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Figure SO1. 'HNMR spectrum of compound 10a (400 MHz, CDCls).
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Figure S02. *HNMR spectrum of compound 10b (400 MHz, CDCls).
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Figure S03. 13C{1H} NMR spectrum of compound 10b (100 MHz, CDCls).
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2 Chloroform-d
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Figure S05. 13C{1H} NMR spectrum of compound 10c (100 MHz, CDCls).
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Figure S06. *H NMR spectrum of compound 10d (400 MHz, CDCls).
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2 Chloroform-d
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Figure S07. 13C{1H} NMR spectrum of compound 10d (100 MHz, CDCls).
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Figure S08. *H NMR spectrum of compound 10e (400 MHz, CDCls).
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77.2 Chloroform-d

SRR RN © S}
N 1 00 00N o~ w ennNo T o m RN NN
NnMmNNN — o TONNGS a1y ST aNOOS T AT
— — — ONNNKNN © © NANNNNNNN—
NN \ \ R ="

T T T T T T T T T T T T
220 210 200 190 180 170 160 150 140 130 120f ( 110) 100 90 80 70 60 50 40 30
1 (ppm

Figure S09. 13C{1H} NMR spectrum of compound 10e (100 MHz, CDCls).
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Figure S10. 'HNMR spectrum of compound 10f (100 MHz, CDCls).
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Figure S11. 13C{1H} NMR spectrum of compound 10f (100 MHz, CDCls).

Jq S

T T T T T T T T T T T T T T T T T T T 1

r
0.0 95 9.0 85 8.0 7.5 7.0 6:5 6.0 5.5 5.0 4,5 4.0 3.5 3.0 25 2.0 i5 1.0 0.5 0.6
f1 (ppm)

Figure S12. 1D NOESY spectra performed on compound 10f. Irradiation of HC=N gave a NOE at CH,N.
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77.2 Chloroform-d

a MANT R SH® HENNN Q- a
— ~ ~NWO DWW M ANANANANNNNH
NP U S

T T T T T T T T T T T T
120 110 100 90 80 70 60 50 40 30 20 10 0
f1 (ppm)

220 210 200 190 180 170 160 150 140 130

Figure S20. *C{1H} NMR spectrum of compound 17 (50 MHz, CDClz).

S21



0
-

PP-lOUBYISIW T-E€

8/°€
08'€
08'€
[4: 2

€8¢ —-
¥8'€
98'¢

L8°€
mw.v/

28 26 24 22 20 18 16 14 12 1.0 08 06
f1 (ppm)

3.0

96’1

H0'T

40 38 36 34 32

4.2

4.4

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
f1 (ppm)

5.5

9.5

10.0

Figure S21. *HNMR spectrum of compound 18 (400 MHz, CDsOD).

S22



49.0 Methanol-d4

(o]

S o< in® TofooTwomANOOLn

— ST o< @ O OGN B ININ OO

— ®NK© TYTR TN ANNNNN
DN TS e——"

e
230 220 210 200 190 180 170 160 150 140 130 1%0 110 100 90 80 70 60 50 40 30
1 (ppm)

Figure S22. 13C{1H} NMR spectrum of compound 18 (100 MHz, CD30D).
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Figure S34. 'HNMR spectrum of compound 26 (400 MHz, CDsOD).

8.5

9.0

9.5

10.0



110.0

—80.7

—74.2
—72.0

—64.2

|
T T T T T T T T T T T T T T T T T T T T T T 1
220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10
f1 (ppm)
Figure S35. 13C{1H} NMR spectrum of compound 26 (50 MHz, CD3;0D).
\ A N sh h | PN e
7 T T s T T T TR T
5.4 52 4.6 4.4 4.2 4.0 3.8 3.6 34 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6
f1 (ppm)

Figure S36. 1D NOESY spectra performed on compound 26. Irradiation of 2-H gave a NOE at 4-H and 6-Hy.
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Figure S39. 13C{1H} NMR spectrum of compound 14 (50 MHz, CDs;0D).
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Biological screening towards commercial glycosidases

