
REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
The manuscript by Abdelmoula et al. presents an approach of using an autoencoder to obtain a 
low-dimensional latent representation of mass spectrometry imaging (MSI) data. 
 
For full disclosure, I've reviewed the previous versions of the manuscript for Nature Methods and 
this review integrates my previous reviews, as I found this version of the manuscript very closely 
resembling the last version I've seen. 
 
The authors show that this approach helps reconstruct data with high precision and is fast. 
However, the manuscript has several major issues. 
 
First major issue: The manuscript claims that peak picking is a major unsolved challenge in MSI 
and criticizes some other approaches (without a comprehensive review) of being subjective and 
requiring user input. It's hard to accept both statements. Several major MSI vendors (Bruker, 
Thermo) perform peak picking on the fly for their data that requires no user input. This basically 
removes the need for custom-developed peak picking algorithms. Moreover, the authors fall into 
the trap of their own criticism by providing yet another subjective method without any objective 
evaluation. The only comparison presented in Figure S11 which shows one peak that is not 
detected in a vendor software but was detected by the authors' method. However, showing just 
one peak from one spectrum cannot be considered as comparison or evaluation. Concerning the 
speed improvement, Table S6 compares runtimes between the proposed method and a commercial 
software. The improvement is ~7 times for a regular FTICR dataset and from 10 hours to 4 
minutes for a 3D dataset when using an approximate training/testing strategy. However, the 
authors have compared their method only against one method in vendor software and actually a 
slow one. If they performed peak picking on a mean spectrum, then the results would be achieved 
much faster and likely faster than their own method (I cannot reproduce is as the data was not 
provided). Would such a simple but fast method deliver worse results? It's not shown. 
 
Second major issue: The authors provide no comparison with state of the art methods for 
dimensionality reduction. This is not acceptable for the present state of the field where tens of 
dimensionality reduction methods were developed; see (Verbeeck et al 2019 Mass Spectrom Rev) 
for a review and a list of existing methods. 
 
Third major issue: The authors provide no objective evaluation of their VAE-based method other 
than by showing that it is able to reconstruct the data with high precision as well as it is 4 times 
faster and is more memory efficient than their previous implementation. I speculate that many 
methods listed in (Verbeeck et al 2019 Mass Spectrom Rev) can achieve similar performance. 
 
Fouth major issue: The availability statement "Source code and scripts will be available on GitHub 
at time of publication." is not acceptable for a manuscript proposing a novel computational 
method, since it provides no opportunity for reviewers to evaluate the code, its correctness as well 
as to make sure that the repository covers all aspects necessary for reproducing the results. 
 
 
Reviewer #2 (Remarks to the Author): 
 
The manuscript by Abdelmoula et al. describes a method (a deep learning tool) that can visualize 
and reveal biologically-relevant clusters of tumor heterogeneity and identify underlying informative 
m/z peaks from large data sets acquired by mass spectrometry imaging (MSI). The authors 
demonstrate the robustness and generic applicability of the method on MSI data of large size from 
different biological systems acquired using different mass spectrometers. The manuscript is well 
and clearly presented. The method addresses a key challenge and has a potential for having a 
broad impact in the field. 
 
1. The performance of the proposed method was tested using various 2D and 3D MSI using 
different MSI platforms. It is however not clear to reviewer how this method compares with other 



methods currently used? The authors mention that the method ‘provided time and computation 
efficient analysis of various types of MSI data’. Compared to which method? How much more 
efficient? Please include a description about the methods currently used in MSI for these types of 
studies and include quantitative data. 
 
2. The performance of the method was also tested using various biological samples collected from 
different organs; i) human prostate cancer tissue specimens, ii) a mouse brain model of 
glioblastoma, iii) human colorectal adenocarcinoma and iv) human oral squamous cell carcinoma. 
Molecular patterns associated with tumour regions were identified and ion features were 
tentatively ‘identified’ based on accurate mass. The authors tested the method on different tissue 
types but they did not use the method for defining different grades of e.g., human prostate 
cancer. Instead of providing data from many different cancer types it would have been much more 
interesting to test and define the method on different grades of the cancers. Please include an 
example(s). 
 
 
 



RESPONSE TO THE REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
The manuscript by Abdelmoula et al. presents an approach of using an autoencoder to obtain a low-dimensional latent 
representation of mass spectrometry imaging (MSI) data. For full disclosure, I've reviewed the previous versions of the 
manuscript for Nature Methods and this review integrates my previous reviews, as I found this version of the manuscript 
very closely resembling the last version I've seen.  
The authors show that this approach helps reconstruct data with high precision and is fast. However, the manuscript has 
several major issues.  
 
First major issue: The manuscript claims that peak picking is a major unsolved challenge in MSI and criticizes some other 
approaches (without a comprehensive review) of being subjective and requiring user input. It's hard to accept both 
statements. Several major MSI vendors (Bruker, Thermo) perform peak picking on the fly for their data that requires no 
user input. This basically removes the need for custom-developed peak picking algorithms. Moreover, the authors fall 
into the trap of their own criticism by providing yet another subjective method without any objective evaluation. The 
only comparison presented in Figure S11 which shows one peak that is not detected in a vendor software but was 
detected by the authors' method. However, showing just one peak from one spectrum cannot be considered as 
comparison or evaluation. Concerning the speed improvement, Table S6 compares runtimes between the proposed 
method and a commercial software. The improvement is ~7 times for a regular FTICR dataset and from 10 hours to 4 
minutes for a 3D dataset when using an approximate training/testing strategy. However, the authors have compared 
their method only against one method in vendor software and actually a slow one. If they performed peak picking on a 
mean spectrum, then the results would be achieved much faster and likely faster than their own method (I cannot 
reproduce is as the data was not provided). Would such a simple but fast method deliver worse results? It's not shown. 
 
