
Supporting Information for: The Triangulation WIthin A

STudy (TWIST) framework for causal inference within

Pharmacogenetic research

Consistency of the CAT estimate

The CAT(Y) estimand is equal to

βCAT (Y ) =
E[Y |T = 1]− E[Y |T = 0]

E[G|T = 1]
,

Under model (2) the numerator of the estimand equals

β0 + (β1 − β0)E[G|T = 1] + γY GE[G|T = 1] + γY UE[U |T = 1]− (γY GE[G|T = 0] + γY UE[U |T = 0])

= β0 + βGMTEE[T |G = 1] + γY G {E[G|T = 1]− E[G|T = 0]}+ γY U {E[U |T = 1]− E[U |T = 0]}

Dividing through by E[G|T = 1] we see that the full estimand equals

βCAT (Y ) = β0 + βGMTE + γY G

(
1− E[G|T = 0]

E[G|T = 1]

)
+ γY UβCAT (U)

The CAT estimand is therefore equivalent to βGMTE if the Homogeneity and the NUC assumptions
hold, and either PG1 or PG3 hold.

Consistency of the GMTE(1) estimate

The GMTE(1) estimand under model (2) is equal to

E[Y |T = 1, G = 1]− E[Y |T = 1, G = 0] = γY 0 + β0 + (β1 − β0) + γY G + γY UE[U |T = 1, G = 1]

− (γY 0 + β0 + γY UE[U |T = 1, G = 0])

= (β1 − β0) + γY G + γY U {E[U |T = 1, G = 1]− E[U |T = 1, G = 0]}
= βGMTE(1) + γY G + γY UβGMTE(1)(U)

For this estimand to equal βGMTE we require assumption PG3 (γY G=0) and that G ⊥⊥ U |T = 1.
Since PG1 and PG2 imply that G ⊥⊥ (U, T ), the GMTE(1) estimate is consistent for the GMTE under
PG1-PG3.

Under model (2) the GMTE(0) estimand is equal to

β̂GMTE(0) = E[Y |T = 0, G = 1]− E[Y |T = 0, G = 0] = γY 0 + γY G + γY UE[U |T = 0, G = 1]

− (γY 0 + γY UE[U |T = 0, G = 0])

= γY G + γY U {E[U |T = 0, G = 1]− E[U |T = 0, G = 0]}
= γY G + γY UβGMTE(0)(U)

This estimand will equal zero when PG3 (γY G=0) and G ⊥⊥ U |T = 0 hold. Using the same logic as
above the GMTE(0) estimate is a consistent estimate for 0 under PG1-PG3.
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Consistency of the RGMTE estimate

Under model (2) we have that RGMTE(Y) estimand is equal to

E[Y |T = 1, G = 1]− E[Y |T = 1, G = 0]− (E[Y |T = 0, G = 1]− E[Y |T = 0, G = 0])

= (β1 − β0) + γY G + γY U {E[U |T = 1, G = 1]− E[U |T = 1, G = 0]}
− γY G + γY U {E[U |T = 0, G = 1]− E[U |T = 0, G = 0]}
= βGMTE + γY U ({E[U |T = 1, G = 1]− E[U |T = 1, G = 0]} − {E[U |T = 0, G = 1]− E[U |T = 0, G = 0]})
= βGMTE + γY UβRGMTE(U)

The RGMTE(Y) estimand is therefore equivalent to βGMTE if the RGMTE(U) estimand is zero.
This will be zero whenever the strength of association between U and G is independent of T or that

Cov(U,G)|T = Cov(U,G)

Note that this second condition will be satisfied if either PG1 holds or NUC holds. If both assumptions
are violated then conditioning on treatment induces a collider bias which alters the strength of association
between U and G.

Consistency of the MR estimate

Under model (2) the MR estimand is equal to:

βMR(Y ) =
E[Y |G = 1]− E[Y |G = 0]

E[T ∗|G = 1]− E[T ∗|G = 0]

We first note that the denominator of the MR estimand simplifies to E[T = 1|G = 1] since E[T ∗|G =
1] = E[TG|G = 1] = E[T |G = 1] and that E[T ∗|G = 0] = E[TG|G = 0] = 0. We can then write the
estimand as

βMR(Y ) =
E[Y |G = 1]− E[Y |G = 0]

E[T |G = 1]
= (β1 − β0)

+
β0(E[T |G = 1]− E[T |G = 0])

E[T |G = 1]

+
γY U (E[U |G = 1]− E[U |G = 0])

E[T |G = 1]

+
γY G

E[T |G = 1]

= βGMTE

+ β0

(
1− E[T |G = 0]

E[T |G = 1]

)
+ γY UβMR(U) +

γY G

E[T |G = 1]

From this we can see that the consistency of the MR estimate relies on assumption PG3 being satisfied
in order for the third bias term to disappear, but there are two possible ways for the first and second
bias terms to disappear. For the first bias term, either assumption PG1 is satisfied, so that E[T |G = 1]-
E[T |G = 0] = 0, or the Homogeneity assumption is satisfied, so that β0 = 0. For the second bias term
to disappear we either require the NUC assumption or PG2.

