝑆"# and 𝐶"# for all patients, are sequentially adjusted using individual-level 
diagnostic information. At each time 𝑡, the SILI algorithm proceeds with the following three steps 
(see an illustration in Fig. S2). In this example, two patients are observed positive after time 𝑡 
(Fig. S2A).  
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1) Backward temporal propagation: We use the Bayes’ rule to propagate information backward 
and estimate the colonization probability of observed carriers at time 𝑡 (Fig. S2B).  

2) Covariability adjustment: We use cross-ensemble covariability to adjust the colonization 
probability of patients who have contact with observed carriers (Fig. S2C). Covariablity arises 
from the dynamical coupling between neighbors connected in the contact network and can be 
computed directly from the ensemble. 

3) Forward propagation: We integrate the model to time 𝑡 + 1 and propagate information forward 
to the neighbors of patients whose colonization probabilities have been adjusted (Fig. S2D). 

We repeat the three steps sequentially at each time until the most recent observation. Details of 
the above three procedures are reported in the following subsections. 

Backward temporal propagation. We use 𝑋"# ∈ {𝒮, 𝒞} to represent the state of patient 𝑖 at time 𝑡, 
where 𝒮 and 𝒞 are the events of being susceptible and colonized. 𝑋"# = 𝒮 or 𝒞 means patient 𝑖 is 
susceptible or colonized at time 𝑡. Denote the diagnosis records as 𝒟 = RS𝑖6 , 𝑡5

"" , 𝑅U|	𝑘 = 1,⋯𝑛Y, 
where 𝑛 is the number of positive patients, 𝑅 ∈ {𝒮, 𝒞} represents the binary test result, and 𝑡5

"# ≤
𝑡5
"$ ≤ ⋯ ≤ 𝑡5

"%. Here S𝑖6 , 𝑡5
"" , 𝑅U means patient 𝑖6 has test result 𝑅	at time	𝑡5

"". Denote the diagnosis 

records after time 𝑡 as 𝒟7# = RS𝑖6 , 𝑡5
"" , 𝑅U|	𝑡5

"" > 𝑡Y. For each patient 𝑖6, tested after time 𝑡 (i.e., 
𝑡5
"" > 𝑡), we aim to compute his/her colonization probability at time 𝑡: 𝑃(𝑋""

# = 𝒞|𝒟7#).  

Using Bayes’ rule, we have 

𝑃]𝑋""
# = 𝒞^𝒟7#_ ∝ 𝑃]𝑋""

# = 𝒞_𝑃]𝒟7#^𝑋""
# = 𝒞_,			[S7] 

𝑃]𝑋""
# = 𝒮^𝒟7#_ ∝ 𝑃]𝑋""

# = 𝒮_𝑃]𝒟7#^𝑋""
# = 𝒮_.			[S8] 

Here 𝑃]𝑋""
# = 𝒞_ and 𝑃]𝑋""

# = 𝒮_ are the prior probabilities of patient 𝑖6 to be colonized and 
susceptible at time 𝑡, obtained from inference prior to time 𝑡 for each ensemble member. In order 
to compute the posterior, we need to calculate the likelihoods 𝑃(𝒟7#|𝑋""

# = 𝒞) and 𝑃(𝒟7#|𝑋""
# = 𝒮). 

We provide details of the likelihood computation here. Suppose 𝑖68 is the first patient diagnosed 
positive after time 𝑡.  We re-write 𝒟7# in the following form: 𝒟7# =
RS𝑖68, 𝑡5

""& , 𝑅U, S𝑖6&9:, 𝑡5
""&'# , 𝑅U ,⋯ , ]𝑖), 𝑡5

"% , 𝑅_Y = R𝑋""&
#( = 𝑅,𝑋""&9:

#( = 𝑅,⋯ , 𝑋"%
#( = 𝑅Y. Note here we 

drop the superscript of 𝑡5 for notational simplicity. The likelihood 𝑃]𝒟7#^𝑋""
# = 𝒞_ can be 

presented as a product of multiple conditional probabilities: 