Ans: Please note that both data and code were provided. A quantitative comparison of peak learning using msiPL and a 
classical approach of peak picking on the mean spectrum is now included in the main manuscript and summarized in Figure 
S11 below which is now included in the supplementary materials. We based the classical peak picking approach on the 
orthogonal matching pursuit (OMP) algorithm that is implemented in the Bruker software SCiLS lab (version 2020a). The 
OMP algorithm for peak picking was applied on the mean spectrum of the 3D MALDI MSI PDX GBM dataset using the 
software’s default values. We have then replaced Figure S11 in original submission with the new Figure S11 below. The 
following text is now added to the main manuscript: 
 
“The peak learning performance of msiPL was benchmarked against a classical approach by performing peak picking on a 
mean spectrum. The classical approach is based on the orthogonal matching pursuit (OMP) algorithm [Pati et al, IEEE 1993; 
and Alexandrov et al., J. Proteome Research2010] which is implemented in the software SCiLS lab (version 2020a, Bruker). 
The OMP algorithm for peak picking was applied on the mean spectrum of the 3D MALDI MSI PDX GBM dataset using the 
software’s default values. The peaks identified by both msiPL and the OMP are highlighted in Figure S11.a, and listed in 
the Supplementary File “Peaks_msiPL_OMP(MeanSpec).xlsx”. While 38% of the peaks were picked by both methods, the 
msiPL method exclusively picked 53% of the total identified peaks whereas 9% of the peaks were exclusively picked by the 
classical approach (Figure S11). The performance of msiPL in identifying peaks of lower intensities, as shown in Figure 
S11.b-c, is attributed to the underlying employed concept of manifold learning that focuses on learning m/z patterns 
regardless of peak intensity and shape. The majority of peaks identified by msiPL in the 3D MSI PDX GBM dataset 
(Supplementary Tables S2-S4) were missed by the classical OMP method applied to the mean spectrum for rapid analysis 
(few seconds). The sensitivity for peak identification with such a classical method could be improved by optimizing peak 
picking parameters [Donnelly et al., Nature Methods 2019] and by analyzing a wider number of spectra [Alexandrov, BMC 
Bioinformatics. 2012; Randall et al. Cancer Research 2020], but this results in longer processing time (Supplementary Table 
S7). Moreover, a recent study by Murta et al. showed that the selection of peak picking parameters does not only affect 
the clustering analysis but could in turn impact biological interpretation [Murta et al. Anal Chem, 2021]. In contrast, msiPL 
allows rapid and sensitive spectral data processing without the optimization of pre-processing parameters.” 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S11. Comparison of peak picking analysis on the 3D MALDI FT-ICR MSI PDX GBM dataset: (a) using msiPL on full spectral data and 
the orthogonal matching pursuit (OMP) algorithm on the mean spectrum (implemented in the commercial software of SCiLS Lab version 
2020a (Bruker, Bremen, Germany)). (b-c) visualization of some of the peaks with biological relevance identified only by the manifold learning 
approach of msiPL but not by a classical approach of applying the OMP algorithm on the mean spectrum. 
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Second major issue: The authors provide no comparison with state of the art methods for dimensionality reduction. This 
is not acceptable for the present state of the field where tens of dimensionality reduction methods were developed; see 
(Verbeeck et al 2019 Mass Spectrom Rev) for a review and a list of existing methods.  
 
Ans: We have now quantitatively benchmarked the computational performance of msiPL against two dimensionality 
reduction algorithms namely: 1- Uniform Manifold Approximation and Projection (umap), and 2- Hierarchical Stochastic 
Neighbor Embedding (HSNE) which is a scalable version of the widely used t-SNE method. The main manuscript has been 
updated accordingly by including the following Table 1 and red-highlighted text. 
 
“The computational performance of msiPL was compared to two state-of-the-art methods for non-linear dimensionality 
reduction, namely: 1- Uniform Manifold Approximation and Projection (umap) [McInnes et al. arXiv:1802.03426,2018], 
and 2- Hierarchical Stochastic Neighbor Embedding (HSNE) [Pezzotti et al. Computer Graphics Forum,2016] which is the 
scalable version of t-SNE.  These methods have been effectively used to analyze different types of high-dimensional data 
[Becht et al.  Nature biotechnology (2019); van Unen et al. Nature communications (2017); Korsunsky et al. Nature 
Methods (2019)], nevertheless they exhibit computational limitations for large scale MSI data analysis (e.g. MSI data with 
10! − 10" spectra without prior peak picking). Table 1 shows that the computational performance of msiPL outperforms 
both umap and HSNE for the analysis of large scale MSI data.” 
 
	
        Table 1.Non-linear algorithmic performance of MSI spectral data (time and memory comparison) 

Dataset  umap HSNE msiPL 
3D MALDI MSI of 

Mouse Kidney 
#Spec = 1,362,830 

#m/z = 7671 

Memory  
Computationally 

Intractable 
 

121.8 GB RAM <6 GB RAM 
Time 43 min Training: 8.6 min 

Testing: 10 sec/tissue 

3D MALDI MSI of 
Human OSCC 

#Spec= 828,558 
#m/z = 7665 

Memory 155 GB RAM 90 GB RAM <6 GB RAM 
Time 99.95 min 25 min Training: 6.1 min 

Testing: 8 sec/tissue 

 
 
Third major issue: The authors provide no objective evaluation of their VAE-based method other than by showing that it 
is able to reconstruct the data with high precision as well as it is 4 times faster and is more memory efficient than their 
previous implementation. I speculate that many methods listed in (Verbeeck et al 2019 Mass Spectrom Rev) can achieve 
similar performance.  
Ans:  We had originally assessed the learning quality of the VAE model through quantitative assessment using the mean 
squared error metric between the model’s reconstructed data and the original ground truth. This is an established 
quantitative machine learning evaluation criterion which is neither subjective nor biased since it is strictly data driven.  
 
Fourth major issue: The availability statement "Source code and scripts will be available on GitHub at time of 
publication." is not acceptable for a manuscript proposing a novel computational method, since it provides no 
opportunity for reviewers to evaluate the code, its correctness as well as to make sure that the repository covers all 
aspects necessary for reproducing the results. 
 
Ans: In the original submission, specifically on page#24 of the manuscript, we had provided the GitHub link to our 
python code.  
 
 
 
 



 
Reviewer #2 (Remarks to the Author): 
 
The manuscript by Abdelmoula et al. describes a method (a deep learning tool) that can visualize and reveal biologically-
relevant clusters of tumor heterogeneity and identify underlying informative m/z peaks from large data sets acquired by 
mass spectrometry imaging (MSI). The authors demonstrate the robustness and generic applicability of the method on 
MSI data of large size from different biological systems acquired using different mass spectrometers. The manuscript is 
well and clearly presented. The method addresses a key challenge and has a potential for having a broad impact in the 
field. 
 