% Inhibition at 0.1 mM

14 15

o-L-fucosidase EC 3.2.1.51
Homo sapiens - -

o-galactosidase EC 3.2.1.22
coffee beans - -

B-galactosidase EC 3.2.1.23
Escherichia coli - -

Aspergillus oryzae - -

a-glucosidase EC 3.2.1.20
yeast - -

rice - -
amyloglucosidase EC 3.2.1.3
Aspergillus niger - -
B-glucosidase EC 3.2.1.21
almonds 30+2 -
o.-mannosidase EC 3.2.1.24
Jack beans - -
B-mannosidase EC 3.2.1.25
snail - -

B-N-acetylglucosaminidase EC 3.2.1.52
Jack beans - -

bovine kidney - -
“-*: no inhibition (or less than 15%) detected.
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Percentage of GCase inhibition of compounds 14, 15 and 33:HCI towards human GCase

Percentage of GCase inhibition of the whole collection of compounds in human leukocytes extracts incubated
with iminosugars at 1 mM concentration.

B-Glucosidase
4,50 -
4,00 -
3,50 -
3,00 -

2,50 -

activity nmoli/mg/h

2,00 -

1,50 -

75%
1,00 -

0,50 A

100% 100%
0,00 . . .

Ctrl 14 15 33eHCI

1Cs0 determination: The ICso values of inhibitors against GCase were determined by measuring the initial
hydrolysis rate with 4-methylumbelliferyl--p-glucoside (3.33 mM). Data obtained were fitted to the following
equation using the Origin Microcal program.

Vi _ Max — Min + Min

\/_O slope
1+ X
1C,

where Vi/V,, represent the ratio between the activity measured in the presence of the inhibitor (Vi) and the
activity of the control without the inhibitor (Vo), “x” the inhibitor concentration, Max and Min, the maximal
and minimal enzymatic activity observed, respectively.
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Selectivity of compounds 14, 15 and 33'HCI towards lysosomal enzymes.

The effect of 1 mM concentration of 14, 15and 33'HCI was assayed towards six lysosomal glycosidases other
than GCase, namely: a-mannosidase, 3-mannosidase, a-galactosidase, B-galactosidase, a-fucosidase from
leukocytes isolated from healthy donors (controls) and a-glucosidase from lymphocytes isolated from healthy
donors’ flesh blood (controls). Isolated leukocytes or lymphocytes were disrupted by sonication, and a micro
BCA protein assay kit (Sigma—Aldrich) was used to determine the total protein amount for the enzymatic
assay, according to the manufacturer instructions.

a-Mannosidase activity was measured in a flat-bottomed 96-well plate. Azasugar solution (3 pL), 4.29 ng/uL
leukocytes homogenate 1:10 (7 pL), and substrate 4-methylumbelliferyl-a-D-mannopyranoside (2.67 mM, 20
uL, Sigma—Aldrich) in Na phosphate/citrate buffer (0.2:0.1, M/M, pH 4.0) containing sodium azide (0.02%)
were incubated at 37 °C for 1 h. The reaction was stopped by addition of sodium carbonate (200 uL; 0.5M, pH
10.7) containing Triton X-100 (0.0025 %), and the fluorescence 4-methylumbelliferone released by a-
mannosidase activity was measured in SpectraMax M2 microplate reader (Aex=365 nm, Aem=435 nm;
Molecular Devices). Inhibition is given with respect to the control (without azasugar). Data are mean SD (n=3).

