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Supplementary Methods  

The code used to run the simulations in this manuscript have been uploaded to the following repository 
https://github.com/meeravarshneya1234/ArrhythmiaPredictionProject.git. 

Mechanistic Mathematical Model Methods 

Stimulation Protocol  

The mathematical model was stimulated with an amplitude of -32.2 uA/uF for 2 ms and paced at 1 Hz(1). 

It was run to steady-state, by pacing the model for 2000 beats and then evaluating whether the action 

potential duration (APD) varied by +/- 1% for 500 consecutive beats. Simulations were performed using 

MATLAB v2019b with a 64-bit Intel processor and Windows 10. Model equations were evaluated using 

the MATLAB function ode15s with a relative tolerance of 10-3 and absolute tolerance of 10-6.  

 

Cellular Waveform Features  

We computed the following metrics for each cell in the population: 

Action Potential (AP) 
1) peak membrane voltage (Vpeak)  
2) upstroke velocity (Upstroke)  
3) resting membrane potential (Vrest)  
4) AP duration at 20% repolarization (APD20)  
5) AP duration at 40% repolarization (APD40)  
6) AP duration at 50% repolarization (APD50)  
7) AP duration at 90% repolarization (APD90)  
8) Difference between APD50 and APD90 

(Triangulation) 

Calcium Transient (CaT) 
1) diastolic calcium (dCa)  
2) CaT Amplitude 
3) CaT Peak (Capeak) 
4) CaT duration at 50% return to baseline (CaD50)  
5) CaT duration at 90% return to baseline (CaD90) 
6) Difference between CaD90 and CaD50 

(Triangulation)   

 

  

https://github.com/meeravarshneya1234/ArrhythmiaPredictionProject.git
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Machine Learning Methods 

Supervised Machine Learning  

We trained eight machine learning (ML) algorithms which include Support Vector Machine (SVM), Multi-

Layer Perceptron (MLP), Random Forest (RF), Naïve Bayes (NB), Gradient Boosting (GB), XGBoost 

(XGB), Logistic Regression (LR), and K-Nearest Neighbors (KNN). We utilized ML package scikit-learn 

version 0.21.3 in Python 3.7.4(2). To train each algorithm, we split the population into 90% training and 

10% testing stratified by the target class.  We normalized the input features using MinMaxScaler for MLP 

and StandardScaler for the remaining. The MinMaxScaler normalized the features to a range of 0 and 1, 

while the StandardScaler normalized by removing the mean and scaling to the unit variance. To fine-tune 

the hyperparameters for each classifier we applied the function GridSearchCV on the training set. This 

allowed us to effectively loop through a series of different parameter sets using 3-fold cross validation. 

The best parameters were then used to assess the performance of the algorithms on the test set.  

The SVM classifier works by computing a hyperplane that maximizes the distance between positive and 

negative classes and minimizes misclassification. To build this model, we tuned three hyperparameters- 

the kernel (linear and radial basis function (rbf)), kernel coefficient (λ), and regularization (C). Often, 

features are linearly inseparable in a low dimensional space, but can become linearly distinguishable 

when mapped to a higher dimensional space using the rbf kernel. We tuned λ and C to find a decision 

boundary that finds a balance between maximizing the margin and minimizing misclassification. On the 

other hand, a MLP classifier is a feedforward artificial neural network that transforms the input using non-

linear activation functions and projects it into a space where the data can be linearly separated. By tuning 

the number of layers, number of hidden nodes in each layer, the activation function, and the learning rate 

of the neural network, we found the optimal set of points parameters needed to have a high prediction 

and prevent overfitting.  

To evaluate the performance of each classifier, we used the following metrics: receiver operator 

characteristic (ROC) and the calculated area under the ROC (auROC), accuracy, positive and negative 

predictive value, and specificity and sensitivity. We used the Youden index to select the optimal threshold 

to determine the predicted class of being arrhythmia(3). The probability greater than the selected 

threshold is labeled as arrhythmia by the ML classifiers. Accuracy, positive and negative predictive value 

and specificity and sensitivity are determined by this selected cutoff. Since our dataset was balanced, we 

saw similar trends in each metric and have thus reported only the ROC and auROC in the main text and 

placed the remaining on our github repository.   
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Supplementary Figures 

 
Fig. S1. Machine learning feature analysis reveals that current injection trigger performs 
exceptionally well due to the addition of Action Potential (AP) Triangulation.  
A.) Receiver operator curves (ROC) and area under the curve (auROCs) comparing the performance of 
predicting susceptibility to current injection with only APD90 (black), only AP Triangulation (grey), and all 
AP Waveform features (purple). B.) Examples of two cells from the population that have the same APD90 
but different levels of risk. The triangulation of the AP is more informative than simply looking at APD90. 
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Fig. S2. Addition of calcium transients under varying calcemic conditions does not improve 
prediction of cellular response to an increase in ICaL. 

