
Supplementary Materials

Text S1. A variant of the Freedman and Lane permutation scheme

Here we describe the permutation scheme we use to assess the significance of our test statistics

for both the LDM and PERMANOVA-FL. We make use of the fact that, since the columns of

X are orthogonal, XkX
T
k is the orthogonal projection operator (hat matrix) corresponding to

variables in submodel k. Consider the linear model for the jth column of the matrix Y given

by

Y·j =
K∑
k=1

Xkβk;·j + ε·j, (S1)

Suppose we wish to test the kth submodel. The Freedman-Lane approach is to form residuals

from the reduced model that excludes the term Xk. Since the columns of X are orthogonal,

we have immediately that residuals for the reduced model are given by

Yk;·j =

I − K∑
k′=1
k′ 6=k

Xk′X
T
k′

Y·j,

To generate a new set of values Y
(π)
·j for Y·j in which all linear effects except those corresponding

to Xk are preserved, but the residuals are permuted, we write

Y
(π)
·j =

 K∑
k′=1
k′ 6=k

Xk′X
T
k′

Y·j + PπYk;·j,

where Pπ is a permutation matrix. To preserve the correlation structure among OTUs, we use

the same permutation matrix Pπ for each column j. In order to construct the F tests we have

described, we need to calculate the residuals we would obtain by fitting either the full model

(S1) to the permuted data Y
(π)
·j , and the reduced model that excludes the term Xk. These

quantities are most easily obtained by left-multiplying by an appropriate projection operator.
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The residual after fitting the full model is given by(
I −

K∑
k′=1

Xk′X
T
k′

)
Y

(π)
·j =

(
I −

K∑
k′=1

Xk′X
T
k′

)
PπYk;·j, (S2)

so that the residual sum of squares after fitting the full model is

Y T
k;·jP

T
π

(
I −

K∑
k′=1

Xk′X
T
k′

)
PπYk;·j. (S3)

Because the Xks are orthogonal, the residual and residual sum of squares for the restricted

models have the same form as (S2) and (S3) but with sums that are restricted to exclude

k′ = k. Thus, the difference between the residual sum of squares for the full and restricted

models is simply the contribution to the sum of squares for Xk, given by

Y T
k;·jP

T
π XkX

T
k PπYk;·j. (S4)

Finally, we note that if Pπ is a permutation matrix, then PT
π is also a permutation matrix

corresponding to the permutation that reverses the effect of Pπ, i.e., PπP
T
π = I. Thus, we

define X
(π)
k = PT

π Xk to be a row-permuted version of Xk and note that the columns of X(π)

remain orthogonal, so that X
(π)
k X

(π)T

k is the orthogonal projection (hat) matrix corresponding

to fitting a model in which the variables have been permuted according to permutation matrix

PT
π . With these observations, we note that (S2) - (S4) can be written entirely in terms of the

X
(π)
k s, e.g. (S2) becomes

Y T
k;·j

(
I −

K∑
k′=1

X
(π)
k′ X

(π)T

k′

)
Yk;·j,

which is the denominator of Fkj given in (10) while (S4) becomes

Y T
k;·jX

(π)
k X

(π)T

k Yk;·j,

which is the numerator of Fkj. Note also that X
(π)T

k X
(π)
k′ = δkk′I since PπP

T
π = I.

Text S2. Simulating read count data with the Poisson log-normal model (PLNM)

This model assumes that count data for the jth OTU of the ith observation are generated
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from independent Poisson distributions with mean Niθj, j = 1, . . . , J , where Ni is a scale

factor like the library size, and that the Poisson means θ = (θ1, . . . , θJ) follow a multivariate

log-normal distribution with log-mean vector µ and log-variance-covariance matrix Σ. In the

following, we first describe an approach to estimating these parameters from a real dataset

and then outline the steps for simulating read count data using the PLNM.

Let µj denote the jth element of µ and σjk denote the (j, k)th element of Σ. Using results

from Aitchison and Ho [1989], the moments of the counts are then given by

E(Yij) = exp(µj+ln(Ni)+0.5σjj) ≡ Niπj and Cov(Yj, Yk) = δjkNiπj+N
2
i πjπk {exp(σjk)− 1} ,

where δjk = 1(j = k). The first term in the Covariance is the Poisson variance in the absence

of overdispersion (i.e., when Σ = 0) while the second term is the overdispersion term. It is

difficult to obtain the distribution or even moments of π̂ij = Yij/
∑J

j′=1 Yij′ . Since our goal is

merely to choose a reasonable matrix Σ to use to generate simulated data, we approximate

the moments of π̂i = (π̂i1, . . . , π̂iJ) by

E(π̂ij) = πj and Cov(π̂ij, π̂ik) = δjkπj − πjπk + πjπk {exp(σjk)− 1} ,

which correctly accounts for the normalization when σjk = 0 by replacing the Poisson variance

by the multinomial variance, while retaining the overdispersion term.