B-Mannosidase activity was measured in a flat-bottomed 96-well plate. Azasugar solution (3 pL), 4.29 pg/ulL
leukocytes homogenate 1:10 (7 uL), and substrate 4-methylumbelliferyl--D-mannopyranoside (1.33 mM, 20
uL, Sigma—Aldrich) in Na phosphate/citrate buffer (0.2:0.1, M/M, pH 4.0) containing sodium azide (0.02%)
were incubated at 37 °C for 1h. The reaction was stopped by addition of sodium carbonate (200 pL; 0.5M, pH
10.7) containing Triton X-100 (0.0025 %), and the fluorescence of 4-methylumbelliferone released by (-
mannosidase activity was measured in SpectraMax M2 microplate reader (Aex=365 nm, Aem=435 nm;
Molecular Devices). Inhibition is given with respect to the control (without azasugar). Data are mean SD (n=3).

a-Galactosidase activity was measured in a flat-bottomed 96-well plate. Azasugar solution (3 pL), 4.29 ug/uL
leukocytes homogenate 1:3 (7 puL), and substrate 4-methylumbelliferyl a-D-galactopyranoside (1.47 mM, 20
uL, Sigma—Aldrich) in acetate buffer (0.1 M, pH 4.5) containing sodium azide (0.02%) were incubated at 37
°C for 1 h. The reaction was stopped by addition of sodium carbonate (200 pL; 0.5M, pH 10.7) containing
Triton X-100 (0.0025 %), and the fluorescence 4-methylumbelliferone released by a-galactosidase activity
was measured in SpectraMax M2 microplate reader (Aex=365 nm, Aem=435 nm; Molecular Devices).
Inhibition is given with respect to the control (without azasugar). Data are mean SD (n=3).

B- Galactosidase activity was measured in a flat-bottomed 96-well plate. Azasugar solution (3 pL), 4.29 pg/uL
leukocytes homogenate 1:10 (7 pL), and substrate 4-methylumbelliferyl g-D-galactopyranoside (1.47 mM, 20
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uL, Sigma—Aldrich) in acetate buffer (0.1M, pH 4.3) containing NaCl (0.1M) and sodium azide (0.02%) were
incubated at 37 °C for 1 h. The reaction was stopped by addition of sodium carbonate (200 uL; 0.5M, pH 10.7)
containing Triton X-100 (0.0025 %), and the fluorescence 4-methylumbelliferone released by 3-galactosidase
activity was measured in SpectraMax M2 microplate reader (Aex=365 nm, Aem=435nm; Molecular Devices).
Inhibition is given with respect to the control (without azasugar). Data are mean SD (n=3).

a-Fucosidase activity was measured in a flat-bottomed 96-well plate. Azasugar solution (3 pL), 4.29 pg/uL
leukocytes homogenate 1:3 (7 pL), and substrate 4-methylumbelliferyl o-L-fucopyranoside (1.51 mM, 20 uL,
Sigma-Aldrich) in Na phosphate/citrate buffer (0.2:0.1, M/M, pH5.5) were incubated at 37 °C for 1 h. The
reaction was stopped by addition of sodium carbonate (200 uL; 0.5M, pH 10.7) containing Triton X-100
(0.0025 %), and the fluorescence 4-methylumbelliferone released by a- fucosidase activity was measured in
SpectraMax M2 microplate reader (Aex=365 nm, Aem=435 nm; Molecular Devices). Inhibition is given with
respect to the control (without azasugar). Data are mean SD (n=3). S74

a-Glucosidase activity was measured in a flat—bottomed 96 well plate. Azasugar solution (3 pL), 4.29 pg/pL
lymphocytes homogenate (7puL) and 20 L of substrate solution of 4-methylumbelliferyl-a-D-glucopyranoside
(Sigma-Aldrich) in Na acetate buffer (0.2 M, pH 4.0) were incubated for 1 h at 37 °C. The reaction was stopped
by the addition of a solution of sodium carbonate (200 pL; 0.5M, pH 10.7) containing Triton X-100 (0.0025
%), and the fluorescence of 4-methylumbelliferone released by a-glucosidase activity was measured in
SpectraMax M2 microplate reader (Aex=365 nm, Aem=435 nm; Molecular Devices). Inhibition is given with
respect to the control (without azasugar). Data are means of 3 values.