Ans: Thank you, we very much appreciate the positive feedback and appreciation of our work in that we are addressing 
a key challenge in the field.  
 
1. The performance of the proposed method was tested using various 2D and 3D MSI using different MSI platforms. It is 
however not clear to reviewer how this method compares with other methods currently used? The authors mention 
that the method ‘provided time and computation efficient analysis of various types of MSI data’. Compared to which 
method? How much more efficient? Please include a description about the methods currently used in MSI for these 
types of studies and include quantitative data. 
 
Ans: Thank you for raising this interesting point. Based on your request, we have performed a quantitative assessment to 
benchmark the computational performance of our method compared to the state-of-the-art in non-linear dimensionality 
reduction used for MSI data analysis. Also, we had previously benchmarked the computational performance of peak 
picking between our method and the widely used commercial software of SCiLS lab (Bruker, Germany). 
 
We have now directly compared the computational performance of msiPL to two commonly used non-linear algorithms: 
1- Uniform Manifold Approximation and Projection (umap) [McInnes et al. arXiv:1802.03426,2018; Becht et al.  Nature 
biotechnology,2019], and 2- Hierarchical Stochastic Neighbor Embedding  (HSNE) [Pezzotti et al. Computer Graphics 
Forum,2016] which is the scalable version of the widely used method of t-SNE. Both umap and HSNE/t-SNE are non-linear 
dimensionality reduction methods, which have been effectively used over the last decade to analyze pre-processed MSI 
data and other types of high dimensional data. However, for large scale MSI data analytics (e.g. 10! − 10" spectra without 
prior peak picking), these methods will be slower, require extensive memory, and may become computationally 
intractable. We have applied these algorithms to the analysis of two large MSI datasets (3D MALDI MSI of Mouse Kidney 
and 3D MALDI MSI of human OSSC). Table 1 below summarizes the computational performance of these algorithms in 
comparison to our method. We have updated the main manuscript by including Table 1 and adding the following text: 
 
“The computational performance of msiPL was compared to two state-of-the-art methods for non-linear dimensionality 
reduction, namely: 1- Uniform Manifold Approximation and Projection (umap) [McInnes et al. arXiv:1802.03426,2018], 
and 2- Hierarchical Stochastic Neighbor Embedding (HSNE) [Pezzotti et al. Computer Graphics Forum,2016] which is the 
scalable version of t-SNE.  These methods have been effectively used to analyze different types of high-dimensional data 
[Becht et al.  Nature biotechnology (2019); van Unen et al. Nature communications (2017); Korsunsky et al. Nature 
Methods (2019)], nevertheless they exhibit computational limitations for large scale MSI data analysis (e.g. MSI data with 
10! − 10" spectra without prior peak picking). Table 1 shows that the computational performance of msiPL outperforms 
both umap and HSNE for the analysis of large scale MSI data.” 
 
 
 
 
 
 
 
	



Table 2.Non-linear algorithmic performance of MSI spectral data (time and memory comparison) 

Dataset  umap HSNE msiPL 
3D MALDI MSI of 

Mouse Kidney 
#Spec = 1,362,830 

#m/z = 7671 

Memory  
Computationally 

Intractable 
 

121.8 GB RAM <6 GB RAM 
Time 43 min Training: 8.6 min 

Testing: 10 sec/tissue 

3D MALDI MSI of 
Human OSCC 

#Spec= 828,558 
#m/z = 7665 

Memory 155 GB RAM 90 GB RAM <6 GB RAM 
Time 99.95 min 25 min Training: 6.1 min 

Testing: 8 sec/tissue 

 
We had originally compared the computational performance of spectral-wise peak picking using our method and a 
classical approach that utilizes the orthogonal matching pursuit algorithm (OMP) that is implemented in the Bruker 
software SCiLS Lab version 2020a. In the classical approach, the spectral-wise peak picking aims at increasing the 
identification sensitivity through analyzing a large number of spectra but at the cost of processing speed due to the OMP 
quadratic complexity. The results are summarized in the supplementary material (Table S7). Moreover, in our response to 
the first comment of Reviewer 1, we have performed a quantitative comparison of the peak picking performance between 
our method and a more rapid, but less sensitive classical approach for which peak picking was applied on the mean 
spectrum (see above Figure S11).  
	
Table S7. Running Time for peak picking using commercial software compared to msiPL 

Dataset	 Running	 Time:	 Only	 Peak	
Picking	 Using	 SCiLS	 2019c	
(Bruker,	Germany)	

The	entire	msiPL	analysis	 (not	
just	the	peak	learning	step)	

2D	 FT	 ICR	 MSI	 of	 human	
prostate	cancer	(12,716	spectra;	
730,403	m/z	bins)	*	
*sampling	 every	 20th	 spectrum	 for	
SCiLS	analysis.	

4	hours	and	50	minutes		 40	minutes	

3D	MALDI	MSI	of	a	PDX	mouse	
brain	 model	 of	 glioblastoma	
(14,833	 spectra;	 661,402	 m/z	
bins)+	
+sampling	 every	 5th	 spectrum	 for	
SCiLS	analysis.	

10	hours	and	39	minutes	 Training	 phase:	 3.6	 minutes	
Testing	phase:		8	seconds.	
	
Note:	 3D	 MSI	 dataset	 is	
analyzed	 using	 msiPL	 using	
training/testing	 strategy	 as	
explained	in	the	manuscript.	

 
 
2. The performance of the method was also tested using various biological samples collected from different organs; i) 
human prostate cancer tissue specimens, ii) a mouse brain model of glioblastoma, iii) human colorectal adenocarcinoma 
and iv) human oral squamous cell carcinoma. Molecular patterns associated with tumour regions were identified and ion 
features were tentatively ‘identified’ based on accurate mass. The authors tested the method on different tissue types 
but they did not use the method for defining different grades of e.g., human prostate cancer. Instead of providing data 
from many different cancer types it would have been much more interesting to test and define the method on different 
grades of the cancers. Please include an example(s). 
 
