
0 0.05 0.1 0.15 0.2
| Readout weights for context |

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

| R
ea

do
ut

 w
ei

gh
ts

 fo
r v

al
ue

 |

0 0.5 1 1.5
Angle

0

50

100

150

N
um

be
r o

f w
ei

gh
ts

HPC

0 0.05 0.1 0.15 0.2 0.25 0.3
| Readout weights for context |

0

0.05

0.1

0.15

0.2

0.25

0.3

| R
ea

do
ut

 w
ei

gh
ts

 fo
r v

al
ue

 |

0 0.5 1 1.5
Angle

0

20

40

60

80

N
um

be
r o

f w
ei

gh
ts

DLPFC

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
| Readout weights for context |

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

| R
ea

do
ut

 w
ei

gh
ts

 fo
r v

al
ue

 |

0 0.5 1 1.5
Angle

0

50

100

N
um

be
r o

f w
ei

gh
ts

ACC

0 0.05 0.1 0.15 0.2
| Readout weights for value |

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

| R
ea

do
ut

 w
ei

gh
ts

 fo
r a

ct
io

n 
|

0 0.5 1 1.5
Angle

0

50

100

150

N
um

be
r o

f w
ei

gh
ts

0 0.05 0.1 0.15 0.2 0.25 0.3
| Readout weights for value |

0

0.05

0.1

0.15

0.2

0.25

0.3

| R
ea

do
ut

 w
ei

gh
ts

 fo
r a

ct
io

n 
|

0 0.5 1 1.5
Angle

0

20

40

60

80

N
um

be
r o

f w
ei

gh
ts

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
| Readout weights for value |

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

| R
ea

do
ut

 w
ei

gh
ts

 fo
r a

ct
io

n 
|

0 0.5 1 1.5
Angle

0

50

100

N
um

be
r o

f w
ei

gh
ts

0 0.05 0.1 0.15 0.2
| Readout weights for action |

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

| R
ea

do
ut

 w
ei

gh
ts

 fo
r c

on
te

xt
 |

0 0.5 1 1.5
Angle

0

50

100

150

N
um

be
r o

f w
ei

gh
ts

0 0.05 0.1 0.15 0.2 0.25 0.3
| Readout weights for action |

0

0.05

0.1

0.15

0.2

0.25

0.3

| R
ea

do
ut

 w
ei

gh
ts

 fo
r c

on
te

xt
 |

0 0.5 1 1.5
Angle

0

20

40

60

80

N
um

be
r o

f w
ei

gh
ts

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
| Readout weights for action |

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

| R
ea

do
ut

 w
ei

gh
ts

 fo
r c

on
te

xt
 |

0 0.5 1 1.5
Angle

0

50

100

N
um

be
r o

f w
ei

gh
ts

Figure S15: Two-dimensional scatter plots of the absolute values of the (normalized) decoding weights for
the three task-relevant variables. The three columns (from left to right) correspond to HPC, DLPFC, and
ACC. The three rows show the magnitudes of the weights for pairs of variables plotted against each other:
context vs. value (top), value vs. action (middle), and action vs. context (bottom). The inset in each scatter
plot shows a histogram of the weight counts as a function of the angle from the vertical axis (in radians).
These distributions are approximately uniform, and therefore pure selectivity neurons (whose weights would
fall close to one of the axes in the scatter plots) are not prevalent. Similar distributions have been observed
in the rodent hippocampus 56.
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Figure S16: CCGP as a function of the number of ablated neurons for the HPC (left), DLPFC (middle),
and ACC (right). The solid lines show the decay of CCGP if we successively remove the neurons with the
largest pure selectivity indices for context (blue), value (red) or action (yellow). The dashed lines show
the decline of the CCGP for the same three variables if we instead ablate neurons with the largest sum of
squares of their three decoding weights (i.e., those with the radial position furthest from the origin in their
three-dimensional weight space), independent of their pure selectivity indices. The two sets of curves are
rather close to each other, and thus these two sets of ablated neurons are of similar importance for CCGP.
(For HPC, the CCGP of the action variable is always below chance level for both curves; not shown). This
is similar to what has been observed in simulations of deep networks 57.

this angle the pure selectivity index. We can now ask whether neurons with a large pure selectivity219

index are particularly important for generalization, as quantified by the cross-condition generaliza-220

tion performance (CCGP). This can be tested by successively removing neurons with the largest221

pure selectivity indices from the data and performing the CCGP analysis on the remaining popu-222

lation of (increasingly) mixed selectivity neurons. The results of this ablation analysis are shown223

in Fig. S16, in which we plot the decay of the CCGP with the number of neurons removed. It224

demonstrates that while pure selectivity neurons are important for generalization (as expected in a225

pseudo-simultaneous population of neurons with re-sampled trial-to-trial variability, in which the226

principal axes of the noise clouds are aligned with the neural axes), they are not more important227

than neurons with overall large decoding weights which typically have mixed selectivity.228

