# Supplementary Information for

Disentangling population history and character evolution among hybridizing lineages.

Sean P. Mullen1\*, Nicholas W. VanKuren2, Wei Zhang3, Sumitha Nallu2, Evan B. Kristiansen1, Qiqige Wuyun4, Kevin Liu4, Ryan I Hill5, Adriana D. Briscoe6, and Marcus R. Kronforst2

\*Sean P. Mullen Email: smullen@bu.edu

## This PDF file includes:

Supplementary text Figs. S1 to S17 Tables S1 to S10 References for SI reference citations

## **Supplementary Methods**

#### De novo reference genome assembly

Paired-end and mate-pair libraries (Table S1) were constructed from genomic DNA isolated from wild-caught L. a. astyanax (n=5; collected along a 2km stretch of unimproved road in Pennsylvania State Game Lands #57 in Tunkhannock, PA), and sequenced ( $\sim$ 75x) at the Beijing Genome Institute on Illumina's HiSeq platform. Raw reads from three PE libraries, 250 bp, 500 bp and 800 bp and four mate pair libraries, 2kb, 5kb, 10kb and 20kb libraries were filtered for base quality (Qual >20, low quality rate (0.2), read length (<30bp discarded), and trimmed of adapters. All trimmed reads were assembled into scaffolds using the *Platanus* assembler (version: 1.2.4; Kajitani et al. 2014) with default parameter settings. We then obtained 8.5 million long reads from PacBio sequencing from a single lab-reared L. a. astyanax pupae, inbred for  $\sim 6$ generations, derived from the same wild population as the indivduals used for short-read sequencing. The raw reads were corrected using the *Canu* (v1.5; Koren et al. 2017) software with the -correct option resulting in 3,631,966 corrected reads with a N50 of 3,378 bp. In addition to the PacBio reads, we also generated 19,355 scaffolds with an N50 of 80kb from 2,124 BAC's (see Gallant et al. 2014 for specimen info). Finally, the scaffolds generated from *Platanus*, corrected PacBio reads and the assembled scaffolds from the BAC libraries were passed through the Redundans (v0.13a; Pryszcz and Gabaldón 2016) pipeline with --longreads option to generate a scaffolded homozygous genome assembly. Genome FASTA was linked to NCBI Bioproject #: PRJNA556447. Raw reads used for the assembly were uploaded to NCBI's short read archive (SRA): SUB6048049

#### Identifying autosomal scaffolds

We extracted 261 scaffolds above 50 kb and blasted them against 577 genes on the Z chromosome in *Heliconius melpomene* according to *H. melpomene* v2 (Davey et al. 2016). We collected scaffolds with more than one reciprocal best hit. Then we selected

five male and five female samples from *Limenitis lorquini* and *L. weidemeyerii* and estimated genome-wide read depth and read depth for each scaffold using *VCFtools*. An additional filter step was applied by adapting the method mentioned by (Vicoso et al. 2013). For each sample, the read depth of each scaffold was calibrated dividing by the genome-wide read depth, and then the mean calibrated depths of each scaffold were calculated for five female samples and five male samples, separately. We divided the male mean depth by the female mean depth and plotted their log2 values. Autosomal scaffolds should have values close to zero, whereas Z-linked scaffolds should have values close to zero, whereas Z-linked scaffolds should have values as a cutoff and identified ten candidate Z-linked scaffolds, eight of which passed the previous blast test. We considered the rest scaffolds as autosomal scaffolds for downstream analyses, and assigned them to *Melitaea cinxia* chromosomes using a custom BLAT pipeline (Kent 2002; Ahola et al. 2014). Ordering information was used to produce genome-wide plots.

#### Genome annotation

We annotated the final assembly using MAKER v3.01.02 (Campbell et al. 2014). We used RNA-seq data originally generated by Gallant et al (2014), which was derived from 5th instar larval and pupal wing discs (n=12 individuals) that we assembled using *Trinity* (Grabherr et al. 2011; Haas et al. 2013), as evidence for transcribed regions. In addition, we used protein sequences from the UniProt/SwissProt protein database, and GenBank or RefSeq protein models for Danaus plexippus (Zhan et al. 2011; GCA\_000235995.2), Papilio xuthus (Nishikawa et al. 2015; GCF 000836235.1), Bombyx mori (Consortium and others 2008; GCF\_000151625.1), Vanessa tameamea (GCF\_002938995.1), Pieris rapae (Shen et al. 2016; GCF\_001856805.1), and Drosophila melanogaster (Adams et al. 2000; GCF\_000001215.4) as evidence for protein-coding regions. We trained SNAP (Korf 2004) over three rounds using this evidence, then used SNAP, Augustus v3.2 (Stanke et al. 2008) with Heliconius melpomene parameters, and GeneMark-ES 4 (Ter-Hovhannisyan et al. 2008) with MAKER to generate the final gene models. Finally, we functionally annotated predicted proteins using BLASTp of all predicted proteins against the SwissProt database and combined that information using scripts included in the MAKER package. We performed whole genome BUSCO analysis using BUSCO v3

3

(Waterhouse et al. 2017) using default settings and the Endopterygota database (2,440 SCOs) from OrthoDBv10 (Kriventseva et al. 2018).

#### Annotation of pigmentation genes

Translated nucleotide sequences of *Vanessa cardui* melanin and ommochrome-pathway genes identified in Zhang et al. (Zhang et al. 2016) were used as query sequences for *tblastn* searches of a *Limenitis arthemis astanax* wing RNA-seq transcriptome. Individual transcripts were aligned to the *V. cardui* sequence and trimmed, then the translated *L. arthemis astyanax* sequences were used as query sequences in blastn searches against the *L. arthemis astyanax* reference genome. Completeness of individual genes in the genome was verified by confirming the presence of start and stop codons, all exons, and a lack of scaffold miss-assembly. These sequences were deposited in Genbank under the accession numbers: MN842725-MN842774.

#### Whole genome resequencing

We generated genome re-sequencing data for 65 butterflies (Table S4) and processed the raw reads with the *Trimmomatic* Version 0.36. The reads with high quality were aligned to the reference genome using *Bowtie2* v 2.3.0 with the option –very-sensitive-local. PCR duplicates were removed by Picard v2.8.1 (Grabherr et al. 2011; Haas et al. 2013). Indels were realigned by RealignerTargetCreator and IndelRealigner, and genotypes were called by UnifiedGenotyper in *GATK* v3.7. The population genomic data for *L. a. arthemis* and *L. a. astyanax* were previously generated by Gallant et al. 2014 (2014) (NCBI short read archive: PRJNA252628).These data are archived under SRA accession number: SUB6066536

#### Phylogenetic Analysis

We extracted genotype calls (44.40 Mb) with good quality (Qual > 30) from 12 individuals and constructed a genome-wide maximum-likelihood phylogeny using *RAxML* (Stamatakis 2014) with a GTRGAMMA model and 100 bootstrap replicates. We used *iTOL* to output tree images. To evaluate genome-wide patterns of genealogical discordance, we employed Martin and Van Belleghem's (2017) topology weighting analysis using iterative sampling of subtrees. Two individuals of arthemis, astyanax, arizonensis, and archippus with the best read depth were chosen for this analysis. Maximum-likelihood trees were constructed with 100 bootstrap replicates using a general time-reversible (GTR) model for each 50kb window containing at least 200 SNPs. Trees support three different topologies were counted. Topology 1 (((*arthemis*, *astyanax*),*arizonensis*), *archippus*) corresponds to the species tree and was supported by 60,490 subtrees. Topology 2 (((*astyanax*, *arizonensis*), *arthemis*), archippus) corresponds to monophyly of mimetic individuals and was supported by 18,741 subtrees. Topology 3 (((*arthemis*, *arizionensis*), *astyanax*), *archippus*) represents a sister relationship between allopatric, mimetic *arizonensis* and non-mimetic *arthemis*, and was supported by 17,889 subtrees.