𝑃]𝒟7#^𝑋""
# = 𝒞_ = 𝑃 cS𝑋""&

#( = 𝑅,𝑋""&'#
#( = 𝑅,⋯ , 𝑋"%

#( = 𝑅U d𝑋""
# = 𝒞e

= 𝑃 S𝑋""&
#( = 𝑅f𝑋""

# = 𝒞U𝑃 S𝑋""&'#
#( = 𝑅f𝑋""&

#( = 𝑅,𝑋""
# = 𝒞U ×⋯

× 𝑃 S𝑋"%
#( = 𝑅f𝑋"%)#

#( = 𝑅,⋯ , 𝑋""&
#( = 𝑅,𝑋""

# = 𝒞U.		[S9]	 

We compute the likelihood using Eqs. [1-3] in the main text. Specifically, at time 𝑡, we set 
𝑃]𝑋""

# = 𝒞_ = 1 in the estimated model state for each ensemble member (i.e., set 𝐶""
# = 1 and 

𝑆""
# = 0). We then integrate Eqs. [1-3] until the next diagnosis at time 𝑡5 for 𝑖6&, and calculate 
𝑃 S𝑋""&

#( = 𝑅f𝑋""
# = 𝒞U, the first term of r.h.s. of Eq. [S9], using the master equations. Note the 

characteristics of laboratory tests can be incorporated into the likelihood to reflect imperfect 
observations. Specifically, for tests with 100% sensitivity and 100% specificity, 
𝑃 S𝑋""&

#( = 𝑅f𝑋""
# = 𝒞U can be directedly computed using Eqs. [1-3]. For imperfect tests with 𝑎% 

sensitivity and 𝑏% specificity, we multiply 𝑃 S𝑋""&
#( = 𝑅f𝑋""

# = 𝒞U obtained from Eqs. [1-3] by 𝑎% if 
𝑅 = 𝒞 and 𝑏% if 𝑅 = 𝒮. For this study, we assumed 100% sensitivity and specificity, as 
information on test accuracy was not available. 
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At time 𝑡5 for 𝑖6&, we set 𝑃 S𝑋""&
#( = 𝑅U = 1, integrate Eqs. [1-3] until the next diagnosis time 𝑡5 for 

𝑖6&9:, and calculate 𝑃 S𝑋""&'#
#( = 𝑅f𝑋""&

#( = 𝑅,𝑋""
# = 𝒞U, the second term of the r.h.s. of Eq. [S9]. We 

repeat this process until the last diagnosis time 𝑡5 for 𝑖), and calculate 
𝑃 S𝑋"%

#( = 𝑅f𝑋"%)#
#( = 𝑅,⋯ , 𝑋""&

#( = 𝑅,𝑋""
# = 𝒞U, the last term of the r.h.s. of Eq. [S9]. The likelihood 

𝑃]𝒟7#^𝑋""
# = 𝒞_ is computed as the product of those conditional probabilities. The likelihood 

𝑃(𝒟7#|𝑋""
# = 𝒮) can be computed similarly.  

For a small system with a short observation time window, the likelihoods can be computed 
separately for each ensemble member. However, for a large system with a long observation time 
window, computing likelihoods for all ensemble members could be computationally expensive. In 
our implementation, we used the ensemble mean state to compute likelihoods, which are the 
same across ensemble, but allowed the priors 𝑃]𝑋""

# = 𝒞_ and 𝑃]𝑋""
# = 𝒮_ to vary for each 

ensemble member. This approximation yields satisfactory performance in both synthetic tests and 
real-world application to the outbreak in Swedish healthcare facilities. 

Finally, we can compute 𝑃(𝑋""
# = 𝒞|𝒟7#) using normalization: 

𝑃]𝑋""
# = 𝒞^𝒟7#_ + 𝑃]𝑋""

# = 𝒮^𝒟7#_ = 1.		[S10] 

In the above process, we propagate information from observations made after time 𝑡 (i.e., 𝒟7#) 
backward to estimate the colonization probability of observed carriers at time 𝑡.  

