

## **Supplementary Information for**

The vitellogenin receptor functionality of the migratory locust depends on its phosphorylation by juvenile hormone

Yu-Pu Jing, Xinpeng Wen, Lunjie Li, Shanjing Zhang, Ci Zhang, Shutang Zhou\*

State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China

\*Corresponding author:

Shutang Zhou, PhD, Professor

Tel: +86-13837179891 Email: szhou@henu.edu.cn

## This PDF file includes:

Figures S1 to S5 Tables S1 to S3

## Other supplementary materials for this manuscript include the following:

Datasets S1

Fig. S1.



**Figure S1.** *Locusta migratoria* **VgR domain prediction.** VgR domains were predicted by using SMART website (<u>http://smart.embl-heidelberg.de/</u>) and Expasy TMHMM 2.0 (<u>http://www.cbs.dtu.dk/services/TMHMM-2.0/</u>) with the full length amino acid sequence of VgR (GenBank: QCX35737). S, signal peptide. LBD, ligand binding domain. EGF, epidermal growth factor precursor like domain. O, O-linked sugar domain. T, transmembrane domain. C, cytoplasmic domain.

Figure S2. Knockdown efficiency of PKC isoforms in the ovaries of adult female locusts on day 4. PKC $\alpha$  (GenBank: MN793141), PKC $\epsilon$  (GenBank: MN793143), PKC $\delta$  (GenBank: MN793140), PKC $\iota$  (GenBank: MN793142), PKN (GenBank: MN793144) and PKD3 (GenBank: MN793145). \*\*indicates significant difference at P < 0.01. n = 15

Fig. S2.

Fig. S3.



**Figure S3. Subcellular localization of VgR in the primary oocytes of adult female locusts at 4-6 days post adult eclosion (PAE).** Green, Alexa Fluor 488-WGA for membrane staining. Red, VgR staining by anti-VgR antibody. Blue, DAPI staining for nuclei. Scale bars, 50 μm.



**Figure S4. VgR phosphorylation at Ser<sup>1361</sup> and its binding to Vg.** The 3D structural prediction was computed by a Fast Rotational DOCKing method (<u>http://frodock.chaconlab.org/</u>). Red, VgA. Blue indicates VgR, VgR<sup>S1361D</sup> or VgR<sup>S1361A</sup>.

Fig. S4.

Fig. S5.



Figure S5. Acidification-induced VgR dephosphorylation. Protein extracted from Sf9 cells transfected with the recombinant pIEx-4-VgR-RFP-His vector and treated with methoprene (JHA) for 30 min. HCl application at a final concentration of  $10^{-6}$  to  $10^{-3}$  M for 30 min. p-VgR S<sup>1361</sup>, phospho-VgR (Ser<sup>1361</sup>) antibody. VgR, VgR antibody.

| Compared<br>groups | <b>Regulation type</b> | Fold change >1.2 | Fold change >1.3 | Fold change<br>>1.5 | Fold change<br>>2 |
|--------------------|------------------------|------------------|------------------|---------------------|-------------------|
| S3/S0              | up-regulated           | 590(446)         | 426(337)         | 201(171)            | 56(51)            |
|                    | down-regulated         | 547(372)         | 381(273)         | 202(155)            | 53(45)            |
| S4/S0              | up-regulated           | 730(497)         | 567(403)         | 318(238)            | 107(86)           |
|                    | down-regulated         | 606(403)         | 417(299)         | 222(167)            | 75(63)            |
| S4/S3              | up-regulated           | 282(218)         | 191(140)         | 95(69)              | 25(15)            |
|                    | down-regulated         | 212(186)         | 117(109)         | 39(38)              | 3(3)              |
| <b>S5/S0</b>       | up-regulated           | 840(557)         | 755(509)         | 557(392)            | 262(182)          |
|                    | down-regulated         | 719(488)         | 641(446)         | 457(332)            | 172(152)          |
| S5/S3              | up-regulated           | 635(432)         | 553(379)         | 409(282)            | 171(118)          |
|                    | down-regulated         | 565(419)         | 457(350)         | 245(207)            | 62(57)            |
| S5/S4              | up-regulated           | 481(331)         | 403(281)         | 264(193)            | 105(64)           |
|                    | down-regulated         | 470(353)         | 358(283)         | 154(136)            | 21(17)            |

Table S1. Differential phosphoric sites and proteins in the ovaries of adult female locusts on day 0-5

S0, S3, S4 and S5 represent adult female locusts at 0, 3, 4, 5 days PAE, respectively. Numbers and numbers in parentheses indicate the phosphorylation sites and proteins, respectively, identified by quantitative phosphoproteomic analysis. Filtered at P < 0.05. The original data are summarized in an Excel file and deposited as a dataset.