### Demographic analyses using G-PhoCS

We inferred demographic parameters such as population sizes, divergence times as well as migration rates using G-PhoCS (Gronau et al. 2011), which employs a Markov Chain Monte Carlo (MCMC) sampling strategy. We selected seven samples with good sequencing depth, including: AZ11, IV2, RIH2093, RIH2125, V2, GA4 and VT44. We filtered genomic scaffolds smaller than our N50 (2.16Mb), and applied additional filters (see Table S5) to exclude repetitive elements, highly conserved regions, and/or genomic regions situated closely to protein coding genes potential under selection. After applying filters, we extracted 1,732 putatively neutral loci for use in the downstream G-PhoCS analysis. It is important to also note that we excluded the scaffold containing WntA from this analysis entirely because of *a priori* evidence for selection in this genomic region. To infer the demographic history of this radiation, we performed 200,000 MCMC iterations using the default Gamma distribution settings. We then viewed and estimated the MCMC traces using *Tracer* v1.6 (http://beast.bio.ed.ac.uk/Tracer). We assumed an average mutation rate of  $3.0 \times 10^{-9}$  and an average generation time of 0.25 per year and calibrated the raw estimates accordingly (Freedman et al. 2014). We conducted analyses for one nomigration model (Table S6) and 16 models with potential migration bands according to Table S7. We covered each potential migration band twice and determined significant

migration bands with all the 95% HPD lower bounds above zero in independent tests. We performed a full model test with all the significant migration bands (Table S8).

#### Population genomic analysis

We applied the Patterson's *D*-statistic to characterize genome-wide patterns of introgression among the three ingroup taxa *Limenitis a. arthemis*, *L. a. astyanax*, *L. a. arizonensis* using *L. archippus* as a designated outgroup. We used all observed ABBA and BABA sites, regardless of ancestral state, and the *D*-statistic was calculated following Durand et al. (2011) as

$$D(P_1, P_2, P_3, O) = \frac{\sum_{i=1}^{n} [(1 - \hat{P_{i1}}) \hat{P_{i2}} \hat{P_{i3}} (1 - \hat{P_{i4}}) - \hat{P_{i1}} (1 - \hat{P_{i2}}) \hat{P_{i3}} (1 - \hat{P_{i4}})]}{\sum_{i=1}^{n} [(1 - \hat{P_{i1}}) \hat{P_{i2}} \hat{P_{i3}} (1 - \hat{P_{i4}}) + \hat{P_{i1}} (1 - \hat{P_{i2}}) \hat{P_{i3}} (1 - \hat{P_{i4}})]}$$
(1)

where  $P_1$ ,  $P_2$ ,  $P_3$  and  $P_4$  refer to four taxa and  $\hat{P}_{ij}$  refers to the SNP frequency in the corresponding population. We chose a window block size of 50 kb to explore patterns of allele-sharing across the genome, and employed the jackknife approach to calculate the standard error using an R package, bootstrap ver. 2012.04. We used a smaller fixed window size of 5 kb for the *D*-statistic across the *WntA* scaffold to obtain a more fine-grained portrait of allele-sharing in the region of the genome known to be responsible for mimetic color pattern variation. We also calculated mean pairwise sequence divergence (*dxr*) across the whole genome (50kb window size), and within the *WntA* region (5kb window size), among *Limenitis a. arthemis*, *L. a. astyanax*, *L. a. arizonensis*, using the following equation:

$$d_{xy} = \frac{1}{n} \sum_{i=1}^{n} \hat{p}_{ix} (1 - \hat{p}_{iy}) + \hat{p}_{iy} (1 - \hat{p}_{ix}) \quad (2)$$

where  $\hat{P}$  refers to the reference allele frequency in the corresponding population.

#### **Hemiplasy Risk Factor**

We calculated the hemiplasy risk factor following Guerrero and Hahn (2018). We generated Bayesian phylogenies for 700 randomly-chosen 100 kb windows using MrBayes3.2 (Ronquist et al., 2012) under a GTRGAMMA model of nucleotide substitution for 1,000,000 MCMC generations. We used the results from these 700

windows to calculate a Bayesian concordance tree with BUCKY v1.4.4, discarding the first 25% of MrBayes trees and otherwise default parameters (Ané et al., 2006; Larget et al., 2010) and input the resulting tree with branch lengths in coalescent units into the *PePo* R package provided by Guerrero and Hahn (2018).

#### **Tests for Introgression**

PhyloNet-HMM (Liu et al. 2014), a statistical introgression mapping model, was used to distinguish between heterogeneous genomic signatures left by point mutations, genetic drift and lineage sorting, recombination, and gene flow. Phylonet-HMM utilizes a combined statistical model that integrates the multi-species network coalescent model (Yu et al. 2012), a finite sites substitution model such as the General Time Reversible model of nucleotide substitutions (Rodriguez et al. 1990), and a hidden Markov model (HMM). The species phylogeny and aligned genome resequencing data (for the seven individuals with the best sequencing depth; see G-PhoCS methods) were used as input, and we tested three different species network hypotheses (Fig. 4) that each had a single reticulation. PhyloNet-HMM outputs an annotation of each site along the aligned genomes with an introgression probability, which in turn is used to assess confidence of detected introgression region. Introgression probabilities were determined based on a modified posterior decoding probability, which was calculated by averaging the posterior decoding probabilities of Hidden Markov Model (HMM) states corresponding to local coalescent histories. Here, we used the Phylonet-HMM implementation that is provided in the recently released PhyloNet version 3.6 (Than et al. 2008; Wen et al. 2018). This implementation utilizes a slightly different transition parameterization compared to the earlier model proposed by Liu et al. (2014), which is implemented in an earlier version 0.1 of the PhyloNet-HMM software. For running PhyloNet-HMM, we used the default settings as specified in the following PhyloNet configuration file.

```
NEXUS
BEGIN NETWORKS;
Network net = <network>;
END;
Begin DATA;
dimensions ntax=<number of taxa> nchar=<length of
```

```
sequence>; format datatype=dna symbols="ACTG" missing=?
gap=-;
matrix
1 <sequence 1>
2 <sequence 2>
.....;
END;
BEGIN PHYLONET;
HmmCommand net -allelemap <allele mapping> -outputdirectory
"<output dir>" -threads 1 -numberofruns 10 -iterations 300
-noplots;
END;
```



**Fig. S1.** Maximum-likelihood bootstrap (n=100) tree, for 12 individuals with the best sequence depth, generated using genome-wide concatenated SNPs (Q>30) and GTRGAMMA model implemented in RAxML(Stamatakis 2014) ; tree was rooted using genome sequence data from *Heliconius sara* (not shown). Blue circles indicate branches with >95% bootstap support.



**Fig. S2**. Mauve alignment of the *Heliconius melpomene* scaffold (*Hmel*2100010) housing the *WntA* locus, the *Limenitis WntA* scaffold, and other *Limenitis* scaffolds previously mapped and reordered to this region of the *Hmel* genome using a custom BLAT pipeline. Images show the *H. melpomene* chromosome on top and the *Limenitis* scaffold below. Gene models (green) and coding sequences (CDS, yellow) are show for each genome. Inset panel shows alignment around the *WntA* coding sequence demonstrating high concordance between the two assemblies in this region.



**Fig. S3.** Graphical summary of the full G-PhoCS demographic model (see also Table S7). Numbers at internal nodes represent estimated ancestral effective population sizes (*Ne*). Mean and 95% CIs for current effective population sizes shown above each *Limenitis* taxon. Divergence time estimates in years (K=thousand, M=million) are noted on the Y-axis. Arrows between lineages reflect probability of migration between bands at each time point. Note that migration estimates (M) outputted by G-PhoCS are scaled by tau (age\*mu/generation time) to obtain total migration rates. Values over 100% are possible under scenarios where rates of gene flow are very high relative to the duration of time corresponding to a particular migration band.



**Fig. S4**. A) Plot of Patterson's D (Durand et al. 2011) and Martin et al.'s (2014) fd calculated in 5kb windows across the WntA scaffold. The haplotype associated with mimetic variation is highlighted in light grey. B) Genome-wide estimates of D and *fd* calculated in 50Kb windows, excluding the WntA focal scaffold. Values for D and fd are on the y-axis and each windowed point (n = 6000), determined by sliding across individual scaffolds ordered largest to smallest, is plotted on the X-axis. The genome-wide average for D (0.06 +/- 0.0022) is shown as a dashed white line.



**Fig. S5**. Maximum-likelihood bootstrap (N=100) tree for the *WntA* protein-coding gene. Gray shading denotes all white-banded *L. a. arthemis* individuals; note that one individual sample of *L. a. arthemis* groups with the clade containing mimetic *L. a. astyanax*. Blue circles indicate branches with >95% support.