180,0
160.0 m Ctrl
m14
140,0
- 15
= 120,0
E 33+HCI
5 100,0 -
S 4% 796 0% 1% 5o,
< 80,0 T T -
2
% 60,0
©
40,0 5%
9% 8% 1% 5924961
20,0 . - 18% _
[
p-Gal a-Gal a-Man B-Man a-Fuco a-Glu

Figure S48. Activity of a panel of 6 human lysosomal glycosidases in the presence of compounds 14, 15 and
33HCI (1 mM). The corresponding calculated percentage of inhibition is indicated above each bar.
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Cytotoxicity test of compound 33:HCI
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Figure S49. Viability assay. Wild-type fibroblasts were incubated for 24 and 48 hin the presence of compound
33HCI at different concentrations. After this time, the viability of cells was evaluated using MMT assay.
Obtained values were normalized with respect to control experiments. Data reported represent the mean value
+S.E.M. (n=8).
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Pharmacological chaperoning activity
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Figure S50. Fibroblasts derived from GD patients bearing N370S/RecNcil mutations were incubated without
(control, ctrl) or with 7 different concentrations (10 nM, 50 nM, 100 nM, 1 uM, 10 pM, 50 uM, 100 uM) of

compounds 14 and 15. After 4 days, the flasks containing cells incubated with 50 pM and 100 pM
concentrations of 14 or 15 showed low cell viability that hampered to proceed with the assay. For the
other concentrations, the GCase activity was determined in lysates from treated fibroblasts. Reported
data are mean S.D. (n=2).
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Figure S51. Fibroblasts derived from GD patients bearing N370S/RecNcil mutations were incubated without
(control, ctrl) or with 7 different concentrations (5 nM, 10 nM, 100 nM, 1 pM, 10 pM, 30 uM) of compound
33-HCI. After 4 days, the GCase activity was determined in lysates from treated fibroblasts. Reported
data are mean S.D. (n=2).
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Figure S52. Fibroblasts derived from GD patients bearing L444P/L444P mutations were incubated
without (control, ctrl) or with 7 different concentrations (5 nM, 10 nM, 50 nM, 100 nM, 1 uM, 10
MM, 50 uM) of compounds 14 or 15. After 4 days, the flasks containing cells incubated with 50 M
concentrations of 14 or 15 showed low cell viability that hampered to proceed with the assay. For the
other concentrations, the GCase activity was determined in lysates from treated fibroblasts. Reported
data are mean S.D. (n=2).
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Molecular Docking

Molecular docking was carried out with acid-beta-glucosidase (PDB ID 2NSX)! using Maestro and
GLIDE software as implemented in Schrédinger suite.2 The D chain was selected. Following the
classical protocol, water molecules, sulfate ions, N-acetylglucosamine and the chaperone 5-
hydroxymethyl-3,4-dihydroxypiperidine (Isofagomine, IFG) were removed from the model. The
protein was preprocessed by assigning bond orders, adding hydrogens, converting selenomethionine
into methionine, creating disulfide bonds and adding cap termini. The orientations of the hydroxyl
groups from the Ser, Thr and Tyr, the sulfhydryl protons of Cys and methyl protons of Met were
optimized. The positions of the hydrogen atoms on the histidine, asparagine and glutamine residues
were assigned to ensure the correct ionization states using Epik (pH 7.0 £2.0). Then, the protein was
optimized with OPLS2005¢ force field. Grid was prepared with a box size of 25x25x25A, centred on
the ligand at the active site, using OPLS2005 force field. Glide was run on XP mode (Extra Precision)
using as input the structures restraining nitrogen inversion and conformations to keep the chair
orientation. Schrodinger Suite 2018-1 was used for all computational calculations. The binding
models for all the compounds were constructed using reference ligand in the binding site. We
considered compounds 14 and 15 protonated at the nitrogen atom so, two diastereoisomers were
evaluated for eachcompound. Conformational preparation of ligands started from two different chairs
in each case so, a total of eight docked structures were evaluated (Figure S53). In all cases, values of
GLIDE score within the same range were obtained (Figures S54 and S55) with some preference for
compound 15, in particular for the 1C, chair. This preference is parallel to the conformational stability
since the preferred pose corresponds to the structures with the two aliphatic chains at C-2 in an
equatorial orientation and only one hydroxyl group in an axial orientation. However, in those cases
corresponding to the best values of docking score, the piperidine ring is oriented opposite as it is for
IFG. Indeed, MMP(G)BSA binding energy data obtained from more reliable MD studies lead to a
different result (see below), evidencing that preliminary results derived from molecular docking
should be managed with caution. 5-Hydroxymethyl-3,4-dihydroxipiperidine (IFG), the ligand
reported as a chaperone initially presentin the studied structure,! showed a higher GLIDE score. This
ligand is completely inserted in the binding site (Figure S56) whereasin the case of 14 and 15 the
hydrophobic chains are mostly oriented towards the external part of the site. Only, the best pose,
found for (S)-15H* 1C,4, maintains the aliphatic chains inside the binding site (Figure S55), thus
justifying the higher GLIDE score obtained.
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All the poses show interactions with the main residues of the binding site through the hydroxyl