| Protein    | Function    | Phosphorylation site                     | Kinase |
|------------|-------------|------------------------------------------|--------|
| VgR        |             | SLG <b>S(p)</b> VDVVYK                   | РКС    |
| ARFGEF     |             | SYPLEWALDDDAGS(p)DECSLPAK                | CKII   |
| ARFGAP     |             | KS(p)TGSLTEVTVPQLLPK                     | РКА    |
| PIP4K      | Regulator   | GGGDRPWGPLSSPPD <b>S(p)</b> PHAALMR      | CDK5   |
| PIP5k      |             | ASGGDGPS <b>S(p)</b> PAAAFIER            | CDK5   |
| PLD        |             | LVDLGSVS(p)QTLATR                        | РКС    |
| Cbl        |             | RQNS(p)VEENLK                            | РКА    |
| Endophilin |             | VN <b>S(p)</b> EDVDLTTPATSPITDTK         | CKII   |
| ARP        |             | KFQ <b>S(p)</b> LDR                      | РКС    |
| Hsc70      |             | GRL <b>S(p)</b> KEEIER                   | CKII   |
| NEDD4-1    | ~           | SRPPS(p)FR                               | РКС    |
| NEDD4-2    | Clathrin-   | RQDS(p)EWEVLETGR                         | РКА    |
| Eps15      | aependent   | DPFGCDPFALQPSPSGPPPRPES(p)PSPALPPKK      | CDK5   |
| SMURF      | chuocytosis | VDPVGREDS(p)PSGSSR                       | GSK3   |
| dynamin    |             | NDWLVSGLENPRLS(p)PPS(p)PGGPR             | CDK5   |
| EPN2       |             | AVS(p)PHQIGTSTGAVPR                      | CDK5   |
| AP-2       |             | ESS(p)ILAVLK                             | CKI    |
| N-WASP     |             | EFIY(p)DFISR                             | unsp   |
| WASH       |             | VAPILS(p)PTEMPK                          | PKA    |
| SNX6       | Douler      | KD <b>S(p)</b> LDDRDILSGDNR              | РКА    |
| SNX12      | endosome    | RY <b>S(p)</b> DFEWLR                    | РКА    |
| VPS37      | chuosonic   | ELLASLSAA <b>S(p)</b> LDDLRR             | CaMKII |
| VPS35      |             | LESPES(p)DGPSYEGLAI                      | CKI    |
| MVB12      |             | QASGEE <b>S(p)</b> PHEYER                | CKII   |
| Hrs        | Late        | QYS(p)PPPLMDNSPSQGEEEDPELAR              | CDK5   |
| Alix       | endosome    | AS(p)FFQDFVTK                            | РКС    |
| CHMP7      |             | GNTSLSFEPEIS(p)DDEDSEYKDHEK              | CKII   |
| ZFYVE      |             | INSLESQL <b>S</b> ( <b>p</b> )FEK        | CKI    |
| Rab11-FIP  |             | VGQIAGEADPGVI <b>S(p)</b> EDEDEFTFDDLSHK | CKII   |
| RABEP      | Recycling   | SGRDS(p)PILAPSVMLSAVTK                   | CDK5   |
| PKCi       | Recyching   | DLANFPPEFTDEPVHLT(p)PDDTR                | unsp   |
| Par6       |             | KGE <b>S(p)</b> LEELNGYGTYKPR            | РКА    |
| RBSN       |             | LLGLSS(p)PTEGQR                          | unsp   |

Table S2. Protein phosphorylation related to endocytosis and recycling

Phosphorylated proteins and peptides were identified by phosphoproteomic and LC-MS/MS analysis. Kinase-substrate interactions were predicted by NetPhos 3.1 software (http://www.cbs.dtu.dk/services/NetPhos/). Amino acids followed by (p) indicate the phosphorylation sites. PKC, protein kinase C. CK, casein kinase. PKA, protein kinase A. CDK5, Cyclin dependent kinase 5. GSK3, Glycogen synthase kinase 3. unsp, unspecific kinase. CaMKII, Ca<sup>2+</sup>/calmodulin-dependent protein kinase II.