**Fig. S6**. Maximum-likelihood bootstrap (N=100) tree for the associated haplotype upstream of *WntA*. Blue circles indicate branches with >95% support. Monophyly of the two mimetic taxa, *L*. *a. astyanax* and *L. a. arizonensis* is strongly support.



**Fig. S7.** Bayesian consensus phylogeny based on 700 randomly-chosen 100Kb genomic windows showing the calculated hemiplasy risk (following Guerrero and Hahn 2018) across branches of the Limenitis phylogeny.



**Fig. S8** PhyloNet-HMM analysis of 30 largest *Limenitis* scaffolds. Per-site introgression probabilities inferred using PhyloNet-HMM for network 1 are shown, where probabilities between 0 and 1 are colored using a continuous gradient from white to blue, respectively.



**Fig. S9** PhyloNet-HMM analysis of 30 largest *Limenitis* scaffolds. Per-site introgression probabilities inferred using PhyloNet-HMM for network 2 are shown, where probabilities between 0 and 1 are colored using a continuous gradient from white to blue, respectively.



**Fig. S10** PhyloNet-HMM analysis of 30 largest *Limenitis* scaffolds. Per-site introgression probabilities inferred using PhyloNet-HMM for network 3 are shown, where probabilities between 0 and 1 are colored using a continuous gradient from white to blue, respectively.



**Fig. S11.** Introgressed tract length histogram based on PHyloNet-HMM analysis of the *Limenitis WntA* scaffold with comparison of three species networks



**Fig. S12.** Introgressed tract length histogram based on Phylo-Net HMM analyses of all non-focal genomic scaffolds for each of the three tested species networks



**Fig. S13.** Decay of linkage disequilibrium (mean r<sub>2</sub>) as a function of physical distance across the *WntA* scaffold relative to genome-wide estimates for mimetic subspecies of *L. arthemis* (orange vs. yellow lines) and non-mimetic (dark vs. light purple) *L. a. arthemis* and *L. lorquini/L.weidemeyerii*.



**Fig. S14.** Sliding window (5kb) mean FsT values across the *Limenitis* genomic scaffold housing the *WntA* gene and the upstream region associated with differences in color pattern. Note the high level of divergence centered on the associated haplotype (hap) between mimetic and non-mimetic subspecies of *L. a. arthemis* vs. lower estimated divergence between the two mimetic subspecies (*L. a. astyanax* and *L. a. arizonensis*).



**Fig. S15.** Mean r<sup>2</sup> estimates between all SNPs in 500bp sliding windows (50bp steps) across the *WntA* scaffold for comparisons between A) *L. a. arthemis* and *L. a. astyanax*, B) *L. a. arthemis* and *L. a. arthemis* and *L. a. arthemis*, and C) *L. a. astyanax* and *L. a. arizonensis*. Raw points overlaid with a loess best fit line.



**Fig. S16.** Levels of nucleotide diversity ( $\pi$ ) across the *WntA* scaffold (solid lines). Dashed lines represent genome-wide mean values of  $\pi$  for each *Limenitis* taxon.



**Fig. S17. A)** Alignment between *Limenitis\_WntA\_scaffold* (mimetic) and BAC sequence 60G18 (nonmimetic allele), with the *WntA* mRNA and coding sequence annotations, the LINE element annotation, and the deletion identified by *delly* and *pindel*. **B**) Read pileups of a few sample BAMs across this region. Read pairs highlighted with long red inserts support the presence of the deletion. **C**) Read coverage plots across the region in 3 samples each from *L. a. arthemis*, *L. a. astyanax*, and *L. a. arizonensis*. Annotations follow the same color scheme as in A.

| Insert size | # of libraries | Effective Coverage | Type of     | Clean Data      |
|-------------|----------------|--------------------|-------------|-----------------|
|             |                |                    | Sequencing  | (GB)            |
| 250bp       | 1              | 22x                | HiSeq PE150 | 8.8             |
| 500bp       | 1              | 15x                | HiSeq PE150 | 6.0             |
| 800bp       | 1              | 12x                | HiSeq PE100 | 4.8             |
| 2kb         | 1              | 10x                | HiSeq PE50  | 4.0             |
| 5kb         | 1              | 8x                 | HiSeq PE50  | 3.2             |
| 10kb        | 1              | 5x                 | HiSeq PE50  | 2.0             |
| 20kb        | 1              | 3x                 | HiSeq PE50  | 1.2             |
| Total       | 7              | 75x                |             | 30              |
| BAC Data:   | 2,124 BACs     | 0.75x              | ~20K        | N50 ~80Kb,      |
|             |                |                    | scaffolds   | max > 1Mb       |
| PacBio Data | ~4k mean       | ~60X               | 8.5 million | 3.8 million     |
|             | length         |                    | reads       | corrected reads |

Table S1. Genome sequence data used for the *Limenitis* reference assembly

**Table S2.** Summary of *Limenitis* scaffolds mapped and reordered relative to several high quality Lepidopteran reference genomes

 based on synteny comparisons of reference genome protein-coding genes.

| Lepidopteran reference | Number of mapped Limenitis | Cumulative size (Mb) of |
|------------------------|----------------------------|-------------------------|
| assemblies             | scaffolds                  | mapped scaffolds        |
| Melitaea cinxia        | 191 (26%)                  | 286Mb (94%)             |
| Papilio xuthus         | 203 (26%)                  | 289Mb (94%)             |
| Heliconius melpomene   | 236 (32%)                  | 294 Mb (96%)            |

Table S3. List of manually annotated pigmentation genes, including their scaffold position, e-value scores, % identity, top tblastn hit, and Genbank accession number.

| Drosophila gene   |                    | Scaffold       |         |           |                                    | GenBank   |
|-------------------|--------------------|----------------|---------|-----------|------------------------------------|-----------|
| ID                | Limenitis scaffold | coordinates    | E-value | %Identity | Top Hit (tblastn nr/nt)            | Accession |
|                   |                    |                |         |           | AEQ77286.1 putative aspartate      |           |
| black             | scaffold00082      | 173102-176137  | 0.0     | 87%       | decarboxylase [Bicyclus anynana]   | MN842725  |
|                   |                    |                |         |           | XM_014514480.1 PREDICTED: Papilio  |           |
|                   |                    |                |         |           | machaon aromatic-L-amino-acid      |           |
| dopa              |                    |                |         |           | decarboxylase (LOC106719984),      |           |
| decarboxylase     | scaffold00068      | 430451-425753  | 0.0     | 88%       | transcript variant X1, mRNA        | MN842726  |
|                   |                    |                |         |           | XM_022271766.1 PREDICTED: Pieris   |           |
| dopa              |                    |                |         |           | rapae aromatic-L-amino-acid        |           |
| decarboxylase-    |                    |                |         |           | decarboxylase-like (LOC111001764), |           |
| like              | scaffold00068      | 174949-180389  | 0.0     | 71%       | mRNA                               | MN842727  |
|                   |                    |                |         |           | ADU32896.1 ebony [Heliconius       |           |
| ebony             | scaffold00058      | N/A            | 0.0     | 84%       | melpomene malleti]                 | MN842728  |
|                   |                    |                |         |           | XP_014365891.1 PREDICTED:          |           |
|                   |                    |                |         |           | uncharacterized protein            |           |
| mfs transporter 1 | scaffold00099      | 1023495-800998 | 0.0     | 74%       | LOC106716794 [Papilio machaon]     | MN842729  |