groups, although only (R)-15H* 1C, presents interactions with the three hydroxyl groups in a similar

way to 5-hydroxymethyl-3,4-dihydroxypiperidine (IFG), i.e.: with Asn396 and Aspl127.

However, this pose presents the aliphatic chains exposed to the solvent. In general, all poses present

parts of the aliphatic chains exposed to the solvent, with the exception of (S)-15H* 1C, in which only

a terminal ethyl group is exposed. The rest of the aliphatic chains interact with the binding site.

In general, 1C4 conformation is preferred and the S isomer showed the best GLIDE score.
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(-4.331) (-6.231) (-5.144) (-6.071)

Figure S54. Best poses obtained after docking for 14H*. All views are in the same orientation. Top:

2D map of interactions. Bottom: The ligand is shown at the binding site as CPK model. GLIDE score
IS given between brackets.

(R)-15H* “C, (R)-15H* iC, (S)-15H* 4C, (S)-15H* IC,
(-5.680) (-6.354) (-6.260) (-6.614)

Figure S55. Best poses obtained after docking for 15H*. All views are in the same orientation. Top:
2D map of interactions. Bottom: The ligand is shown at the binding site as CPK model. GLIDE score
is given between brackets.
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5-hydroxymethyl-3,4-dihydroxypiperidine
(-8.654)

Figure S56. Bestpose obtained after docking for the ligand 5-hydroymethyl-3,4-dihydroxypiperidine
(IFG). All views are in the same orientation. Top: 2D map of interactions. Bottom: The ligand is
shown at the binding site as CPK model. GLIDE score is given between brackets.