Covariability adjustment. At time 𝑡, we use cross-ensemble variability to update the colonization 
probability of patients who have contacts with carriers observed after time 𝑡. Through the 
dynamical coupling between two neighbors in the contact network, information on the colonization 
probability of one patient can inform the colonization probability of his/her close contacts. For 
instance, if one patient is a confirmed carrier, his/her neighbor in the contact network should have 
a higher colonization probability. Such dynamical coupling can be quantified using cross-
ensemble covariability.  

Denote the ensembles of the prior and posterior colonization probability for an observed carrier 𝑖 
as {𝐶"#};!"'! and {𝐶"#};'1#, where {𝐶"#};'1# is estimated using backward propagation. For a patient 𝑗 
who is connected to patient 𝑖 at time 𝑡, denote the ensemble of the prior colonization probability 
as n𝐶+#o;!"'!. The cross-ensemble covariability is computed as 𝑐𝑜𝑣 S{𝐶"#};!"'! , n𝐶+#o;!"'!U, the 
covariance between {𝐶"#};!"'! and 	n𝐶+#o;!"'!. The posterior colonization probability for patient 𝑗 is 
updated through: 

n𝐶+#o;'1#
ℓ = n𝐶+#o;!"'!

ℓ +
𝑐𝑜𝑣 S{𝐶"#};!"'! , n𝐶+#o;!"'!U ]{𝐶"

#};'1#ℓ − {𝐶"#};!"'!ℓ _

𝑣𝑎𝑟 Sn𝐶+#o;!"'!U
.			[S11] 

Here n𝐶+#o;'1#
ℓ  is the ℓth member of the posterior ensemble	n𝐶+#o;'1#, n𝐶+

#o
;!"'!

ℓ  is the ℓth member of 

the prior ensemble n𝐶+#o;!"'!, and 𝑣𝑎𝑟 Sn𝐶+#o;!"'!U is the variance of the prior ensemble n𝐶+#o;!"'!. 
This update scheme is routinely used in the ensemble adjustment Kalman filter (3, 4). The 
probability to be susceptible is updated by 𝑆+# = 1 − 𝐶+#. 

Forward propagation. We integrate the updated model state from time 𝑡 to time 𝑡 + 1 using Eqs. 
[1-3]. Model integration propagates the updated information (i.e., posteriors) forward in time and 
through the system dynamics transmission to the neighbors of patients whose colonization 
probabilities have been updated may occur. 

The inference algorithm is computationally efficient. The backward temporal propagation—the 
most computationally intensive component of the algorithm—is performed only for the sparsely 
observed cases. For the present synthetic tests in a 52-week period, integration of the full model-
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inference system can be completed on a regular laptop within two hours. Further, computation of 
the likelihood, the most computationally intensive step of the inference algorithm, could be 
paralleled to shorten run times. As a result, the algorithm can be potentially scaled up for 
application to large-scale contact networks. 

We tested a second version of the inference algorithm in which the backward temporal 
propagation is performed only once upon the first appearance of a patient in hospital (as opposed 
to adjusting the states of observed cases every time step sequentially). This implementation 
substantially reduces the computation cost of the algorithm. However, while the inference yielded 
similar accuracy for synthetic outbreaks, the performance for the real-world data in Fig. 3 
degraded compared to the inference with sequential adjustment. There are several advantages 
using sequential adjustment in real-world applications. First, the likelihoods in the backward 
temporal propagation can be better estimated when information is propagated to other 
unobserved nodes; update of the colonization probability of observed cases based on the most 
recent estimates is therefore more accurate. Second, the agent-based model cannot perfectly 
represent real-world transmission processes; the sequential adjustment can correct the errors 
introduced by model misspecification and reduce the accumulation of error over time. 

Pseudo-code. 