|                   |               |             |     |     | OWR55438.1 monocarboxylate            |          |
|-------------------|---------------|-------------|-----|-----|---------------------------------------|----------|
|                   |               | 1186912-    |     |     | transporter [Danaus plexippus         |          |
| mfs transporter 2 | scaffold00035 | 1163608     | 0.0 | 85% | plexippus]                            | MN842730 |
|                   |               | 30974194-   |     |     | XP_022113441.1 synaptic vesicle       |          |
| mfs transporter 3 | scaffold00002 | 14053385    | 0.0 | 76% | glycoprotein 2C-like [Pieris rapae]   | MN842731 |
|                   |               |             |     |     | XP_013149032.1 PREDICTED:             |          |
|                   |               |             |     |     | facilitated trehalose transporter     |          |
| mfs transporter 4 | scaffold00004 | 44575-47345 | 0.0 | 80% | Tret1-like [Papilio polytes]          | MN842732 |
|                   |               | 1282362-    |     |     | XP_022131144.1 synaptic vesicle       |          |
| mfs transporter 5 | scaffold00021 | 1273153     | 0.0 | 91% | glycoprotein 2B-like [Pieris rapae]   | MN842733 |
|                   |               |             |     |     | XP_013167840.1 PREDICTED:             |          |
|                   |               |             |     |     | synaptic vesicle glycoprotein 2C-like |          |
| mfs transporter 6 | scaffold00034 | 68719-81151 | 0.0 | 74% | [Papilio xuthus]                      | MN842734 |
|                   |               |             |     |     | OWR48486.1 hypothetical protein       |          |
|                   |               | 1875736-    |     |     | KGM_206261 [Danaus plexippus          |          |
| mfs transporter 7 | scaffold00048 | 1866542     | 0.0 | 82% | plexippus]                            | MN842735 |
|                   |               |             |     |     | GU063821.1 Heliconius melpomene       |          |
|                   |               | 1169549-    |     |     | malleti tyrosine hydroxylase mRNA,    |          |
| pale              | scaffold00064 | 1177052     | 0.0 | 93% | complete cds                          | MN842736 |
|                   |               |             |     |     | GU386341.1 Heliconius melpomene       |          |
| tan               | scaffold00110 | 26802-18196 | 0.0 | 89% | malleti tan mRNA, complete cds        | MN842737 |

|             |               |               |     |     | GU063822.1Heliconius melpomene      |          |
|-------------|---------------|---------------|-----|-----|-------------------------------------|----------|
| yellow      | scaffold00035 | 890753-882089 | 0.0 | 84% | yellow mRNA, complete cds           | MN842738 |
|             |               |               |     |     | GU063825.1 Heliconius melpomene     |          |
| yellow-b    | scaffold00091 | 261189-264929 | 0.0 | 88% | yellow-b mRNA, complete cds         | MN842739 |
|             |               | 3059934-      |     |     | GU063827.1 Heliconius erato yellow- |          |
| yellow-c    | scaffold00006 | 3065112       | 0.0 | 87% | c mRNA, complete cds                | MN842740 |
|             |               |               |     |     | GU063831.2 Heliconius melpomene     |          |
| yellow-d    | scaffold00155 | 362595-355796 | 0.0 | 73% | yellow-d mRNA, complete cds         | MN842741 |
|             |               |               |     |     | GU063834.1 Heliconius melpomene     |          |
| yellow-e    | scaffold00041 | 617843-595816 | 0.0 | 90% | yellow-e mRNA, complete cds         | MN842742 |
|             |               |               |     |     | GU063836.1 Heliconius melpomene     |          |
| yellow-f4   | no hit        | N/A           | 0.0 | 70% | yellow-f4 mRNA, complete cds        | MN842743 |
|             |               |               |     |     | GU063841.1 Heliconius melpomene     |          |
| yellow-h2   | scaffold00155 | 333343-330051 | 0.0 | 84% | yellow-h2 mRNA, complete cds        | MN842744 |
|             |               |               |     |     | GU063840.1 Heliconius numata        |          |
| yellow-h3   | scaffold00155 | 326427-323890 | 0.0 | 83% | yellow-h3 mRNA, complete cds        | MN842745 |
|             |               |               |     |     | NM_001312559.1 Papilio xuthus       |          |
|             |               |               |     |     | protein yellow-like (LOC106126016), |          |
| yellow-like | scaffold04833 | 977-913       | 0.0 | 62% | mRNA                                | MN842746 |
|             |               |               |     |     | GU063844.1 Heliconius melpomene     |          |
| yellow-x    | scaffold00070 | 821271-819946 | 0.0 | 82% | yellow-x mRNA, complete cds         | MN842747 |

| ATP-binding   |                    |               |     |     | XM_013325974.1 PREDICTED: Papilio |          |
|---------------|--------------------|---------------|-----|-----|-----------------------------------|----------|
| cassette      |                    |               |     |     | xuthus ATP-binding cassette sub-  |          |
| subfamily     |                    |               |     |     | family G member 4 (LOC106127742), |          |
| member 4      | scaffold00184      | 188414-223854 | 0.0 | 81% | mRNA                              | MN842748 |
|               |                    |               |     |     | XM_014505288.1 Select seq         |          |
| ATP-binding   |                    |               |     |     | XM_014505288.1                    |          |
| cassette      |                    |               |     |     | PREDICTED: Papilio machaon ATP-   |          |
| subfamily     |                    |               |     |     | binding cassette sub-family G     |          |
| member 4      | scaffold00184      | 177357-81107  | 0.0 | 65% | member 4 (LOC106712665), mRNA     | MN842749 |
|               |                    |               |     |     | XM_022261959.1 PREDICTED: Pieris  |          |
|               | scaffold00001,scaf | 4496766-      |     |     | rapae peroxidase (LOC110994999),  |          |
| cardinal      | fold00429          | 4510638       | 0.0 | 70% | mRNA                              | MN842750 |
|               |                    |               |     |     | XM_022257903.1 PREDICTED: Pieris  |          |
|               |                    | 2609897-      |     |     | rapae peroxidase (LOC110992188),  |          |
| cardinal-like | scaffold00009      | 2593099       | 0.0 | 91% | mRNA                              | MN842751 |
|               |                    |               |     |     | XM_013311767.1 PREDICTED: Papilio |          |
|               |                    | 2988712-      |     |     | xuthus AP-3 complex subunit mu-1  |          |
| carmine       | scaffold00009      | 2994766       | 0.0 | 98% | (LOC106117444), mRNA              | MN842752 |
|               |                    |               |     |     | XM_022269096.1 PREDICTED: Pieris  |          |
|               |                    |               |     |     | rapae AP-1 complex subunit mu-1   |          |
| carmine-like  | scaffold00117      | 125486-126754 | 0.0 | 99% | (LOC110999847), mRNA              | MN842753 |

|              |               |               |     |      | XM_022958245.1 PREDICTED:        |          |
|--------------|---------------|---------------|-----|------|----------------------------------|----------|
|              |               |               |     |      | Spodoptera litura AP-2 complex   |          |
| carmine-like | scaffold00091 | 77296-72454   | 0.0 | 100% | subunit mu (LOC111347862), mRNA  | MN842754 |
|              |               |               |     |      | XM_022275362.1 PREDICTED: Pieris |          |
|              |               |               |     |      | rapae vacuolar protein sorting-  |          |
|              |               |               |     |      | associated protein 33A           |          |
| carnation    | no hit        | N/A           | 0.0 | 83%  | (LOC111004360), mRNA             | MN842755 |
|              |               |               |     |      | XM_022262918.1 PREDICTED: Pieris |          |
|              |               |               |     |      | rapae kynurenine 3-monooxygenase |          |
| cinnabar     | scaffold00005 | 674868-666909 | 0.0 | 77%  | (LOC110995656), mRNA             | MN842756 |
|              |               |               |     |      | XM_022269462.1 PREDICTED: Pieris |          |
|              |               |               |     |      | rapae vacuolar protein sorting-  |          |
|              |               |               |     |      | associated protein 18 homolog    |          |
| deep orange  | scaffold00066 | 469580-475561 | 0.0 | 80%  | (LOC111000113), mRNA             | MN842757 |
|              |               |               |     |      | XM_022268465.1 Select seq        |          |
|              |               |               |     |      | XM_022268465.1                   |          |
|              |               |               |     |      | PREDICTED: Pieris rapae AP-3     |          |
|              |               |               |     |      | complex subunit delta            |          |
| garnet       | scaffold00088 | 233713-250091 | 0.0 | 74%  | (LOC110999428), mRNA             | MN842758 |
|              |               | 2015877-      |     |      | XM_013329500.1 Select seq        |          |
| henna        | scaffold00002 | 2020136       | 0.0 | 89%  | XM_013329500.1                   | MN842759 |