Molecular Dynamics (MD) simulations

MD simulations were carried out with AMBER18 suite of programs.® Parameters for ligands (R)-
14H7, (S)-14H*, (R)-15H* and (S)-15H* were generated with the antechamber module using the
general Amber force field (GAFF2),* with partial charges calculated using AM1-BCC method. The
ff14SB force field® was employed to properly model the protein. The protein, together with the
corresponding ligand, was neutralized and immersed in a water box with a 10 A buffer of TIP3P6
water molecules. A two-stage geometry optimization approach was carried out: i) minimization of
only the positions of solvent molecules executed by 500 cycles of steepest descent minimization
followed by 500 cycles of conjugate gradient minimization and (i) unrestrained minimization of all
the atoms in the simulation cell executed by 2500 cycles of steepest descent minimization followed
by 2500 cycles of conjugate gradient minimization. After system optimization, running of MD
simulations was started on the systems by gradually heating each system in the NVT ensemble from
0 to 300K for 100 ps using a Langevin thermostat with a coupling coefficient of 1.0/ps. Harmonic
restraints of 10 kcal-mol-1 were applied to the solute, and the Langevin temperature coupling scheme?’
was used to control and equalize the temperature. The time step was kept at 2 fs during the heating
stages, allowing potential inhomogeneity to self-adjust. Water molecules are treated with the SHAKE
algorithm such that the angle between the hydrogen atoms is kept fixed. Long-range electrostatic
effects are modelled using the particle-mesh-Ewald method.8 Then 100 ps of density equilibration
with a force constant of 2.0 kcal/mol-A2 on the complex was performed by releasing all the restraints.
Finally, production trajectories were then run for 250 ns under the same simulation conditions. All
MD simulations were replicated four times to ensure feasibilty. MM/PBSA and MM/GBSA
calculations using the procedure implemented in AMBER18 were carried out to estimate ligand-
binding affinities.® The structures used in MM/P(G)BSA calculations were taken from the production
runs. The average 500 snapshots were extracted from the whole MD trajectory at 500 ps intervals.
For each snapshot, binding free energy was calculated as the difference between the free energy of
the complex and the total of the free energies of the protein and the ligand. The cluster analysis of
protein conformations was carried out using cpptraj module with average linkage as the clustering
algorithm, and backbone atom RMSD as the distance metric. Pymol 2.0%° was used for structural
alignments and visualizations. For plotting graphs, MS Excel (2019) and OriginPro (2018) were used.

S59



Panw '
(S)-14H* 4C,

= Al S5
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Figure S57. Final snapshots for MD unrestrained simulations of compound 14. Top: Surface
representation of the complex. The ligand (compound 14) is shown as CPK with the C atoms in cyan.
Bottom: Close-up view of GCase in complex with compound 14. The ligand is colored in cyan.
Residues are colored in green. Dashed yellow lines indicate H-bond interactions. All MD simulations
were made by quadruplicate and the RMSD verified. The red arrow indicates the flexible loop formed
by residues 345-349.
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Figure S58. Final snapshots for MD unrestrained simulations of compound 15. Top: Surface
representation of the complex. The ligand (compound 15) is shown as CPK with the C atoms in cyan.
Bottom: Close-up view of GCase in complex with compound 15. The ligand is colored in cyan.
Residues are colored in green. Dashed yellow lines indicate H-bond interactions. All MD simulations
were made by quadruplicate and the RMSD verified. The red arrow indicates the flexible loop formed
by residues 345-349.
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MMGBSA (kcal/mol)
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replica 1
replica2
replica 3
replica 4

(S)-15H* 4C,

-54.9831
-59.1039
-50.8435
-45.9907

(S)-15H*1C, (R)-15H*4C, (R)-15H*1C, (S)-14H*4C,

-28.0447
-23.495
-23.7052
-36.7638

MM-GBSA

-59.4868
-58.9253
-53.6712
-59.3089

-51.0149
-50.861
-47.0525
-56.3415

-55.5775
-37.8707
-50.0465
-47.3841

Figure S59. MMGBSA calculation for compounds 14 and 15.
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(S)-15H* 4C,

-47.5948
-49.7441
-39.0043
-34.4508

(S)-15H* 1C, (R)-15H*%C, (R)-15H*1C, (S)-14H*4C,

-24.1799
-14.2029
-17.3354
-23.3625

MM-PBSA

-51.4538
-51.2257
-46.629
-48.5604

-40.2421
-32.447
-36.3711
-48.2287

-43.3862
-21.5437
-37.1021
-33.5799

Figure S60. MMPBSA calculation for compounds 14 and 15.

(S)-14H* 1C,

-19.4003
-33.1669
-27.7487
-34.9025

(S)-14H* 'C,
-15.8083
-20.9305
-22.9755
-23.472

(R)-14H* *C,

-45.377
-37.3098
-35.0347
-50.3419

(R)-14H* *C,
-36.8053
-20.4927
-20.4927
-35.413

(R)-14H* 1C,
-53.2244
-41.7188
-56.402
-47.5852

(R)-14H* 1C,
-42.6413
-24.1226
-44.9528
-34.0754
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