A.) Action potentials and calcium transients of cells under hyper (blue) and hypocalcemic (green) 
conditions. B-C.) Predictive performance does not change when adding calcium transient features under 
either hyper (dark green vs light green) or hypocalcemic conditions (dark blue vs light blue). Action 
potential waveform features are sufficient to achieve high performance (see Figure 5). 
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Fig. S3. Addition of features under different pacing protocols does not classify cells better than 
hypocalcemic and hypercalcemic conditions.  

A.) Action potentials and calcium transients of cells paced at 2.5Hz (blue) and 0.2 Hz (green) conditions. 
B-C.) Predictive performance for both triggers (responses to IKr Block and Increase ICaL) is weaker when 
provided features from the different pacing protocols. Features from the hypercalcemic experiment 
(Figure 5) provide more value than either the slow or fast paced features for both triggers.  
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Fig. S4. Distribution of metrics used to experimentally calibrate the population  

Range of metrics describing experimental recordings of non-diseased ventricular myocytes, as reported 
by Coppini et al(4) and implemented by Passini et al(5). Any cells that did not come within the 
experimental bounds of all 6 metrics were automatically discarded from the analysis.  
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Fig. S5. Electrophysiological features correlate with important biological parameters.   

Scatterplots show parameters that are important in determining susceptibility to particular triggers on the 
ordinate versus particular electrophysiological features on the abscissa, as indicated. Each variable is 
expressed as a z-score: i.e. the number of standard deviations away from the population mean.  

In these plots, the correlations, or lack thereof, provide insight into why particular experimental 
measurements either improve ML performance or fail to do so. (A) For current injection (top plots), 
arrhythmia susceptibility is controlled almost entirely by rapid delayed rectifier conductance GKr and 
inward rectifier conductance GK1. Both APD90 and AP triangulation correlate with GKr (left), but AP 
triangulation correlates more strongly with GK1, explaining why AP triangulation is the most informative 
feature.  

(B) For IKr Block (bottom left), the most important model parameter is Vd, the voltage dependence of 
activation of ICaL. This parameter does not correlate with APD90, but does correlate strongly with the 
excitation threshold (under INa block conditions), which demonstrates why the excitation threshold 
improves ML performance so dramatically.  

(C) For ICaL Increase (bottom right), multiple parameters determine arrhythmia susceptibility, including the 
maximum ICaL permeability (PCa). This parameter does not correlate with APD90 or with peak AP voltage 
under normal conditions (Vpeak), but it does correlate with Vpeak measured under hypercalcemic conditions 
(red symbols). This result helps to explain why the hypercalcemia experiment improves ML performance, 
and why multiple experimental protocols must be conducted to achieve excellent susceptibility prediction 
for this trigger.  
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Fig. S6. Machine learning performance depends on algorithm choice.  
For each machine learning task (n=33) tested throughout this paper, we compared how the eight different 
classifiers performed. To visualize this, we calculated the normalized area under the receiver operator 
curve (auROC) where we divided each auROC by the best classifier’s auROC. Hence, a normalized 
auROC closer to 1 indicates the classifier performed similar to the best classifier. Here it is evident that 
SVM performed consistently well with MLP and LR in close second and third, respectively. In contrast, 
classifiers such as KNN and NB performed well for certain tasks and poorly for others.   
RF=Random Forest; KNN=K-Nearest Neighbors; LR= Logistic Regression; GB=Gradient Boosting; 
SVM=Support Vector Machine; MLP= Multi-Layer Perceptron; NB=Naïve Bayes; XGB=XGBoost 
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Supplementary Tables 
 

Table S1. Channel Conductance Parameters varied in O’Hara Model  

Parameter Definition Baseline value1 

GNa,fast Maximal Na+ conductance 75 mS/μF 

GNa,late Maximal late Na+ conductance 0.0075 mS/μF 

Gto Maximal transient outward K+ conductance 0.02 mS/μF 

GKr Rapid delayed rectifier K+ conductance scaling factor 1 
0.046 mS/μF 

GKs Slow delayed rectifier K+ conductance scaling factor 2 
0.0034 mS/μF 

GK1 Inward rectifier K+ conductance scaling factor 1 
0.1908 mS/μF 

GNaCa Maximal Na+-Ca2+ exchange current 0.0008 μA/μF 

GKb Maximal conductance of background K+ 0.003 mS/μF 

PCa L-type Ca2+ current permeability 0.0001 cm/s 

INaK Scales the Na+-K+ ATPase current 30 

PNab Background Na+ current permeability 3.75e-10 cm/s 

PCab Background Ca2+ current permeability 2.5e-8 cm/s 

GpCa Maximal sarcolemmal Ca2+ pump current  0.0005 mS/uF 

SERCAtotal SR Ca2+ release scaling factor 4 1 

RyRtotal SR Ca2+ uptake (SERCA) scaling factor4 1 

Transtotal NSR to JSR Ca2+ translocation4  1 

Leaktotal Ca2+ Leak from the NSR4 1 

 
Notes 
1The scaling factors for IK1 and IKr are not formally maximal conductance, since each is multiplied by 

√Ko/5.4 and can therefore be greater than this value. Changing this factor scales the current at all 
values of extracellular [K+] while maintaining the dependence on this variable.  