|                |               |             |        |     | PREDICTED: Amyelois transitella      |          |
|----------------|---------------|-------------|--------|-----|--------------------------------------|----------|
|                |               |             |        |     | protein henna (LOC106130608),        |          |
|                |               |             |        |     | mRNA                                 |          |
|                |               |             |        |     | XP 023942067.1 tryptophan 5-         |          |
| henna-c        | scaffold00218 | 62321-72039 | 0      | 92% | hydroxylase 1 [Bicyclus anynana]     | MN842760 |
|                |               |             |        |     | GQ184571.1 Heliconius melpomene      |          |
|                |               |             | 3.00E- |     | cythera karmoisin (kar) mRNA,        |          |
| karmoisin      | no hit        | N/A         | 173    | 66% | partial cds                          | MN842761 |
|                |               |             |        |     | XM_013317970.1 PREDICTED: Papilio    |          |
|                |               |             |        |     | xuthus monocarboxylate transporter   |          |
|                |               |             |        |     | 3 (LOC106122104), transcript variant |          |
| karmoisin-like | no hit        | N/A         | 0.0    | 62% | X3, mRNA                             | MN842762 |
|                |               |             |        |     | ACS66705.1 kynurenine                |          |
| kynurenine     |               | 4168421-    |        |     | formamidase [Heliconius              |          |
| foramidase     | scaffold00009 | 4178017     | 0.0    | 87% | melpomene]                           | MN842763 |
|                |               |             |        |     | XM_022975079.1 PREDICTED:            |          |
|                |               |             |        |     | Spodoptera litura vacuolar protein   |          |
|                |               | 1580644-    |        |     | sorting-associated protein 41        |          |
| light          | scaffold00055 | 1585196     | 0.0    | 81% | homolog (LOC111359501), mRNA         | MN842764 |
|                |               |             |        |     | OWR51623.1 Optix [Danaus             |          |
| optix          | scaffold00223 | 43397-42579 | 0.0    | 97% | plexippus plexippus]                 | MN842765 |

|           |               |               |        |     | AK385130.1 Select seq AK385130.1   |          |
|-----------|---------------|---------------|--------|-----|------------------------------------|----------|
|           |               |               | 3.00E- |     | Bombyx mori mRNA, clone:           |          |
| orange    | scaffold00188 | 111738-105781 | 136    | 98% | fcaL52J18_K04259                   | MN842766 |
|           |               |               |        |     | XM_022260900.1 PREDICTED: Pieris   |          |
|           |               |               |        |     | rapae Hermansky-Pudlak syndrome 5  |          |
|           |               |               |        |     | protein homolog (LOC110994327),    |          |
| pink      | scaffold00023 | 829270-834680 | 0.0    | 67% | transcript variant X1, mRNA        | MN842767 |
|           |               |               |        |     | XM_022270673.1 Select seq          |          |
|           |               |               |        |     | XM_022270673.1                     |          |
|           |               |               |        |     | PREDICTED: Pieris rapae AP-3       |          |
|           |               |               |        |     | complex subunit beta-2             |          |
|           |               |               |        |     | (LOC111001009), transcript variant |          |
| ruby      | scaffold00057 | 691062-661244 | 0.0    | 80% | X3, mRNA                           | MN842768 |
|           |               |               |        |     | XM_013312195.1 PREDICTED: Papilio  |          |
|           |               |               |        |     | xuthus AP-1 complex subunit beta-1 |          |
|           |               |               |        |     | (LOC106117773), transcript variant |          |
| ruby-like | scaffold00014 | 345371-356748 | 0.0    | 88% | X2, mRNA                           | MN842769 |
|           |               |               |        |     | XM_022262816.1 PREDICTED: Pieris   |          |
|           |               |               |        |     | rapae protein scarlet              |          |
| scarlet   | scaffold00086 | 855822-890471 | 0.0    | 79% | (LOC110995590), mRNA               | MN842770 |

|                  |               |               |     |     | XM_022259266.1 Select seq         |          |
|------------------|---------------|---------------|-----|-----|-----------------------------------|----------|
|                  |               |               |     |     | XM_022259266.1                    |          |
|                  |               |               |     |     | PREDICTED: Pieris rapae protein   |          |
|                  |               | 1756331-      |     |     | scarlet-like (LOC110993133),      |          |
| scarlet-like     | scaffold00017 | 1775005       | 0.0 | 83% | transcript variant X1, mRNA       | MN842771 |
| sodium-          |               |               |     |     |                                   |          |
| independent      |               |               |     |     | OWR50240.1 putative Sulfate       |          |
| sulfate anion    |               |               |     |     | permease [Danaus plexippus        |          |
| transporter-like | scaffold00169 | 185363-165503 | 0.0 | 83% | plexippus]                        | MN842772 |
|                  |               |               |     |     | XM_013316171.1 PREDICTED: Papilio |          |
|                  |               |               |     |     | xuthus tryptophan 2,3-dioxygenase |          |
| vermillion       | scaffold00037 | 245104-224348 | 0.0 | 85% | (LOC106120752), mRNA              | MN842773 |
|                  |               |               |     |     | XM_014512501.1 PREDICTED: Papilio |          |
|                  |               |               |     |     | machaon protein white             |          |
| white            | scaffold00086 | 774623-808987 | 0.0 | 88% | (LOC106718426), mRNA              | MN842774 |

**Table S4.** List of *Limenitis* specimens sequenced for population genomic analyses. QC data, alignment rate to the reference assembly, specimen sex if known, and number of SNPs detected is provided for each individual. Note that samples with light grey shading were excluded from downstream analyses due to failure to sequence or poor sequencing quality results.

|              | Sample | GPS          | Filtered | Filtered | Alignment |       | SNP sites          | Mean depth         |
|--------------|--------|--------------|----------|----------|-----------|-------|--------------------|--------------------|
| Species      | ID     | Coordinates  | R1 reads | R2 reads | rate      | Sex   | (UnifiedGenotyper) | (UnifiedGenotyper) |
|              |        | N42.296.36°; |          |          |           |       |                    |                    |
| L. archippus | IV1    | W76.230.6°   | 13209567 | 13209567 | 86.79%    | F     | 36507915           | 9.98               |
|              |        | N42.296.36°; |          |          |           |       |                    |                    |
| L. archippus | IV2    | W76.230.6°   | 17443333 | 17443333 | 84.92%    | F     | 36660843           | 11.25              |
|              |        | N25.5719°;   |          |          |           |       |                    |                    |
| L. archippus | V1     | W81.2122.2°  | 23569922 | 23569922 | 85.40%    | М     | 37901507           | 17.88              |
|              |        | N25.5719°;   |          |          |           | Unkno |                    |                    |
| L. archippus | V2     | W81.2122.2°  | 31611618 | 31611618 | 84.71%    | wn    | 38400720           | 22.89              |
|              |        | N25.5719°;   |          |          |           |       |                    |                    |
| L. archippus | V3     | W81.2122.2°  | 14376540 | 14376540 | 85.63%    | М     | 34997116           | 7.07               |
|              |        | N28.550.7°;  |          |          |           |       |                    |                    |
| L. archippus | V4     | W82.1841.9°  | 14827201 | 14827201 | 83.88%    | F     | 36715721           | 10.93              |
|              |        | N28.550.7°;  |          |          |           |       |                    |                    |
| L. archippus | V5     | W82.1841.9°  | 11731410 | 11731410 | 83.42%    | М     | 34923784           | 7.99               |

|              |      | N28.550.7°;  |          |          |        |   |          |       |
|--------------|------|--------------|----------|----------|--------|---|----------|-------|
| L. archippus | V6   | W82.1841.9°  | 15779127 | 15779127 | 81.61% | F | 37201275 | 11.69 |
|              |      | N28.550.7°;  |          |          |        |   |          |       |
| L. archippus | V9   | W82.1841.9°  | 22315749 | 22315749 | 84.50% | М | 37805632 | 16.29 |
| L. a.        |      | N33.5137.6°; |          |          |        |   |          |       |
| arizonensis  | AZ10 | W111.4252.8° | 15312838 | 15312838 | 86.15% | м | 38317398 | 9.54  |
| L. a.        |      | N33.5137.6°; |          |          |        |   |          |       |
| arizonensis  | AZ11 | W111.4252.8° | 33434885 | 33434885 | 88.86% | М | 41632569 | 21.26 |
| L. a.        |      | N33.5137.6°; |          |          |        |   |          |       |
| arizonensis  | AZ12 | W111.4252.8° | 6325868  | 6325868  | 88.03% | М | 30909219 | 4.20  |
| L. a.        |      | N33.5137.6°; |          |          |        |   |          |       |
| arizonensis  | AZ13 | W111.4252.8° | 14945097 | 14945097 | 82.17% | м | 39776003 | 8.91  |
| L. a.        |      | N34.4155.3°; |          |          |        |   |          |       |
| arizonensis  | AZ1  | W112.819.9°  | 14560113 | 14560113 | 89.24% | м | 39142814 | 8.47  |
| L. a.        |      | N34.4155.3°; |          |          |        |   |          |       |
| arizonensis  | AZ4  | W112.819.9°  | 12621427 | 12621427 | 89.38% | М | 37358842 | 7.28  |
| L. a.        |      | N34.4155.3°; |          |          |        |   |          |       |
| arizonensis  | AZ5  | W112.819.9°  | 16800579 | 16800579 | 90.86% | М | 26202976 | 6.50  |