Ans: We thank the reviewer for this insightful point. We are currently working on the development of methods for 
classification and predictive models. While the methods in development are beyond the scope of the presented study, we 
have here expanded our analysis to address the comment. We have applied the msiPL model trained with a MALDI FT-ICR 
MSI dataset acquired from a prostate cancer tissue section with Gleason score (3+4) (Figure 2) on a new unseen prostate 
tissue from a different patient with a distinct Gleason score (5+4). The testing dataset encompasses 13,471 spectra each 
of which has 61,343 m/z values. While the model training phase took 40 minutes, the overall testing phase took 56 



seconds. The results are summarized in the Figure S13 below, which is now added to the supplementary material. The 
main manuscript has been updated with the following text: 
 
 “We sought to investigate the capabilities of a trained msiPL model to analyze unseen data of similar tumor type but from 
a different subject with different tumor grade. Here, the model trained with a MALDI FT-ICR MSI dataset from prostate 
cancerous tissue with a Gleason score (3+4) (Figure 2) was applied to the analysis of a distinct MALDI FT-ICR MSI dataset, 
see Supplementary Figure S13. The histopathological annotation of the test tissue section revealed two cancerous regions 
with distinct Gleason scores of (5+4) and (3+4) (Supplementary Figure S13-d). The test MSI dataset, constituting of 13,471 
spectra each with 61,343 m/z values, was analyzed by the trained msiPL model in 56 seconds. The model was able to 
predict and reconstruct the original test data with an overall mean squared error of 2.273 × 10#!, and the overlay of the 
average TIC normalized spectrum of both original and predicted data is shown in Supplementary Figure S13-a. The 
distribution of the GMM model selection criterion based on the Bayesian information criterion (BIC) and Kneedle 
algorithm revealed an optimal number of K-clusters (K=11) (Supplementary Figure S13-b), which was applied to a 
clustering analysis of the encoded features (Supplementary Figures S13-c and S13-e).  Of interest, the model captured a 
spatial cluster associated with the histopathological annotation of Gleason score (5+4) (Supplementary Figure S13-f), and 
the Pearson correlation analysis revealed the highest correlated ion feature at m/z 786.5981	 ± 0.001 (Supplementary 
Figure S13-g). In accordance with a recent study that analyzed the same dataset, we noticed clustering distinction between 
two Gleason scores of (5+4) and (3+4) [Randall et al, Molecular Cancer Research, 2019]. While our results support the 
efficiency of msiPL for unsupervised mining of different MSI datasets and identification of spatial patterns of biological 
relevance, we envision future extensions of the msiPL model to enable classification and predictive tasks for tumor type 
and grade directly from the mass spectral data.” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

	
Figure S13. Analysis of a test MALDI FT-ICR MSI dataset from prostate cancer tissue: a. Overlay of the mean spectrum of both TIC 
normalized original (green) and predicted (red) data with an overall mean squared error of 2.273 × 10!". b. Model selection of K-clusters 
to automatically cluster the encoded features shown in (c) using Bayesian information criterion (BIC) and the Kneedle algorithm. d. 
Histopathological annotation of the cancerous regions and associated Gleason score (GS). e. GMM-based clustering (K=11) of the 
encoded features (c) reveals a tumor cluster (f) that was found associated with a higher tumor grade region of GS (5+4). g. Spatial 
distribution of the highest correlated ion feature with the tumor cluster (f) was found at m/z 786.5981± 0.001 with a Pearson correlation 
coefficient of 0.746. 
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REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have performed a revision and added new results, in particular by comparing their 
method against OMP (in terms of detected peaks) and against UMAP/HSNE in terms of memory 
and runtime. 
 
However, there is still a big question whether their proposed method is better than the state of the 
art efficient methods for dimensionality reduction developed specifically for MSI as reviewed by 
Verbeeck et al 2019 Mass Spectrom Rev. These include: Memory‐Efficient PCA, DWT, random 
projections, and compressed sensing (see section "B. Intermezzo: Dimensionality Reduction and 
Computational Resources” in Verbeeck et al 2019 Mass Spectrom Rev). 
 
Below, I comment on how this revision addresses the four major issues raised by me in the 
original review. 
 
 
First major issue: partially addressed 
 
I welcome the performed comparison against a commercially available method (orthogonal 
matching pursuit (OMP) algorithm applied to a mean spectrum). The results confirm what I 
suspected: this 10-years old method is lightning fast and takes a few seconds only compared to 
5+ minutes for the proposed method msiPL. Even with default parameters it finds 5% of unique 
peaks not found by msiPL. I’m pretty sure that by changing the OMP parameters from default the 
authors would find that it can detect almost all peaks detected by msiPL. 
 
Moreover, the presentation of new results is biased and without error analysis: the authors show 
peaks detected by their algorithm only but do not show 5% of peaks detected by OMP. 
 
 
Second major issue: partially addressed 
 
Following my request to compare their method with the state of the art methods for dimensionality 
in particular from (Verbeeck et al 2019 Mass Spectrom Rev), the authors compared their method 
to UMAP and HSNE. This, however, does not address the raised issue, as the choice of UMAP nor 
HSNE is rather arbitrary and neither UMAP nor HSNE represent the most efficient state of the art 
methods in MSI. Instead, there is a number of memory/computing power-efficient methods 
specifically developed for MSI as reviewed by Verbeeck et al 2019 Mass Spectrom Rev. These 
include: Memory‐Efficient PCA, DWT, random projections, and compressed sensing (see section "B. 
Intermezzo: Dimensionality Reduction and Computational Resources” in Verbeeck et al 2019 Mass 
Spectrom Rev). 
 
I request once again to perform a comparison with the computationally efficient methods which 
correspond to the state of the art in MSI and are available e.g. the random projections code is 
available at https://pubs.acs.org/doi/10.1021/ac400184g. 
 
 
Third major issue: not addressed 
 
In their response, the authors against avoid any comparison to other efficient methods for 
dimensionality reduction which were developed for MSI; let me cite again (Verbeeck et al 2019 
Mass Spectrom Rev) and refer to examples I cited in the Second major issue. 
 