2The scaling factor for IKs is multiplied by a function of intracellular [Ca2+]. This value is therefore not 
precisely the current’s maximal conductance. 

3INaK was not labeled in the original paper and have been given these names to keep to terminology 
consistent.    

4Parameters controlling the magnitude of these channels are an introduced unitless multiplier with 
baseline value equals to 1.00.  
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Table S2. Kinetic Parameters varied in O’Hara Model  

Parameter Definition Baseline value 

pm Fast Na+ current activation time constant 1 

ph Fast Na+ current inactivation time constant 1 

pj 
Fast Na+ current recovery from inactivation time 
constant 1 

php 
Fast Na+ current CaMK modulated inactivation time 
constant 1 

pjp 
Fast Na+ current CaMK modulated recovery from 
inactivation time constant 1 

pmL Late Na+ current activation time constant 1 

phL Late Na+ current inactivation time constant 1 

phLp 
Late Na+ current CaMK modulated inactivation time 
constant 1 

pa Transient outward K+ current activation time constant 1 

pif 
Transient outward K+ current fast inactivation time 
constant 1 

pis 
Transient outward K+ current slow inactivation time 
constant 1 

pap 
Transient outward K+ current CaMK modulated 
activation time constant  1 

pipf 
Transient outward K+ current CaMK modulated fast 
inactivation time constant 1 

pips 
Transient outward K+ current CaMK modulated slow 
inactivation time constant 1 

pd L-type Ca2+ current activation time constant 1 

pf 
L-type Ca2+ current voltage-dependent inactivation time 
constant 1 

pfcaf 
L-type Ca2+ current calcium-dependent fast inactivation 
time constant 1 

pfcas 
L-type Ca2+ current calcium-dependent slow inactivation 
time constant 1 

pjca 
L-type Ca2+ current recovery from inactivation time 
constant 1 

pfpf 
L-type Ca2+ current CaMK modulated voltage 
dependent inactivation time constant 1 

pfcapf 
L-type Ca2+ current CaMK modulated calcium 
dependent inactivation time constant 1 

pxrf 
Rapid delayed rectifier K+ current fast 
activation/deactivation time constant 1 

pxrs 
Rapid delayed rectifier K+ current slow 
activation/deactivation time constant 1 

pxs1 
Slow delayed rectifier K+ current activation time 
constant 1 

pxs2 
Slow delayed rectifier K+ current deactivation time 
constant 1 

pxk1 Inward rectifier K+ current inactivation time constant 1 

Vm Fast Na+ current activation voltage dependence  0 

Vh Fast Na+ current inactivation voltage dependence 0 

Vj 
Fast Na+ current recovery from inactivation voltage 
dependence 0 

Vhp 
Fast Na+ current CaMK modulated inactivation voltage 
dependence  0 



 

 

12 

 

Vjp 
Fast Na+ current CaMK modulated recovery from 
inactivation voltage dependence  0 

VmL Late Na+ current activation voltage dependence  0 

VhL Late Na+ current inactivation voltage dependence  0 

VhLp 
Late Na+ current CaMK modulated inactivation voltage 
dependence  0 

Va 
Transient outward K+ current activation voltage 
dependence  0 

Vi 
Transient outward K+ current fast inactivation voltage 
dependence  0 

Vap 
Transient outward K+ current CaMK modulated 
activation voltage dependence  0 

Vip 
Transient outward K+ current CaMK modulated 
inactivation voltage dependence 0 

Vd L-type Ca2+ current activation voltage dependence  0 

Vf 
L-type Ca2+ current voltage-dependent inactivation 
voltage dependence  0 

Vfca 
L-type Ca2+ current calcium-dependent inactivation 
voltage dependence 0 

Vjca 
L-type Ca2+ current recovery from inactivation voltage 
dependence  0 

Vfp 
L-type Ca2+ current CaMK modulated voltage 
dependent inactivation voltage dependence  0 

Vfcap 
L-type Ca2+ current CaMK modulated calcium 
dependent inactivation voltage dependence  0 

Vxr 
Rapid delayed rectifier K+ current 
activation/deactivation voltage dependence  0 

Vxs1 
Slow delayed rectifier K+ current activation voltage 
dependence  0 

Vxs2 
Slow delayed rectifier K+ current activation voltage 
dependence 0 

Vncx Sodium-Calcium Exchanger voltage dependence  0 

Vnak Sodium-Potassium Pump voltage dependence  0 
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