| L. a.          |      | N34.4155.3°; |          |          |        |       |               |       |
|----------------|------|--------------|----------|----------|--------|-------|---------------|-------|
| arizonensis    | AZ6  | W112.819.9°  | 12719306 | 12719306 | 86.59% | м     | 36038455      | 6.56  |
| L. a.          |      | N34.4155.3°; |          |          |        |       |               |       |
| arizonensis    | AZ7  | W112.819.9°  | 12197884 | 12197884 | 85.20% | м     | 37824556 7.14 |       |
| L. a.          |      | N34.4155.3°; |          |          |        | Unkno |               |       |
| arizonensis    | AZ8  | W112.819.9°  | 12133667 | 12133667 | 86.15% | wn    | 38772106      | 7.40  |
| L. a.          |      | N34.4155.3°; |          |          |        |       |               |       |
| arizonensis    | AZ9  | W112.819.9°  | 17502456 | 17502456 | 85.84% | М     | 40775494      | 11.32 |
|                |      | N44.258.2°;  |          |          |        |       |               |       |
| L. a. arthemis | VT27 | W72.5736.0°  | 18862833 | 18862833 | 89.02% | М     | 41674034      | 8.63  |
|                |      | N44.258.2°;  |          |          |        |       |               |       |
| L. a. arthemis | VT29 | W72.5736.0°  | 12082229 | 12082229 | 85.95% | М     | 40582179      | 5.54  |
|                |      | N44.258.2°;  |          |          |        |       |               |       |
| L. a. arthemis | VT32 | W72.5736.0°  | 43575855 | 43575855 | 88.93% | М     | 42443349      | 19.09 |
|                |      | N44.258.2°;  |          |          |        |       |               |       |
| L. a. arthemis | VT33 | W72.5736.0°  | 8683821  | 8683821  | 88.68% | М     | 37497104      | 4.25  |
|                |      | N44.258.2°;  |          |          |        |       |               |       |
| L. a. arthemis | VT36 | W72.5736.0°  | 10733095 | 10733095 | 88.72% | М     | 39390336      | 5.07  |
|                |      | N44.258.2°;  |          |          |        |       |               |       |
| L. a. arthemis | VT38 | W72.5736.0°  |          |          |        | М     |               |       |

|                |      | N44.258.2°;  |          |          |        |   |          |       |
|----------------|------|--------------|----------|----------|--------|---|----------|-------|
| L. a. arthemis | VT44 | W72.5736.0°  | 61719923 | 61719923 | 87.75% | М | 42691967 | 23.57 |
|                |      | N44.258.2°;  |          |          |        |   |          |       |
| L. a. arthemis | VT48 | W72.5736.0°  | 26592378 | 26592378 | 87.86% | М | 41162995 | 10.46 |
|                |      | N44.258.2°;  |          |          |        |   |          |       |
| L. a. arthemis | VT51 | W72.5736.0°  |          |          |        | М |          |       |
|                |      | N44.258.2°;  |          |          |        |   |          |       |
| L. a. arthemis | VT53 | W72.5736.0°  | 12302939 | 12302939 | 21.02% |   | 17148740 | 2.28  |
|                |      | N44.258.2°;  |          |          |        |   |          |       |
| L. a. arthemis | VT54 | W72.5736.0°" | 25014737 | 25014737 | 88.91% | М | 40881404 | 9.88  |
|                |      | N44.258.2°;  |          |          |        |   |          |       |
| L. a. arthemis | VT59 | W72.5736.0°  | 31069368 | 31069368 | 87.41% | М | 41277609 | 11.25 |
|                |      | N44.258.2°;  |          |          |        |   |          |       |
| L. a. arthemis | VT63 | W72.5736.0°  | 41377214 | 41377214 | 88.20% | М | 42133253 | 16.81 |
|                |      | N38.5248°;   |          |          |        |   |          |       |
| L. a. astyanax | GA17 | W83.28538°   | 12211071 | 12211071 | 2.12%  | F | 3638171  | 1.31  |
|                |      | N38.5248°;   |          |          |        |   |          |       |
| L. a. astyanax | GA18 | W83.28538°   | 13426587 | 13426587 | 0.20%  | F | 158496   | 1.55  |
|                |      | N38.5248°;   |          |          |        |   |          |       |
| L. a. astyanax | GA19 | W83.28538°   |          |          |        |   |          |       |
| L. a. astyanax | GA1  | N38.5248°;   | 10858801 | 10858801 | 89.13% | F | 40307415 | 5.17  |
| 1              | 1    | 1            | 1        | 1        |        | 1 |          |       |

|                |         | W83.28538°  |          |          |        |   |          |       |
|----------------|---------|-------------|----------|----------|--------|---|----------|-------|
|                |         | N38.5248°;  |          |          |        |   |          |       |
| L. a. astyanax | GA20    | W83.28538°  | 40863585 | 40863585 | 0.56%  |   | 1513352  | 1.62  |
|                |         | N38.5248°;  |          |          |        |   |          |       |
| L. a. astyanax | GA2     | W83.28538°  | 29045479 | 29045479 | 88.79% | F | 41859568 | 12.75 |
|                |         | N38.5248°;  |          |          |        |   |          |       |
| L. a. astyanax | GA3     | W83.28538°" | 12989981 | 12989981 | 88.67% | F | 39548602 | 5.83  |
|                |         | N38.5248°;  |          |          |        |   |          |       |
| L. a. astyanax | GA4     | W83.28538°  | 40565570 | 40565570 | 87.66% | F | 41039770 | 13.98 |
|                |         | N38.5248°;  |          |          |        |   |          |       |
| L. a. astyanax | GA5     | W83.28538°  |          |          |        | F |          |       |
|                |         | N38.5248°;  |          |          |        |   |          |       |
| L. a. astyanax | GA6     | W83.28538°  | 20730951 | 20730951 | 88.78% | F | 40636452 | 8.68  |
|                |         | N38.5248°;  |          |          |        |   |          |       |
| L. a. astyanax | GA7     | W83.28538°  | 11581590 | 11581590 | 86.84% | F | 33185606 | 4.77  |
|                |         | N38.17193°; |          |          |        |   |          |       |
| L. lorquini    | RIH2088 | W122.47571° | 24153400 | 24153400 | 89.80% | М | 40970376 | 16.30 |
|                |         | N38.17193°; |          |          |        |   |          |       |
| L. lorquini    | RIH2089 | W122.47571° | 16119903 | 16119903 | 88.39% | М | 40312870 | 10.97 |
|                |         | N37.53816°; |          |          |        |   |          |       |
| L. lorquini    | RIH2090 | W121.83892° | 22394013 | 22394013 | 88.70% | М | 41059496 | 14.64 |