Please do not get me wrong, I do not argue against using the mean squared error (MSE) as a 
metric for evaluating the quality. However, I request authors to provide evidence that their MSE is 
lower than can be achieved by the state of the art methods (Verbeeck et al 2019 Mass Spectrom 
Rev). 
 



 
Fourth major issue: addressed 
 
The code is indeed provided since August 2020. I’m sorry for claiming that it was not available, 
likely because during the earlier submission of this manuscript to Nature Methods it was not 
available and I didn't double check this particular point when submitting my review to Nature 
Communications. 
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors addressed all issues appropriately. 



 
 
REVIEWER COMMENTS AND RESPONSES MARCH 2021 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have performed a revision and added new results, in particular by comparing their method against OMP (in 
terms of detected peaks) and against UMAP/HSNE in terms of memory and runtime.  
 
However, there is still a big question whether their proposed method is better than the state of the art efficient 
methods for dimensionality reduction developed specifically for MSI as reviewed by Verbeeck et al 2019 Mass Spectrom 
Rev. These include: Memory‐Efficient PCA, DWT, random projections, and compressed sensing (see section "B. 
Intermezzo: Dimensionality Reduction and Computational Resources” in Verbeeck et al 2019 Mass Spectrom Rev).  
 
Below, I comment on how this revision addresses the four major issues raised by me in the original review. 
 
To be more specific, we have already compared against OMP both in terms of detected peaks and time, as reported in 
our prior revision. Also, the dimensionality reduction approaches cited in the 2019 review are not state of the art. We 
used UMAP [published 2018; 2090 citations as of 03/02/21; first application of UMAP in Nat Biotech 12/03/19 37: 38‐44 
(2019) 969 citations as of 03/02/21)] and HSNE [published in 2016; t‐SNE 2008 18,148 citations as of 03/02/21; HSNE 
which is a scalable version for large datasets 2016; 163 citations] as state of the art while the reviewer is referring to 
older methods as state of the art. In fact, the first author of the cited review article, Verbeeck, just published a few days 
ago using UMAP as a dimensionality reduction approach (Anal Bioanal Chem 2021 Mar 1 Spatially aware clustering of 
ion images in mass spectrometry imaging data using deep learning, Zhang, Claesen, Moerman, Groseclose, Waelkens, 
De Moor, and Verbeeck). The reviewer refers to methods that are not state of the art, including DWT, which was 
published by Van de Plas in 2008 (https://dl.acm.org/doi/10.1145/1363686.1363989) and cited 11 times.  
 
Here are the original references for algorithms that the Reviewer keeps refering to as “state of the art” based on their 
cited review article in the journal Mass Spectrometry Reviews: 

1‐  PCA [1987] by Wold, Svante, Kim Esbensen, and Paul Geladi. "Principal component analysis." Chemometrics and 
intelligent laboratory systems 2.1‐3 (1987): 37‐52. 

2‐ Random Projections [2001]: Bingham, Ella, and Heikki Mannila. "Random projection in dimensionality reduction: 
applications to image and text data." Proceedings of the seventh ACM SIGKDD international conference on 
Knowledge discovery and data mining. 2001. 

3‐ DWT[1992] Shensa, Mark J. "The discrete wavelet transform: wedding the a trous and Mallat algorithms." IEEE 
Transactions on signal processing 40.10 (1992): 2464‐2482. 

 
 
First major issue: partially addressed 
 
I welcome the performed comparison against a commercially available method (orthogonal matching pursuit (OMP) 
algorithm applied to a mean spectrum). The results confirm what I suspected: this 10‐years old method is lightning fast 
and takes a few seconds only compared to 5+ minutes for the proposed method msiPL. Even with default parameters it 
finds 5% of unique peaks not found by msiPL. I’m pretty sure that by changing the OMP parameters from default the 
authors would find that it can detect almost all peaks detected by msiPL.  
 
Moreover, the presentation of new results is biased and without error analysis: the authors show peaks detected by 
their algorithm only but do not show 5% of peaks detected by OMP. 
 
First, we assume that the reviewer meant 9% above, and not 5%. Also, we had already specifically expanded in the 
revised manuscript on the balance between analysis time and peak identification. Moreover, we had also provided the 
extensive list of peaks found by OMP and msiPL, referred again here “The peaks identified by both msiPL and the OMP 



are highlighted in Figure S11.a, and listed in the Supplementary File “Peaks_msiPL_OMP(MeanSpec).xlsx””. Results from 
both were also highlighted in Figure S.11.   
 
Again, from page 253 of Verbeeck, Caprioli, van de Plas: “Peak picking is, however, a rather drastic form of feature 
selection that discards a large amount of information from the original data (e.g., peak shape), while also holding the risk 
of discarding peaks that go unrecognized by the peak‐picking algorithm. This makes the quality of the subsequent 
analysis dependent on the quality of the preceding peak‐picking or feature selection method, which may not always be 
desirable (Palmer, Bunch, & Styles, 2013, 2015).” One significant advance with msiPL is to avoid the optimization of 
preprocessing parameters which are known to affect downstream analyses, as stated in your own cited review above 
(Verbeeck et al 2019 Mass Spectrom Rev). We also highlighted that parameters could be modified and produce different 
results, but again, an advantage of msiPL is to avoid the subjective step while producing reliable results in a timely 
manner.  We have now edited Figure S11 by adding a pie chart comparison that showed that msiPL covered 99% of 
peaks identified by a more accurate approach of applying OMP algorithm on thousands of spectra which comes at the 
cost of slow processing as shown in Table S7 (which was already presented in the prior revision). 
 
Table S7. Running Time for peak picking using commercial software compared to msiPL 

Dataset  Running  time  for  only  peak 
picking  step  using  OMP 
algorithm implemented in SCiLS 
2019c (Bruker, Germany) 

The  entire  msiPL  analysis  (not 
just the peak learning step) 

2D FT ICR MSI of human prostate 
cancer (12,716 spectra; 730,403 
m/z bins) * 
*sampling  every  20th  spectrum  for 

OMP analysis. 

4 hours and 50 minutes   40 minutes 

3D MALDI MSI of  a  PDX mouse 
brain  model  of  glioblastoma 
(14,833  spectra;  661,402  m/z 
bins)+ 
+sampling every 5th spectrum for OMP 

analysis. 