We can perform the same analyses also for the neural network model of Fig. 7. We focus on229

the neural representations obtained from the second hidden layer of the trained network. Fig. S17230

shows a scatter plot of the decoding weights for the parity and magnitude variables. As in the231

neural recordings, many neurons exhibit mixed selectivity. We can again successively ablate neu-232

rons with the largest pure selectivity indices. Unlike for the case of the neural data, this only has233

a small effect on CCGP (see Fig. S17). Presumably this is because here the neural activities are234

simultaneously ‘recorded’, and therefore the decoder can use information contained in the cor-235

relations between different neurons in these representations. Unlike the case of resampled noise236

in a pseudo-simultaneous population, the principal axes of the noise clouds are not necessarily237

aligned with the neural axes. For such a simultaneously observed representation there is no reason238

why pure selectivity neurons should contribute preferentially to the generalization ability of the239

network.240
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Figure S16: CCGP as a function of the number of ablated neurons for the HPC (left), DLPFC (middle),
and ACC (right). The solid lines show the decay of CCGP if we successively remove the neurons with the
largest pure selectivity indices for context (blue), value (red) or action (yellow). The dashed lines show
the decline of the CCGP for the same three variables if we instead ablate neurons with the largest sum of
squares of their three decoding weights (i.e., those with the radial position furthest from the origin in their
three-dimensional weight space), independent of their pure selectivity indices. The two sets of curves are
rather close to each other, and thus these two sets of ablated neurons are of similar importance for CCGP.
(For HPC, the CCGP of the action variable is always below chance level for both curves; not shown). This
is similar to what has been observed in simulations of deep networks 57.

this angle the pure selectivity index. We can now ask whether neurons with a large pure selectivity219

index are particularly important for generalization, as quantified by the cross-condition generaliza-220

tion performance (CCGP). This can be tested by successively removing neurons with the largest221

pure selectivity indices from the data and performing the CCGP analysis on the remaining popu-222

lation of (increasingly) mixed selectivity neurons. The results of this ablation analysis are shown223

in Fig. S16, in which we plot the decay of the CCGP with the number of neurons removed. It224

demonstrates that while pure selectivity neurons are important for generalization (as expected in a225

pseudo-simultaneous population of neurons with re-sampled trial-to-trial variability, in which the226

principal axes of the noise clouds are aligned with the neural axes), they are not more important227

than neurons with overall large decoding weights which typically have mixed selectivity.228

We can perform the same analyses also for the neural network model of Fig. 7. We focus on229

the neural representations obtained from the second hidden layer of the trained network. Fig. S17230

shows a scatter plot of the decoding weights for the parity and magnitude variables. As in the231

neural recordings, many neurons exhibit mixed selectivity. We can again successively ablate neu-232

rons with the largest pure selectivity indices. Unlike for the case of the neural data, this only has233

a small effect on CCGP (see Fig. S17). Presumably this is because here the neural activities are234

simultaneously ‘recorded’, and therefore the decoder can use information contained in the cor-235

relations between different neurons in these representations. Unlike the case of resampled noise236

in a pseudo-simultaneous population, the principal axes of the noise clouds are not necessarily237

aligned with the neural axes. For such a simultaneously observed representation there is no reason238

why pure selectivity neurons should contribute preferentially to the generalization ability of the239

network.240
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Figure S17: Specialization and ablation analyses of second hidden layer in the neural network of Fig. 7.
Left: Two-dimensional scatter plot of the absolute values of the (normalized) decoding weights for the parity
and magnitude dichotomies, as in Fig. S15. Right: CCGP when training on three digits from either side of
the magnitude (red) and parity (blue) dichotomies and testing on the fourth one as a function of the number
of ablated neurons. We ablate the neurons with the largest pure selectivity indices (solid lines), or the ones
with the largest sum of squared decoding weights (dashed lines), as in Fig. S16. Note that even though we
don’t z-score the neural responses for computations of the CCGP, or for any of the analyses shown in Fig. 7,
the decoding weights shown here (and used to select the ablated neurons) are taken from classifiers trained
on z-scored responses so that the weights reflect the relative importance of different neurons for decoding.

S5 Dimensionality of the neural representations241

We utilize a technique developed in 34 to estimate a lower bound for the dimensionality of the242

neural response vectors in a specific time bin during a task. Similar to our other analyses, we build243

average firing rate patterns for all recorded neurons by averaging spike counts sorted according to244

task conditions indexing the trial where the activity is recorded (current trial) or the previous trial.245

The spike counts are z-scored and averaged in 500 ms time bins displaced by 50 ms throughout the246

trial. We then apply the method presented in 34 on the obtained average firing rate activity patterns247

independently within each 500 ms time bin. This procedure allows us to bound the number of248

linear components of the average firing rate patterns that are due to finite sampling of the noise,249

therefore providing an estimate of their dimensionality.250

Figure S18 shows the result of this analysis for all neurons recorded in HPC, DLPFC and251

ACC for which we had at least 15 trials per condition. For average firing rate patterns obtained by252

sorting spike counts according to the 8 conditions of the current trial (continuous lines), dimen-253

sionality peaks at its maximum possible value shortly after the presentation of the image for all254

three areas. The dimensionality for firing rate patterns obtained by sorting the activity according255

to the condition of the previous trial remains around 5 throughout the trial, which is close to the256

value to which dimensionality in the current trial decays towards the end of the trial.257
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