|              |         | N38.15047°; |          |          |        |   |          |         |
|--------------|---------|-------------|----------|----------|--------|---|----------|---------|
| L. lorquini  | RIH2091 | W120.8194°  | 21956756 | 21956756 | 88.44% | М | 40511154 | 14.34   |
|              |         | N38.15047°; |          |          |        |   |          |         |
| L. lorquini  | RIH2092 | W120.8194°  | 19493893 | 19493893 | 88.39% | М | 40373644 | 12.55   |
|              |         | N38.15047°; |          |          |        |   |          |         |
| L. lorquini  | RIH2093 | W120.8194°  | 41744174 | 41744174 | 89.36% | М | 42255388 | 24.64   |
|              |         | N38.15047°; |          |          |        |   |          |         |
| L. lorquini  | RIH2094 | W120.8194°  | 28107114 | 28107114 | 88.93% | М | 41331126 | 17.83   |
|              |         | N38.15047°; |          |          |        |   |          |         |
| L. lorquini  | RIH2095 | W120.8194°  | 17296996 | 17296996 | 88.77% | F | 40408302 | 11.04   |
|              |         | N38.15047°; |          |          |        |   |          |         |
| L. lorquini  | RIH2287 | W120.8194°  | 21314613 | 21314613 | 64.69% | F | 40166064 | 10.2944 |
|              |         | N38.05358°; |          |          |        |   |          |         |
| L. lorquini  | RIH2399 | W119.12797° | 14742215 | 14742215 | 0.83%  | F | 953580   | 1.41298 |
| <i>L.</i>    |         | N38.05358°; |          |          |        |   |          |         |
| weidemeyerii | RIH2106 | W119.12797° | 14523078 | 14523078 | 89.34% | М | 39969200 | 9.44177 |
| L.           |         | N38.11665°; |          |          |        |   |          |         |
| weidemeyerii | RIH2107 | W119.07725  | 16234914 | 16234914 | 88.50% | м | 40598100 | 10.7828 |
| L.           |         | N38.11665°; |          |          |        |   |          |         |
| weidemeyerii | RIH2108 | W119.07725  | 21745514 | 21745514 | 87.77% | м | 40383732 | 11.6942 |

| <i>L.</i>    |         | N38.11665°; |          |          |        |   |          |         |
|--------------|---------|-------------|----------|----------|--------|---|----------|---------|
| weidemeyerii | RIH2109 | W119.07725  | 18342481 | 18342481 | 87.81% | М | 40439246 | 11.244  |
| <i>L.</i>    |         | N38.11665°; |          |          |        |   |          |         |
| weidemeyerii | RIH2110 | W119.07725  | 26560347 | 26560347 | 67.00% | F | 40704581 | 12.412  |
| <i>L</i> .   |         | N38.11928°; |          |          |        |   |          |         |
| weidemeyerii | RIH2113 | W119.084°   | 11870098 | 11870098 | 88.46% | М | 39345271 | 7.8302  |
| <i>L</i> .   |         | N38.11928°; |          |          |        |   |          |         |
| weidemeyerii | RIH2114 | W119.084°   | 13209440 | 13209440 | 88.26% | М | 39002236 | 8.1954  |
| <i>L.</i>    |         | N38.11928°; |          |          |        |   |          |         |
| weidemeyerii | RIH2115 | W119.084°   | 22382578 | 22382578 | 88.38% | М | 40792224 | 13.5487 |
| <i>L.</i>    |         | N38.11928°; |          |          |        |   |          |         |
| weidemeyerii | RIH2125 | W119.084°   | 22210040 | 22210040 | 88.90% | F | 41259840 | 14.8571 |
| <i>L.</i>    |         | N38.11928°; |          |          |        |   |          |         |
| weidemeyerii | RIH2214 | W119.084°   | 24858366 | 24858366 | 67.05% | F | 40186894 | 11.2267 |

| Filter name               | Filter description                                         |  |  |  |  |
|---------------------------|------------------------------------------------------------|--|--|--|--|
| Scaffold size filtering   | scaffold size > 2.16 Mb (N50)                              |  |  |  |  |
| RepeatMasker filtering    | masking repetitive elements using RepeatMasker             |  |  |  |  |
| Tandem Repeats Finder     | marking rapatitive elements using Tandam Papasts Finder    |  |  |  |  |
| filtering                 | masking repetitive elements using Tandem Repeats Finder    |  |  |  |  |
|                           | excluding conserved non-coding and 100 bp flanking         |  |  |  |  |
| Dhastoons filtering       | regions by blasting against UCSC phastCons elements        |  |  |  |  |
| Phasicons Intering        | (phastcons score $> 0.8$ , size $> 50$ bp) in the 27way    |  |  |  |  |
|                           | alignment for Drosophila melanogaster                      |  |  |  |  |
| Conce filtering           | excluding exons and 10 kb flanking regions based on the    |  |  |  |  |
| Genes Internig            | annotation of Limenitis v1.0                               |  |  |  |  |
| Pood donth filtoring      | excluding missing calls and calls with read depth twice as |  |  |  |  |
| Read depth Intering       | high as mean depth in each sample                          |  |  |  |  |
| Non-overlapping filtering | selecting 1 kb blocks at least 50 kb apart                 |  |  |  |  |

Table S5. G-PhoCS data filters

| Population size                  | Raw estimates x 104         | Calibrated                                                  |  |  |
|----------------------------------|-----------------------------|-------------------------------------------------------------|--|--|
| NeVT                             | 1.947 (0.2428-4.2557)       | 16,225 (2,023-35,464)                                       |  |  |
| NeGA                             | 1.4248(0.1737-3.2005)       | 11,873 (1,448-26,671)                                       |  |  |
| NeAZ                             | 18.433 (17.2402-19.6737)    | 153,608 (143,668-163,948)                                   |  |  |
| Nelor                            | 21.8078 (12.357-30.8416)    | 181,732(102,975-257,013)                                    |  |  |
| Newei                            | 10.5597 (5.5339-15.7064)    | 87,998 (46,116-130,887)                                     |  |  |
| NeV                              | 66.1956 (61.9482-70.4797)   | 551,630(516,235-587,331)                                    |  |  |
| Neanc-VT-GA                      | 111.623 (104.4964-118.9812) | 930,192(870,803-991,510)                                    |  |  |
| Neanc-VT-GA-AZ                   | 90.2404 (83.0448-97.7229)   | 752,003(692,040-814358)                                     |  |  |
| 17 1 '                           | 156.3444 (148.0664-         |                                                             |  |  |
| Neanc-Ior-wei                    | 164.8728)                   | 1,302,870(1,233,887-1,373,940)                              |  |  |
| Neanc-VT-GA-AZ-lor-              |                             | <b>2</b> ( 1 <b>2</b> ) ( ( <b>2</b> 10) <b>5</b> ( 0 ( 1)) |  |  |
| wei                              | 3.1354 (0.7582-6.5953)      | 20,128(0,318-34,901)                                        |  |  |
|                                  | 184.6762 (178.9891-         |                                                             |  |  |
| Neroot                           | 190.4926)                   | 1,338,908(1,491,370-1,387,438)                              |  |  |
| Divergence time                  | Raw estimates x 104         | Calibrated (yr)                                             |  |  |
| Tanc-VT-GA                       | 0.0561(0.00727-0.1298)      | 468(61-1082)                                                |  |  |
| Tanc-VT-GA-AZ                    | 15.6906(14.8961-16.521)     | 130,755(124,134-137,675)                                    |  |  |
| Tanc-lor-wei                     | 1.5651(0.6766-2.4657)       | 13,043(5,638-20,548)                                        |  |  |
| Tanc-VT-GA-AZ-lor-               | 20 1244/20 2452 20 020()    | 251 120/244 544 257 (72)                                    |  |  |
| wei                              | 30.1344(29.3453-30.9206)    | 251,120(244,544-257,672)                                    |  |  |
| Troot                            | 30.1947(29.4008-30.9953)    | 251,623(245,007-258,294)                                    |  |  |
| GA = L. a. astyanax              |                             |                                                             |  |  |
| AZ = L. a. arizonensis           |                             |                                                             |  |  |
| Lor = <i>L</i> . <i>lorquini</i> |                             |                                                             |  |  |
| wei = L. weidemeyerii            |                             |                                                             |  |  |
| V = I archinnus                  |                             |                                                             |  |  |

**Table S6.** Population divergence times and effective population sizes estimated in G-PhoCS analysis (with no migration band).

| Analysis | Labelled migration bands                                                                                   |
|----------|------------------------------------------------------------------------------------------------------------|
| ID       |                                                                                                            |
| 1        | A to B, B to A, B to C, C to B, anc(A, B) to C, C to anc(A, B)                                             |
| 2        | C to D, D to C, D to E, E to D, anc(A, B, C) to F, F to anc(A, B, C)                                       |
| 3        | anc(A, B) to F, F to anc(A, B), A to C, C to A, B to D, D to B                                             |
| 4        | C to E, E to C, D to F, F to D, anc(A, B, C) to anc(D, E), anc(D, E) to anc(A, B, C)                       |
| 5        | A to D, D to A, B to E, E to B, anc(D, E) to F, F to anc(D, E)                                             |
| 6        | C to F, F to C, A to E, E to A                                                                             |
| 7        | B to F, F to B, A to F, F to A                                                                             |
| 8        | anc(A, B, C, D, E) to F, F to anc(A, B, C, D, E), A to B, B to A                                           |
| 9        | anc(A, B, C, D, E) to F, F to anc(A, B, C, D, E), B to C, C to B                                           |
| 10       | anc(A, B, C) to D, D to anc(A, B, C), anc(A, B, C) to E, E to anc(A, B, C), anc(A, B) to F, F to anc(A, B) |
| 11       | anc(A, B, C) to D, D to anc(A, B, C), anc(A, B, C) to E, E to anc(A, B, C), C to D,<br>D to C              |
| 12       | anc(D, E) to F, F to anc(D, E), D to E, E to D, A to C, C to A                                             |
| 13       | anc(A, B, C) to anc(D, E), anc(D, E) to anc(A, B, C), B to D, D to B, A to D, D to A                       |
| 14       | C to E, E to C, D to F, F to D, anc(A, B) to C, C to anc(A, B)                                             |
| 15       | B to E, E to B, C to F, F to C, A to E, E to A                                                             |
| 16       | B to F, F to B, A to F, F to A, anc(A, B, C) to F, F to anc(A, B, C)                                       |

Table S7. Potential migration bands tested in 16 separate G-PhoCS analyses.