10 hours and 39 minutes  Training  phase:  3.6  minutes
Testing phase:  8 seconds. 
 
Note: 3D MSI dataset is analyzed 
using msiPL using training/testing 
strategy  as  explained  in  the 
manuscript. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Second major issue: partially addressed 
 
 

a 

b 

c 

d 

e 

FigureS11. Comparison of peak picking analysis  on  the 3D MALDI  FT‐ICR MSI PDX GBM dataset:  (a‐b) using msiPL on  full  spectral  data and  the 
orthogonal matching pursuit (OMP) algorithm on the mean spectrum (implemented in the commercial software of SCiLS Lab version 2020a (Bruker, 
Bremen, Germany)). (c‐d) visualization of some of the peaks with biological relevance identified only by the manifold learning approach of msiPL but 
not by a classical approach of applying the OMP algorithm on the mean spectrum. (e) msiPL covered 99% of peaks identified by a more powerful 
approach of applying the OMP method on a wider range of spectra (thousands) but at cost of slow processing (Table S7).  



Following my request to compare their method with the state of the art methods for dimensionality in particular from 
(Verbeeck et al 2019 Mass Spectrom Rev), the authors compared their method to UMAP and HSNE. This, however, does 
not address the raised issue, as the choice of UMAP nor HSNE is rather arbitrary and neither UMAP nor HSNE represent 
the most efficient state of the art methods in MSI. Instead, there is a number of memory/computing power‐efficient 
methods specifically developed for MSI as reviewed by Verbeeck et al 2019 Mass Spectrom Rev. These include: Memory‐
Efficient PCA, DWT, random projections, and compressed sensing (see section "B. Intermezzo: Dimensionality Reduction 
and Computational Resources” in Verbeeck et al 2019 Mass Spectrom Rev).  
 
I request once again to perform a comparison with the computationally efficient methods which correspond to the state 
of the art in MSI and are available e.g. the random projections code is available at 
https://pubs.acs.org/doi/10.1021/ac400184g  
 
The random projections code cited above was published in 2013 and received 16 citations. This is not state of the art. 
Verbeeck, first author of the reviewer’s referred review article, published a few days ago, March 1st 2021 using UMAP as 
a state of the art dimensionality reduction tool. PCA and DWT (published in 2008 by Van de plas and cited 11 times) are 
not state of the art. We have compared/benchmarked msiPL to state of the art approaches. 
 
Please also note the comment from Race et al.  for the Reviewer’s refered method “Memory Efficient Principal 
Component Analysis for the Dimensionality Reduction of Large Mass Spectrometry Imaging Data Sets”, Anal Chem 2013, 
which is as follows: “Note that the full covariance matrix must be constructed and very high‐dimensional data sets may 
still prove to be intractable. For this reason, we employ peak detection methods in order to reduce the dimensionality of 
the data.” 
 
 
Third major issue: not addressed 
 
In their response, the authors against avoid any comparison to other efficient methods for dimensionality reduction 
which were developed for MSI; let me cite again (Verbeeck et al 2019 Mass Spectrom Rev) and refer to examples I cited 
in the Second major issue.  Please do not get me wrong, I do not argue against using the mean squared error (MSE) as a 
metric for evaluating the quality. However, I request authors to provide evidence that their MSE is lower than can be 
achieved by the state of the art methods (Verbeeck et al 2019 Mass Spectrom Rev). 
 
Again, our study does not present a new method for dimensionality reduction, but an integrated method for pre‐
processing and dimensionality reduction bypassing preprocessing parameters optimization. The publication referred to 
by the reviewer acknowledges the limitations imposed by preprocessing on downstream dimensionality reduction as 
cited above from page 253 of Verbeeck et al 2019 Mass Spectrom Rev. Our study proposes an integrated workflow that 
avoids the need for parameter optimization in preprocessing. This is an issue acknowledged by many in the field 
including a recent Nature Communications report (Nat Commun. 2020 Nov 5;11(1):5595. doi: 10.1038/s41467‐020‐
19354‐z. PMID: 33154370 ) and other fields such as image analysis (Isensee, F., Jaeger, P.F., Kohl, S.A.A. et al. nnU‐Net: a 
self‐configuring method for deep learning‐based biomedical image segmentation. Nat Methods 18, 203–211 (2021). 
https://doi.org/10.1038/s41592‐020‐01008‐z). Nevertheless, please see the requested comparison in the following 
table, included in the manuscript as Suppl. Table S8.  
 
 
This text is now added to the main manuscript: “The reconstruction error of msiPL surpassed other methods that were 
previously applied on MSI data18 such as PCA, memory efficient PCA, and Discrete wavelet transform (DWT) followed by 
PCA. see Supplementary Table S8.” 
 
 
 



Table S8. Comparison of mean squared error (MSE) of MSI data reconstruction using different methods 

  PCA  Memory Efficient 
PCA 

DWT + PCA  msiPL 

FT ICR MSI 
Prostate Dataset 

1.886 ൈ 10ିଶ 
 

2.583 ൈ 10ିଶ 
 

1.81 ൈ 10ିଶ 
 

2.42 ൈ 10ିହ 
 

FT ICR MSI GBM 
Dataset 

8.405 ൈ 10ିଷ 
 

7.018 ൈ 10ିଷ 
 

8.6 ൈ 10ିଷ 
 

4.5 ൈ 10ିସ 
 

 
 
Fourth major issue: addressed 
 
The code is indeed provided since August 2020. I’m sorry for claiming that it was not available, likely because during the 
earlier submission of this manuscript to Nature Methods it was not available and I didn't double check this particular 
point when submitting my review to Nature Communications. 
 
Our code was provided since our initial submission to Nature Methods in 15th November 2019, which was aknowledged 
by the other reviewer in the reviews we had received from Nature Methods in January 2020 (Documented in the 
attached Nature Methods letters).  
 
Reviewer #2 (Remarks to the Author): 
 
The authors addressed all issues appropriately. 
 
Thank you. 