| Primer                                         | Oligonucleotide sequence                                 |  |  |  |
|------------------------------------------------|----------------------------------------------------------|--|--|--|
| qRT-PCR                                        | × •                                                      |  |  |  |
| ŶgR-qRT F                                      | 5'- acaccetgtactggtcagact -3'                            |  |  |  |
| VgR-qRT R                                      | 5'- cagcatgcagatgtcactgca -3'                            |  |  |  |
| PKCα -qRT F                                    | 5'- cggttgtggaacaagtgg -3'                               |  |  |  |
| $PKC\alpha$ - $qRTR$                           | 5'- tggcttgaaaggaggttg -3'                               |  |  |  |
| PKCδ-qRT F                                     | 5'- ttgctgtacgggctatttc -3'                              |  |  |  |
| PKCδ-qRT R                                     | 5'- cagggettecacgatgag -3'                               |  |  |  |
| PKCE-qRT F                                     | 5'- ccaagaatcctgccaaac -3'                               |  |  |  |
| PKCE-qRT R                                     | 5'- cagtgcttcccagtccat -3'                               |  |  |  |
| PKC1-qRT F                                     | 5'- ggcatgtgcaaggaaggt -3'                               |  |  |  |
| PKC1-qRT R                                     | 5'- gtgcccaccaatcaacacta -3'                             |  |  |  |
| PKD3-qRT F                                     | 5'- cgcctttatgtatccagc -3'                               |  |  |  |
| PKD3-qRT R                                     | 5'- ctgcttctccagttctcgt -3'                              |  |  |  |
| PKN-qRT F                                      | 5'- cagtgcgtatgaatcccg -3'                               |  |  |  |
| PKN-qRT R                                      | 5'- ccctggcaatgatgtctc -3'                               |  |  |  |
| $\beta$ -Actin-qRT F                           | 5'- aattaccattggtaacgagcgatt -3'                         |  |  |  |
| $\beta$ -Actin-qRT R                           | 5'- tgcttccatacccaggaatga -3'                            |  |  |  |
| <b>RNA</b> interference                        |                                                          |  |  |  |
| VgR-RNAi F                                     | 5'- gcgtaatacgactcactatagggcacaagtttacggggaagga -3'      |  |  |  |
| VgR-RNAi R                                     | 5'- gcgtaatacgactcactatagggacggatcatacgacaggctc -3'      |  |  |  |
| PKCα-RNAi F                                    | 5'- gcgtaatacgactcactatagggtctttaagcagccgacgttt -3'      |  |  |  |
| PKCα-RNAi R                                    | 5'- gcgtaatacgactcactatagggtcggcctcttctttcagtgt -3'      |  |  |  |
| PKCδ-RNAi F                                    | 5'- gcgtaatacgactcactatagggaaagacgttacggaacaccg -3'      |  |  |  |
| PKCδ-RNAi R                                    | 5'- gcgtaatacgactcactataggggcactttctgtggcagttga -3'      |  |  |  |
| PKCε-RNAi F                                    | 5'- gcgtaatacgactcactatagggagcagtggaggaggtagcaa -3'      |  |  |  |
| PKCε-RNAi R                                    | 5'- gcgtaatacgactcactataggggctgcaagggctagaatacg -3'      |  |  |  |
| PKC1-RNAi F                                    | 5'- gcgtaatacgactcactatagggagaaggcgcttgtcactgat -3'      |  |  |  |
| PKC1-RNAi R                                    | 5'- gcgtaatacgactcactatagggtgcccaccaatcaacactaa -3'      |  |  |  |
| PKD3-RNAi F                                    | 5'- gcgtaatacgactcactatagggtgttccgtcatgaccacagt -3'      |  |  |  |
| PKD3-RNAi R                                    | 5'- gcgtaatacgactcactatagggcggcactgtaacccttgttt -3'      |  |  |  |
| PKN-RNAi F                                     | 5'- gcgtaatacgactcactataggggttcacaacaagcctgggat -3'      |  |  |  |
| PKN-RNAi R                                     | 5'- gcgtaatacgactcactatagggcttcctcttcccagcaactg -3'      |  |  |  |
| GFP-RNAi F                                     | 5'- gcgtaatacgactcactataggtggtcccaattctcgtggaac -3'      |  |  |  |
| GFP-RNAi R                                     | 5'- gcgtaatacgactcactataggcttgaagttgaccttgatgcc -3'      |  |  |  |
| Recombinant pIEx-4-RFP-His vector construction |                                                          |  |  |  |
| VgR-OE F                                       | 5'- tactcaggatcccatgagttgtggaccagggggcagaacga -3'        |  |  |  |
| VgR-OE R                                       | 5'- tactcaggtaccaggtagaaggcgcatcttgtccactttgc -3'        |  |  |  |
| VgR <sup>1361m</sup> -OE F                     | 5'- aggtgtcgcgctcactgggcgctgtggacgtcgtgtacaaacaa         |  |  |  |
| $VgR^{1361m}$ -OE R                            | 5'- ttgtttgtacacgacgtccacagcgcccagtgagcgcgacacct -3'     |  |  |  |
| PKC1-OE F                                      | 5'- tggcatcgttaacacgtcaagagctcatgggctgcagccccgtgag -3'   |  |  |  |
| PKC1-OE R                                      | 5'- gcgccgagatctgccaattgggatccgccacgcagtcctccagcgaca -3' |  |  |  |
| Recombiant pET-32a(+) vector construction      |                                                          |  |  |  |
| VgR-exp F                                      | 5'- tactcaggatectcaategeagtettegagaae -3'                |  |  |  |
| VgR-exp R                                      | 5'- tactcactcgagtcacacgagtggtctaattacac -3'              |  |  |  |
| PKCı -exp F                                    | 5'- tactcaggatccagtgagcaagttgagcccatt -3'                |  |  |  |
| PKCı -exp R                                    | 5'- tactcactcgagtccacagaatgttgaagtggt -3'                |  |  |  |

## Table S3. Primers used in qRT-PCR, RNAi and vector construction