Next, suppose we have data on N observations. If π and V are the empirical mean vector

and variance-covariance matrix of the π̂ values from these observations, the overdispersion

(empirical variance minus multinomial variance) is then given by

O = V − diag(π) + π ⊗ π.

Using the second moment of π̂, we form the equation

O = diag(π) {exp(σ)− 1} diag(π),

from which we obtain

exp(σ) = 1 + diag(π−1)Odiag(π−1),
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where 1 is a matrix with all elements equal to 1 and exp(σ) is a matrix with the (i, j)th

element given by exp(σij). Taking the element-wise logarithm of exp(σ) cannot ensure the

positive definiteness of the estimated Σ = {σjk}. We thus make a further approximation and

replace the matrix of element-wise exponentials exp(σ) by exp(Σ), the matrix exponential of

the variance-covariance matrix. To take the logarithm of a matrix exponential, we first form

the eigendecomposition of exp(Σ) by writing

exp(Σ) = 1 + diag(π−1)Odiag(π−1) = QΛQT ,

and then take the logarithm of the eigenvalues to obtain

Σ = Qr(ln Λr)Q
T
r ,

where the subscript r refers to the restriction to positive values of Λ and columns of Q cor-

responding to positive values of Λ. Once we have obtained Σ, we can find µ by solving the

equations

exp(µj + 0.5σ2
jj) = πj.

We estimated µ and Σ from the URT (i.e., upper-respiratory-tract) data and generated

the read count data as follows. We generated a set of Poisson means θ from the log-normal

distribution with log-mean µ and log-variance-covariance matrix Σ; we scaled the θ values by

the appropriate library size, and generated an independent Poisson random count for each

OTU. We first used this method to simulate data uniformly for cases and controls. The data

for cases were treated as the “baseline” (or “initial”) data. We then created “disease” data

for cases by shuffling the “baseline” data among the OTUs selected for U (the case-control

status) in S1 or S2. The final data for cases were chosen between the “disease” and “baseline”

data with probabilities β and 1−β, where β represents the strength of association. Note that

no confounders were generated in the simulation using the PLNM.

Text S3. Simulating read count data with the Negative-Binomial (NB) model

Simulations using the NB model were based on the Dirichlet-Multinomial model simulations
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for Scenarios S1 and S2. As in the main text, we used the one-way, case-control design with a

confounder and 100 independent samples. The only difference was that read count data were

generated from the NB model. For the read count data for the ith sample at the jth OTU,

we chose the mean parameter of the NB model to be the jth element of the sample-specific

frequency vector π̃(Ui, Ci) (defined in the main texts) multiplied by the simulated library

size for the ith sample. We chose the overdispersion parameter of the NB model to be the

estimated overdispersion from fitting the NB model to data from the jth OTU of the real

throat data. We verified that the mean and variance of the NB-simulated count data at each

OTU matched well with the real data; also, the overall proportion of zero counts matched well

with the real data.

Text S4. Simulating clustered data, data with a two-way design, and data with a

quantitative trait

To generate clustered data, we assume that we had samples from 50 distinct individuals, each

of whom contributed 2 samples. We modified scenarios S1 and S2 by assuming that half of

the individuals were cases (U = 1) and the remaining individuals were controls (U = 0).

We generated the confounder C at the individual level in the same way as for unclustered

data; to induce within-cluster correlations, we generated individual-specific OTU frequencies

from the Dirichlet distribution with mean frequencies π̃(U,C) (defined in the main texts) and

overdispersion parameter 0.02, and then generated counts for each samples from the same

individual using the Multinomial distribution with mean being the individual-specific OTU

frequencies, using library sizes that were generated independently for each sample. Note that

if each individual had a single sample, the combination of Dirichlet and Multinomial sampling

would reproduce the DM mixture model used for unclustered data.

To simulate data with a two-way design (without confounding), we considered two factors,

U1 and U2, that each have two levels and that are orthogonal. The samples were randomly

split into two groups with equal size, one group being assigned U1 = 0 and the other U1 = 1.
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Samples in each group were then further split randomly into two subgroups with equal size,

with one group assigned U2 = 0 and the other U2 = 1. Then we induced association of U1

and U2 with the OTUs in the same way as U and C by assigning U1 and U2 the same sets of

OTUs as assigned to U and C in scenarios S1 and S2 and using the sample sample-specific

frequency vector π̃(U1, U2) = (1−β1U1−β2U2)π1 +β1U1π2 +β2U2π3. Note that β1 and β2 are

the effect sizes of U1 and U2, respectively.

To generate data with a continuous trait, we used a model considered by Zhao et al. [2015].