REVIEWER COMMENTS 
 
Reviewer #3 (Remarks to the Author): 
 
I am sharing what I wrote to the editor. I was not involved with the reviews at any stage so it is 
an outsider opinion. I am truly appreciative that the editor is seeking another opinion with respect 
to a disagreement between the authors and reviewers. I don’t envy the editor in this case as it is 
hard. For one, you have work that is done at a very high level and then on the other hand you 
have the writing and accurate review that are in disagreement. What is rather unfortunate is that 
this is largely due to the language the authors choose to use that invites the requirement of the 
comparisons requested and in combination with an apparent lack of awareness, appreciation,or 
acknowledgment of what is done outside of their lab. 
 
I am only evaluating the discussion in the context of the paper and not the science of the paper 
itself. The reviewer is quite fair based on the paper as written and makes very good points and 
seems genuinely interested in ensuring the statements made in the paper are accurate. I also 
know as an author of a lot of methods papers that comparisons to everything under the sun is not 
realistic and even impossible. 
 
It is clear that the authors are super excited -and justifiably so- about these developments for 
their lab and the images and figures presented are spectacular but missing a new biological 
discovery that this has enabled. It does not mean that the methods paper does not stand on its 
own but the challenge is that the authors make unnecessary claims and then do not back those 
claims up with data. Basically, the way they wrote their paperback themselves in a corner to prove 
their statements-which were no doubt emerged about the enthusiasm of ease of use and 
capabilities when compared to what they used in their own lab previously but as written they invite 
comparisons to existing tools, especially since they seem to not have been aware of the availability 
and not valuing other scientific contributions. 
 
Just in the abstract as well as their paper. They use a lot of largely unsupported claims. Just in the 
abstract “robust”, “efficiently”, “few seconds”, “memory-efficient implementation”, “significantly 
less memory”, all require comparisons to existing tools as the reviewer appropriately did. These 
are also terms not needed for this work. One million high dimensional data analysis has been done 
for more than a decade. It states less memory but then one needs to compare to all methods that 
claim the same for comparison. Compare this to -for example- the abstract in a related field. 
https://www.nature.com/articles/s41587-021-00860-4, there are also key and related claims but 
that are backed up with clear numbers, this is not the case in the current paper. They showcased it 
was able to report on things that was not previously possible. The current paper does not seem to 
do this rather it focuses on an autoencoder solution but unclear what they were able to do with it 
that previously could not. 
 
The rationale by the authors not comparing to other methods based on their interpretation as 
being state of-the-art or not based on citations is flawed at best, especially since this is a relatively 
small field. The scale of analysis of IMS data has been done for quite some time-perhaps as long 
as 15 years. I have written papers that dealt with this volume of MSI data myself-if not ten times 
that. To me it reads that the authors want to argue their way-out vs addressing topics head-on yet 
keeping their overstated claims. This work reminds me of what is possible in SCILS, a 2D and 3D 
imaging MS visualization program commercially available from Bruker, or even Raf van der Plas 
work in the past https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382398/ that although did not 
use the term autoencoder it is a training and then high-resolution prediction. The term 
autoencoder was not common in 2015 but it is a training and reporting type scenario. Perhaps 
most relevant is a computer science conference proceedings (which are the some of the most 
important papers in such a field and will have 5-6 reviewers before it is accepted and only has 5% 
acceptance rates-something that life scientists often do not recognize) that do autoencoder based 
processing in imaging mass spec https://ieeexplore.ieee.org/document/7849863, 
https://academic.oup.com/bioinformatics/article/34/7/1215/4604594 
https://pubs.rsc.org/en/content/articlehtml/2017/sc/c6sc03738k 
https://pubs.acs.org/doi/abs/10.1021/acs.jproteome.7b00725 
reviewed in 



https://www.annualreviews.org/doi/abs/10.1146/annurev-biodatasci-011420-
031537?casa_token=pxiaY7gsp84AAAAA%3Atn3rufmpRTbcQiub4UPG68TSWt6ZoezfAsktvaEv_TQu
YMiVU_uCZnLRl7hkokrCB1NEEFPAi_oPyg 
 
This is a paper that is a cog in the gearbox to make the engine better. I do not think it is 
necessary to make all the comparisons with existing literature tools. This is somewhat of an 
unreasonable request as it is not known what parameters to compare and if you compare one 
metric lest say speed-this does not inform on quality as there is no ground truth of what images to 
expect. The underpinnings of the work appear well-executed and appropriate for Nat 
communications if they can find a way to remove all those unnecessary claims and acknowledge 
what the literature has done. The more such tools are developed the better it is for the 
community. I wonder if their own laboratory even uses these tools. I.e. do any recent papers from 
their lab show the utility-this would make this work even more convincing. My advice is to 
recommend them to cut the abstract to 150 words, remove qualifiers that require comparisons 
from abstract and text. The abstract should highlight that “despite many solutions being developed 
(this means they can also accurately review the lit in the intro), that it is still hard to deal with the 
large volumes of data and information generated in imaging, especially 3D data sets”. And that 
they, therefore, assessed if “a probabilistic generative model based on a fully-connected 
variational autoencoder could be used for unsupervised analysis and peak learning of MSI data” to 
help uncover hidden and create sharper images. They should provide a rationale for why they 
believed this approach would be useful in the analysis. And then what their key observations are – 
list capabilities of the tool with hard data. And then closing statement. Currently, the paper almost 
reads we want to use machine learning without a good rationale, especially in the context of the 
literature, this should be avoided. 
 
I do not understand the author's approach to the reviews in this case. The hard part is that 
reviewer one based on the history of how the authors responded – completely dismissive and not 
take their advice serious – are less likely to support a publication even if reformatted. This is 
making this incredibly hard for the Editor to make a decision on something that really falls on the 
shoulders of the authors. Not even a simple thank you for their precious time reviewing papers, an 
acknowledgment that they found good papers that probably should be cited etc are simple things 
that can help a lot. It is OK to disagree with reviewers but then acknowledge when they are right 
as well. For example. “The results confirm what I suspected: this 10-years old method is lightning 
fast and takes a few seconds only compared to 5+ minutes for the proposed method msiPL. Even 
with default parameters, it finds 5% of unique peaks not found by msiPL.” This is a very telling 
passage and how the authors responded where the key first point is to argue it was 9% not 5% as 
opposed to saying that it was good intuition by the reviewer and agree that speed is not the key 
factor and was overstated in the abstract. The key advantages are XXXX,YYYY, ZZZZ. And this is 
how we adjusted the text accordingly and following citations have been added. So instead they 
argued against what they have now demonstrated to be a scientifically flawed statement in their 
paper to still be included instead of addressing it. 
 