Input: A model 𝑀 to update colonization probability, ensembles of initial states {𝐶":} and {𝑆":}, 
observations of MRSA carriers 𝒟 during time 1 to 𝑇 

For 𝑡 = 1 to 𝑇 

    For each carrier 𝑖6 observed after time 𝑡 

        Update {𝐶""
# } and {𝑆""

# } using 𝒟7# and backward temporal propagation 

        For each neighbor 𝑗 of 𝑖6 at time 𝑡 

            Update {𝐶+#} and {𝑆+#} using covariability adjustment 

        End For 

    End For 

    Compute {𝐶"#9:} and {𝑆"#9:} by integrating 𝑀 to time 𝑡 + 1 

End For 

Output: Colonization probability {𝐶"=} for all patients at time 𝑇 

 

Competing methods 

Free simulation. We ran free simulations with binary states using the agent-based model to rank 
the colonization risk of patients in hospital. Specifically, we initiated the system by randomly 
assigning a patient as a carrier with a probability drawn uniformly from [0, 5%], and ran model 
simulations using parameters estimated from population-level incidence numbers. Model 
simulation was initiated 52 weeks prior to the most recent observation. We repeated simulations 
for 100 times and quantified the colonization risk for each patient as the fraction of simulations in 
which the patient is colonized. Note that model simulation does not use individual-level diagnostic 
information. 
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Length of stay. Previous studies suggest that hospitalization is a risk factor for MRSA 
colonization (5–8). We used hospitalization records up to 52 weeks prior to the most recent 
observation to compute the length of stay (days) in hospital for each patient. Individuals with a 
longer length of stay are suspected of having a higher risk of colonization. 

Number of contacts. We computed the total number of contacts (person-day) in hospital using 
hospitalization records up to 52 weeks prior to the most recent observation. Patients who have 
more contacts with other individuals are suspected of having a higher risk of colonization. 

Contact tracing. We tracked the patients who have direct contact with the observed carriers prior 
to their diagnosis up to 52 weeks before the most recent observation. The colonization risk is 
ranked by the number of contacts (person-day) with identified colonized patients. Due to the 
sparsity of observations of colonization, only a limited number of patients can be tracked and 
ranked using contact tracing. 

A multivariate logistic regression model. We also used a multivariate logistic regression model 
that incorporates multiple predictors to rank patient colonization risk: 

log
𝑐"

1 − 𝑐"
= 𝑎> + 𝑎:𝐿𝑂𝑆" + 𝑎?𝑁"&')#/&# + 𝑎@𝑁"

#!/&")A.		[S12] 

Here 𝑐" is the colonization probability of patient 𝑖, 𝐿𝑂𝑆" is the length of stay, 𝑁"&')#/&# is the total 
number of contacts, and 𝑁"

#!/&")A is the number of contacts with confirmed colonization. We fit the 
model using the real-world data from the Swedish healthcare facilities. However, this dataset 
contained only a small number of positive patient test results and no records of negative test 
results. To solve this problem, we randomly sampled 𝑘 × 𝑛 patients in hospital, excluding the 
observed positive patients (𝑛 is the number of observed positive patients and 𝑘 is a multiplier for 
sample size), and labeled these individuals negative patients. As the majority of patients should 
be negative, we presume the sampled patients are unlikely to be positive. We tested a range of 
sample size for the negative patients, 𝑘 = 1,2,… ,10, and used a two-fold out-of-sample validation 
to avoid overfitting. The model with 𝑘 = 9 yielded the best performance in out-of-sample 
validation. In synthetic testing and experiments using real-world data, we compared this 
regression model with other approaches. 

For the synthetic tests, we used information from the simulated 52 weeks to rank colonization risk 
for all patients. In application to the real-world outbreak, hospitalization history during the 52 
weeks prior to the diagnosis of each carrier was used to inform free simulation, length of stay, 
number of contacts, contact tracing and regression ranking. 