Estimating the GMTE with binary and time-to-event data

When the outcome is continuous, the TWIST analysis approaches can be implemented using linear
regression to estimate the GMTE as a mean difference. With a binary outcome, we recommend estimating
risk differences directly using either a linear probability model, or using a logistic regression model to
furnish estimates on the risk difference scale. In the latter case, a risk difference can be constructed by
calculating the mean difference between predicted probabilities under manipulation of the appropriate
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variable between levels 1 and 0, as suggested by Gelman and Hill [1]. For example, in the case of the
GMTE(1) estimator

β̂GMTE(1)(Y ) =
1

n

n∑
i=1

π̂(Y )(T ∗ = 1, T = 1, Z = zi)− π̂(Y )(T ∗ = 0, T = 1, Z = zi)

where π̂(Y )(T ∗ = t∗i , T = j, Z = zi) is the estimated fitted value from a logistic regression of Y on T ,T ∗

and Z at treatment level j. For time-to-event data, we recommend analysing the data using an Aalen
additive hazard model, as suggested by Tchetgen et. al. [2]. Specifically, one would assume that model
(2) holds on the additive hazard scale, so that at time ty the hazard:

h(ty|T,U,G,Z) = γY 0 + β1TG+ β0T (1−G) + γY GG+ γY UU + γY ZZ (1)

Which estimates are uncorrelated?

Let Ȳij = Ê[Y |T = i, G = j], Var(Ȳij) = σ2, πij = Ê[T = i|G = j] and τij = Ê[G = j|T = i]. We now
write the CAT, GMTE(1), RGMTE and MR estimates as

β̂CAT (Y ) =
Ȳ10τ10 + Ȳ11τ11 − (Ȳ00τ00 + Ȳ01τ01)

τ11

β̂GMTE(1)(Y ) = Ȳ11 − Ȳ10

β̂MR(Y ) =
Ȳ11π11 + Ȳ01π01 − (Ȳ10π10 + Ȳ00π00)

π11

β̂RGMTE(Y ) = Ȳ11 − Ȳ10 − (Ȳ01 − Ȳ00)

Ignoring the denominator of β̂MR, the covariance between its numerator and β̂RGMTE can be shown
to equal zero. Let nij equal the number of subjects with variables T = i and G = j in the sample and
let nGj equal the number of subjects with variable G = j in the sample. It then follows that:

π11Cov(β̂MR(Y ), β̂RGMTE(Y )) = π11Var(Ȳ11)− π10Var(Ȳ10)− π01Var(Ȳ01) + π00Var(Ȳ00)

= π11
σ2

n11
+ π10

σ2

n10
− π01

σ2

n01
− π00

σ2

n00

=
σ2

nG1
+

σ2

nG1
− σ2

nG0
− σ2

nG0

= 0

Using similar arguments it is easy to show that

τ11Cov(β̂CAT (Y ), β̂RGMTE(Y )) = 0

τ11π11Cov(β̂CAT (Y ), β̂MR(Y )) = 0 if G ⊥⊥ T ,
Cov(β̂CAT (Y ), β̂GMTE(1)(Y )) = 0

In cases where G ⊥⊥ T does not hold, but G predicts a relatively small amount of variation in T ,
the correlation between the CAT and MR estimate will be non-zero but negligible. This is a reasonable
assumption in almost all pharmacogenetic contexts. This means that there are effectively only two pairs
of correlated estimates: (GMTE(1), RGMTE), and (GMTE(1), MR).

Combining uncorrelated estimates

In order to decide whether two uncorrelated estimates can be combined, we propose the use of a simple
heterogeneity statistic. This procedure is illustrated in Fig 3 taking the GMTE(1) and CAT estimates
as an example. Using each estimate we calculate their inverse variance weighted average and from this
the heterogeneity statistic, QGMTE(1),CAT .

QGMTE(1),CAT =
∑
e

we(β̂e(Y )− β̂c(Y ))2, where β̂c(Y ) =

∑
e weβ̂e∑
e we

, e = {GMTE(1), CAT},
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and where we is the inverse variance of estimate β̂e. If this statistic is less than 1-α quantile of a χ2
d

(where α is the pre-specified significance threshold and d = Card(e)-1 = 1) then we judge the GMTE(1)

and CAT estimates to be sufficiently similar to combine into a single estimate β̂GMTE(1),CAT (Y ). If
QGMTE(1),CAT is greater than 1-α threshold then the two estimates should be left separate.

When does β̂RGMTE,MR(Y )=β̂GMTE(1)(Y )?

Using the notation from the previous appendix, we can write the MR estimand as

E[Y |G = 1]− E[Y |G = 0]

E[T |G = 1]
=

Ȳ01π01 + Ȳ11π11 − (Ȳ00π00 + Ȳ10π10)

π11

=
Ȳ11π11 − Ȳ10π10 + (Ȳ01π01 + Ȳ00π00)

π11

Under the assumption that G ⊥⊥ T we have that π10 = π11 = Pr(T = 1) = π1, π00 = π01 = Pr(T = 0)
= π0 and the MR estimand equals

βGMTE(1)(Y ) + βGMTE(0)(Y )
π1
π0

The RGMTE estimand is βGMTE(1)(Y )− βGMTE(0)(Y ). Therefore, when additionally Pr(T = 1) =
Pr(T = 0), both the RGMTE and MR estimates will have equal precision and the GMTE(1) estimate will
be the average of the RGMTE estimand and the MR estimand. In general, an inverse variance weighted
average of the RGMTE and MR estimates is likely to be a close approximation to the GMTE(1) estimate.
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