We first generated OTU counts for each sample using the DM model with frequency vector

π1, overdispersion parameter 0.02, and library size sampled from N(10000, 10000/3). Let

S =
∑

j∈A Yij/Y j, where A is the set of the ten most abundant OTUs, Yij is the frequency

of the jth OTU in the ith sample, and Y j is the average frequency for the jth OTU across

samples. We generated a confounder C = scale(S) + ε̃, where scale(v) centers and normalizes

vector v to have unit variance and ε̃ ∼ N(0, 1). Finally, we simulated the continuous trait as

U = βCscale(C) +βscale(S) + ε, where βC = 0.3 and ε ∼ N(0, 1). Note that when β = 0 there

is no association between U and the OTU frequencies.

Text S5. The LDM and Redundancy Analysis

The LDM bears some resemblance to Redundancy Analysis (RA), but also differs in notable

respects. RA seeks to describe how much of a matrix Y can be explained by a single set of

variablesX1, also concluding that the variability explained is ||X1X
T
1 Y ||2F . RA also calculates a

matrix like β1; however, RA requires that β1 have orthogonal columns, which is unnecessary for

calculating either Tr(D2
1) or |β1;·j|2. Further, RA only allows analysis of one set of variables at a

time, so only a single matrix β1 is produced; this is presumably because the non-orthogonality

of multiple βks implies that it is impossible to find β1 and β2 that satisfy β1β
T
2 = 0 for arbitrary

submodels X1 and X2. Thus in RA, the effect of each submodel Xk must be tested sequentially

using a separate linear model like

Ỹk = Xkβk + ε,
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where

Ỹk =

(
I −

∑
k′<k

Xk′X
T
k′

)
Y.

As a result, the F tests available in the LDM are expected to be more powerful than the type

I or “order of variables added” tests available in RA when there is more than one submodel

[Muller and Fetterman, 2012]. This is because the residual sums of squares in the denominator

of the type III tests used in the LDM include all submodels tested, rather than only submodels

with k′ < k used in sequential RA. Use of the restricted model in RA can thus result in an

incorrect estimate of the residual sum of squares, which may affect power even in a permutation

setting as the test is then not (asymptotically) pivotal. A second advantage of the LDM is that

it is that we can assign significance to all submodels with a single permutation experiment,

while RA requires a separate set of permutations for each submodel Xk tested.
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Table S1 Type I error for testing the global hypothesis when

read count data were generated from the Poisson log-normal

model (PLNM)

Scenario PERMANOVA-FL VE-freq VE-arcsin VE-omni

S1 and S2 0.051 0.046 0.053 0.051

All methods adjusted for the confounder. PERMANOVA-FL was based on the Bray-Curtis
distance. Scenarios S1 and S2 are equivalent when the effect size β is zero.
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Fig. S1 Power for testing the global hypothesis with different overdispersion values (top
panel), library sizes (middle panel), and sample sizes (bottom panel). At each mean library
size µ, the individual library size was sampled from N(µ, µ/3) and left-truncated at 500. When
not otherwise stated, the over-dispersion parameter is 0.02, mean library size is 10000, and
sample size is 100. The effect size β is 0.14 for S1 and 0.35 for S2. PERMANOVA-FL was
based on the Bray-Curtis distance.
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Fig. S2 Simulation results when the read count data were generated by the PLNM. The
gray dotted lines represent the nominal FDR 0.1. BC: Bray-Curtis; WU: weighted UniFrac;
H: Hellinger. MetagenomeSeq and the Wilcoxon test were applied because of the absence of
confounders in the simulation using the PLNM.
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Fig. S3 Sensitivity and empirical FDR for testing differentially abundant OTUs when the
read count data were generated by the NB model. The gray dotted lines represent the nominal
FDR 0.1.
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Fig. S4 Sensitivity and empirical FDR for testing differentially abundant OTUs in absence
of confounders. The gray dotted lines represent the nominal FDR 0.1.
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Fig. S5 Simulation results for clustered data. The gray dotted lines represent the nominal
FDR=0.1. BC: Bray-Curtis; WU: weighted UniFrac; H: Hellinger. The DESeq2 program is
not applicable for this type of clustered data.
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Fig. S6 Simulation results for a continuous trait. The first and second columns correspond
to results as the effect size and the sample size, respectively, increase. The gray dotted lines
represent the nominal FDR=0.1. When varying the sample size, we set β = 1 for evaluating
power and β = 3 for sensitivity and empirical FDR.
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Fig. S7 Exploratory analysis of the PPI microbiome data based on the Bray-Curtis distance.
The proportions of variance explained by the 9 gPCs and the PCs of the (residual) distance
measure are obtained after removing the effects of confounders antibiotic use, inflammation
score, and disease type. The PCs are ordered by their Bray-Curtis eigenvalues. The left
plot is based on frequency data and the right plot is based on arcsin-root transformed data.
The components are ordered by the magnitude of their corresponding eigenvalue in a spectral
decomposition of ∆10 (the distance matrix after removing the effect of confounders and the 9
gPCs). Only the first 50 (of 195 total) components are shown.
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