Synthetic tests 

We generated three synthetic outbreaks to validate the SILI algorithm. In those three outbreaks, 
the majority of colonization is attributed to contact transmission (Fig. S3A), community importation 
(Fig. S5A) and environmental contamination (Fig. S6A), respectively. Model parameters are 
reported in Table S1. We ran the agent-based model for 52 weeks to initiate the system and 
continued the simulation for another 52 weeks. Data in the first 52 weeks were discarded to 
remove any transient dynamics. Synthetic incidence numbers used for inference were obtained 
from the simulations over the latter 52 weeks. 
 
We also tested inference using both positive and negative testing results. Specifically, we 
generated a synthetic outbreak. For each patient testing positive, we randomly selected a 
susceptible individual in hospital and labeled him/her as a patient testing negative. Both positive 
and negative results were used in the individual-level inference presented in Fig. S7. 

Parameter inference 

We used iterated filtering to estimate model parameters. To improve system identifiability, several 
techniques were employed. First, we kept the transmission model parsimonious and introduced 
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only a small number of unknown parameters. We assumed that a single transmission rate, 
importation rate, environmental contamination coefficient and environmental decolonization rate 
were common to all patients and rooms in the network (rather than varying these parameters by 
patient or room) and used published findings to assign the patient decolonization rate and case 
detection rate (Table S1). Second, we assigned a wide initial prior range for each parameter in 
order to better explore parameter space. Third, we ran multiple realizations of parameter 
inference and found the results remain robust. In synthetic tests, we found the transmission rate 
𝜷, importation rate 𝜸, and environmental contamination coefficient 𝜽 are well identified. The 
estimated mean environmental decolonization rate 𝑫 has a small bias; however, as the model 
dynamics are less sensitive to 𝑫, this estimation bias does not severely impact the ranking of 
colonization risk, as demonstrated by the superior performance of the SILI algorithm. 