Finally, with Metabolomics WB, Figshare, Metaspace 
“The 2D MALDI FT ICR MSI data of a human prostate tissue, and the 3D MALDI FT ICR MSI data of 
a PDX mouse brain model of glioblastoma are available from the corresponding author on 
reasonable request” is unacceptable and data should be made public in the same way they 
benefited from the public data by Oetjes et al. I would personally also not accept a paper without 
public access to the data. imzML is acceptable as well. 
 
 



 
 
 
Response	To	Reviewer	#3	(Remarks	to	the	Author):	
	
We	would	like	to	sincerely	thank	the	Reviewer	for	the	evident	effort	that	was	invested	in	providing	on	outside	
opinion	to	the	review	of	our	manuscript	and	we	are	extremely	grateful	for	the	constructive	comments	brought	by	
the	Reviewer,	though	embarrassed	by	the	tone	of	our	prior	response.	Thank	you	for	the	transparency	in	sharing	
comments	to	the	Editor.	We	here	focus	our	response	to	address	the	two	specific	requests	from	the	Reviewer	and	
have	removed	the	comments	to	the	Editor.			
	
My	advice	is	to	recommend	them	to	cut	the	abstract	to	150	words,	remove	qualifiers	that	require	comparisons	from	
abstract	and	text.	The	abstract	should	highlight	that	“despite	many	solutions	being	developed	(this	means	they	can	
also	accurately	review	the	lit	in	the	intro),	that	it	is	still	hard	to	deal	with	the	large	volumes	of	data	and	information	
generated	in	imaging,	especially	3D	data	sets”.	And	that	they,	therefore,	assessed	if	“a	probabilistic	generative	model	
based	on	a	fully-connected	variational	autoencoder	could	be	used	for	unsupervised	analysis	and	peak	learning	of	
MSI	data”	to	help	uncover	hidden	and	create	sharper	images.	They	should	provide	a	rationale	for	why	they	
believed	this	approach	would	be	useful	in	the	analysis.	And	then	what	their	key	observations	are	–	list	
capabilities	of	the	tool	with	hard	data.	And	then	closing	statement.	Currently,	the	paper	almost	reads	we	want	
to	use	machine	learning	without	a	good	rationale,	especially	in	the	context	of	the	literature,	this	should	be	avoided.	
	
Thank	you	for	such	constructive	recommendation.	We	have	restructured	the	abstract	accordingly	and	reduced	to	
176	words.	We	have	also	removed	qualifiers	that	require	comparison	throughout	the	manuscript	(we	highlighted	all	
the	sentences	where	the	changes	were	made).	We	have	also	updated	references	in	the	Introduction	according	to	the	
Reviewer’s	recommendation.		
	
Reduced	abstract:	
“Mass	spectrometry	imaging	(MSI)	is	an	emerging	technology	that	holds	potential	for	improving,	biomarker	discovery,	
metabolomics	research,	pharmaceutical	applications	and	clinical	diagnosis.	Despite	many	solutions	being	developed,	
the	large	data	size	and	high	dimensional	nature	of	MSI,	especially	3D	datasets,	still	pose	computational	and	memory	
complexities	that	hinder	accurate	identification	of	biologically	relevant	molecular	patterns.	Moreover,	the	subjectivity	
in	the	selection	of	parameters	for	conventional	pre-processing	approaches	can	lead	to	bias.		Therefore,	we	assessed	if	
a	probabilistic	generative	model	based	on	a	fully	connected	variational	autoencoder	could	be	used	for	unsupervised	
analysis	and	peak	learning	of	MSI	data	to	uncover	hidden	structures.	The	resulting	msiPL	method	could	learn	and	
visualize	 the	 underlying	 non-linear	 spectral	manifold,	 reveal	 biologically	 relevant	 clusters	 of	 tissue	 anatomy	 in	 a	
mouse	kidney	and	tumor	heterogeneity	in	human	prostatectomy	tissue,	colorectal	carcinoma,	and	glioblastoma	mouse	
model,	with	identification	of	underlying	m/z	peaks.	The	method	was	applied	for	the	analysis	of	MSI	datasets	ranging	
from	3.3	to	78.9	GB,	without	prior	pre-processing	and	peak	picking,	and	acquired	using	different	mass	spectrometers	
at	different	centers.”	
	
Finally,	“The	2D	MALDI	FT	ICR	MSI	data	of	a	human	prostate	tissue,	and	the	3D	MALDI	FT	ICR	MSI	data	of	a	PDX	
mouse	brain	model	of	glioblastoma	are	available	from	the	corresponding	author	on	reasonable	request”	is	
unacceptable	and	data	should	be	made	public	in	the	same	way	they	benefited	from	the	public	data	by	Oetjes	et	al.	I	
would	personally	also	not	accept	a	paper	without	public	access	to	the	data.	imzML	is	acceptable	as	well.	
	
We	are	delighted	to	report	that	we	were	able	to	obtain	clearance	from	our	institutional	IRB	to	publicly	release	the	
human	prostate	tissue	dataset.	We	have	now	deposited	both	datasets	on	the	UCSD	Metabolomics	Workbench	Data	
Repository,	namely	the	human	prostate	and	3D	FT	ICR	PDX	mouse	brain	model	of	glioblastoma	MSI	data	in	
Hierarchical	Data	Format	(hdf5).	The	following	statement	is	now	added	to	the	main	manuscript	and	will	be	updated	
with	a	direct	link	once	assigned:	
“This	data	is	available	at	the	NIH	Common	Fund's	National	Metabolomics	Data	Repository	(NMDR)	website,	the	
Metabolomics	Workbench,		https://www.metabolomicsworkbench.org		where	it	has	been	assigned	Project	
ID	(2703).	The	data	can	be	accessed	directly	via	this	link	
https://www.metabolomicsworkbench.org/data/MWTABMetadata4.php?Mode=Study&DataMode=AllData&StudyT
ype=MS&F=wabdelmoula_20210620_173225_mwtab_analysis_1.txt	
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