Control experiment 

For the in silica control experiment, targeted screening can be implemented at any frequency: 
daily, weekly, monthly, etc., to reflect differences in the prevalence of MRSA and resources 
presumed available for intervention. In the main text, testing and isolation was enforced every 4 
weeks as MRSA has a low prevalence in Swedish healthcare facilities. In an additional 
experiment, we implemented a weekly targeted screening and isolation. Specifically, every week, 
after each sliding 52-week window, we selected 1% or 5% of patients present in hospital with the 
highest colonization risk, ranked by the different approaches. The selected, high-risk individuals 
were screened and put into isolation in the following week if they remained hospitalized. During 
isolation, the targeted individuals will neither be colonized nor transmit MRSA to other patients. 
We track the numbers of observed incidence and all colonized patients during the 320-week 
period under each control strategy and compare these results to outcomes without any control. 
The numbers of observed cases and colonized patients were further reduced with this more 
frequent testing and isolation (Fig. S9); however, the improvement is limited. This is possibly due 
to a large number of imported cases from the community that cannot be precisely identified by 
any of the methods considered here. These results indicate that the inference framework can be 
applied at a variety of time scales; however, the most cost-effective testing frequency and 
coverage will need to be determined. 
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Fig. S1. Hospitalization history of the 289 observed colonized patients. Blue, green and yellow 
colors represent out-of-hospital, hospitalized and tested positive. Patients are ranked according to 
their week of confirmation from bottom to top. 
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Fig. S2. An illustration of the SILI algorithm. (A) The x-axis represents time, and the y-axis shows 
patients connected in a one-dimensional chain. Two patients are observed positive at later times. 
The red color shows the amount of information obtained from observations (here quantified by 
colonization probability). (B) We use Bayes’ rule and model simulation to propagate information 
backward in time and estimate the colonization probability of observed carriers at time 𝑡. (C) We 
use cross-ensemble covariability to adjust the colonization probability of patients who have 
contact with observed carriers. (D). We integrate the model to time 𝑡 + 1 and propagate 
information forward to neighbors. 
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Fig. S3. Synthetic test for an outbreak with the majority of colonization caused by contact 
transmission (parameter setting: 𝛽 = 0.028, 𝛾 = 0.005, 𝜃 = 0.005 and 𝐷 = 1.5). (A) The numbers 
of colonized patients attributed to importation, contact transmission and environmental 
contamination. (B) The ROC curves for identification of MRSA carriers using different methods at 
week 52. (C) The number of MRSA carriers identified by screening a given number of patients 
selected using different approaches at week 52. 
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Fig. S4. The number of MRSA carriers identified by screening a given number of patients 
selected using various approaches at different weeks during the sequential inference. The SILI 
algorithm consistently outperforms other competing methods. 
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Fig. S5. Synthetic test for an outbreak with the majority of colonization caused by importation 
from the community (parameter setting 𝛽 = 0.015, 𝛾 = 0.02, 𝜃 = 0.005 and 𝐷 = 1.5). (A) The 
numbers of colonized patients attributed to importation, contact transmission and environmental 
contamination. (B) The ROC curves for identification of MRSA carriers using different methods at 
week 52. (C) The number of MRSA carriers identified by screening a given number of patients 
selected using different approaches at week 52. 
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Fig. S6. Synthetic test for an outbreak with the majority of colonization caused by environmental 
contamination (parameter setting 𝛽 = 0.015, 𝛾 = 0.005, 𝜃 = 0.016 and 𝐷 = 1.5). (A) The numbers 
of colonized patients attributed to importation, contact transmission and environmental 
contamination. (B) The ROC curves for identification of MRSA carriers using different methods at 
week 52. (C) The number of MRSA carriers identified by screening a given number of patients 
selected using different approaches at week 52. 
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Fig. S7. Synthetic test for an outbreak using both positive and negative test results (parameter 
setting: 𝛽 = 0.028, 𝛾 = 0.005, 𝜃 = 0.005 and 𝐷 = 1.5). (A) The ROC curves for identification of 
MRSA carriers using different methods at week 52. (B) The number of MRSA carriers identified 
by screening a given number of patients selected using different approaches at week 52.  
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Fig. S8. The estimated posterior parameters for each 4-week time window for the real-world 
outbreak in Swedish hospitals after assimilating data from the prior 52 weeks. (𝜷: the baseline 
transmission rate; 𝜸: the importation rate; 𝜽: the baseline environmental contamination coefficient; 
𝑫: the mean environmental decolonization rate). Boxes and whiskers show the interquartile and 
95% CIs.  
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Fig. S9. Retrospective control experiment in 66 Swedish healthcare facilities under weekly control 
intervention. (A and B) Distributions of the observed incidence and total colonization by isolating 
1% patients in hospital selected by different methods every week. Results are obtained from 100 
independent control experiments. Asterisks indicate statistical significance that the SILI algorithm 
outperforms other approaches, obtained from the Mann-Whitney test (*** 𝑝 < 10BC, ** 𝑝 < 0.005, * 
𝑝 < 0.05). (C and D) Results for isolating 5% patients in hospital selected by different methods 
every week. 
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Parameter Description Range/Value Unit Reference 

𝛼 Patient decolonization rate [1/365, 1/175] Per day (4, 9–14) 

𝛽 Baseline transmission rate 0.028; 0.015; 
0.015 Per day Assigned 

𝛾 Importation rate 0.005; 0.02; 
0.005 

Per 
admission Assigned 

𝜃 Baseline environmental 
contamination coefficient 

0.005; 0.005; 
0.016 (Per day)2 Assigned 

𝐷 Mean environmental 
decolonization period 1.5; 1.5; 1.5 Day Assigned 

𝜌 Observation rate [0.15𝛼,0.25𝛼] Per day (4, 14, 15) 

Table S1. Parameter settings in synthetic tests. Settings for 𝛽, 𝛾, 𝜃 and 𝐷 used to generate three 
synthetic outbreaks are separated by semicolons. For each individual, the patient decolonization 
rate 𝛼 is randomly drawn from the pre-defined range; the observation rate 𝜌 is drawn after 𝛼 is 
specified. 