Candidate migration bands are highlighted in red with a total migration rate above 0.001.

Candidate migration bands are highlighted in blue with a total migration rate between 0.0001 and 0.001.

A denotes *L.a. arthemis* 

B denotes L. a. astyanax

C denotes L. a. arizonensis

D denotes L. lorquini

E denotes L. weidemeyerii

F denotes *L. archippus* 

|                    | Raw estimates x 104          | Calibrated                      |
|--------------------|------------------------------|---------------------------------|
| NeVT               | 51.5325 (44.0331-59.1466)    | 429,438 (366,943-492,888)       |
| NeGA               | 59.3042 (53.0975-65.0003)    | 494,202 (442,479-541,669)       |
| NeAZ               | 20.7625 (19.5545-21.9462)    | 173,021 (162,954-182,885)       |
| NeLor              | 92.8631 (82.8797-102.8867)   | 773,859 (690,664-857,389)       |
| <i>Ne</i> Wei      | 22.2382 (18.74-25.8287)      | 185,318 (156,167-215,239)       |
| NeV                | 65.1493 (61.0082-69.6602)    | 542,911 (508,402-580,502)       |
| Neanc-VT-GA        | 1.9928 (0.0908-4.6015)       | 16,607 (757-38,346)             |
| Neanc-VT-GA-AZ     | 33.9548 (30.9851-36.967)     | 282,957 (258,209-308,058)       |
| Neanc-Lor-Wei      | 2.0929 (0.0761-5.034)        | 17,441 (634-41,950)             |
| Neanc-VT-GA-AZ-    |                              |                                 |
| Lor-Wei            | 2.1575 (0.0733-5.0186)       | 17,979 (611-41,822)             |
| Neroot             | 198.8724 (192.6313-205.1908) | 1,657,270 (1,605,261-1,709,923) |
| Tanc-VT-GA         | 24.1706 (23.5713-24.7199)    | 201,422 (196,428-205,999)       |
| Tanc-VT-GA-AZ      | 24.1717 (23.577-24.7252)     | 201,431 (196,475-206,043)       |
| Tanc-Lor-Wei       | 29.9987 (29.0377-30.8917)    | 249,989 (241,981-257,431)       |
| Tanc-VT-GA-AZ-Lor- |                              |                                 |
| Wei                | 30.0154 (29.0408-30.8992)    | 250,128 (242,007-257,493)       |
| Troot              | 30.0166 (29.039-30.8976)     | 250,138 (241,992-257,480)       |

**Table S8.** Population divergence times, effective population sizes and migration rates estimated

 in G-PhoCS full model tests

| migratio | n rate |
|----------|--------|
|----------|--------|

| VT to GA 27.71% (16.49% - 37.80%)         |
|-------------------------------------------|
| GA to VT 178.12% (154.53% - 204.42%)      |
| anc-VT-GA-AZ to Lor 0.42% (0.00% - 2.46%) |
| AZ to Lor 20.98% (18.10% - 23.85%)        |
| Lor to Wei 239.15% (193.25% - 294.64%)    |
| anc-VT-GA-AZ to V 0.04% (0.00% - 0.27%)   |
| AZ to V 11.99% (9.77% - 13.83%)           |
| anc-VT-GA to V 0.02% (0.00% - 0.09%)      |
| GA = L. a. astyanax                       |
| AZ = L. a. arizonensis                    |
| Lor = L. lorquini                         |
| Wei =L. weidemeyerii                      |
| V = L. archippus                          |

\_\_\_\_

|             |              | Genome-wide |          | WntA S | caffold  |       |          |
|-------------|--------------|-------------|----------|--------|----------|-------|----------|
| Pop 1       | Pop 2        | Mean        | Standard | Mean   | Standard | W     | P-value  |
|             |              |             | Error    |        | Error    |       |          |
| arthemis    | astyanax     | 0.0116      | 0.0001   | 0.0196 | 0.0019   | 29320 | 1.34E-05 |
| arthemis    | arizonensis  | 0.0158      | 0.0002   | 0.0214 | 0.0018   | 27344 | 7.03E-04 |
| arthemis    | lorquini     | 0.0215      | 0.0002   | 0.0179 | 0.0013   | 14814 | 6.42E-03 |
| arthemis    | weidemeyerii | 0.0215      | 0.0002   | 0.0180 | 0.0013   | 15295 | 1.27E-02 |
| astyanax    | arizonensis  | 0.0153      | 0.0002   | 0.0137 | 0.0013   | 16688 | 7.01E-02 |
| astyanax    | lorquini     | 0.0213      | 0.0002   | 0.0245 | 0.0020   | 24386 | 5.18E-02 |
| astyanax    | weidemeyerii | 0.0213      | 0.0002   | 0.0245 | 0.0020   | 24572 | 4.18E-02 |
| arizonensis | lorquini     | 0.0224      | 0.0002   | 0.0245 | 0.0019   | 23102 | 1.87E-01 |
| arizonensis | weidemeyerii | 0.0213      | 0.0002   | 0.0243 | 0.0019   | 24217 | 6.25E-02 |
| lorquini    | weidemeyerii | 0.0184      | 0.0002   | 0.0139 | 0.0009   | 11758 | 2.47E-05 |

**Table S9.** Pairwise absolute divergence for *Limenitis* taxa. Differences in genome-wide vs. WntA scaffold levels of dxy were evaluated with Wilcoxon signed rank tests (test statistic = W).

**Table S10.** Comparison of polymorphism and divergence among *L. arthemis* subspecies revealed 32 SNPs across the *WntA* scaffold (vs. 4 elsewhere in the entire genome) that were fixed in both mimetic subspecies (*L. a. astyanax* and *L. a. arizonensis*) and at a frequency of <0.3 in *L. a. arthemis*. Cells shaded in grey demarcate the approximate location of the associated haplotype region identified by Gallant et al. 2014. Two clusters of fixed SNPs near the start and end of the associated region (highlighted in bold) are the targets of future functional work.

| Position on | Allele in <i>L.a. astyanax/</i> | Allele in <i>L</i> . | Freq(astyanx allele |
|-------------|---------------------------------|----------------------|---------------------|
| 19716       | C                               | Δ                    | <u> </u>            |
| 53720       | Δ                               | G                    | 0.05                |
| 57119       | Δ                               | Т                    | 0.111               |
| 60310       | G                               | Δ                    | 0.125               |
| 60315       | <u> </u>                        | T                    | 0.125               |
| 60332       | A                               | T<br>T               | 0                   |
| 60350       | G                               | 1                    | 0                   |
| 60378       | U<br>T                          | A                    | 0                   |
| 60387       | I<br>T                          | A<br>C               | 0                   |
| 60307       | I<br>T                          | C<br>C               | 0                   |
| 60/10       | 1                               | C<br>C               | 0                   |
| 64800       | A                               | G                    | 0                   |
| 64001       | A                               | C<br>C               | 0                   |
| 68082       | I<br>C                          |                      | 0                   |
| 08082       | U<br>T                          | 1                    | 0                   |
| 08080       | I<br>T                          | A                    | 0                   |
| 69442       | I                               | C                    | 0                   |
| 69443       | I<br>C                          | G                    | 0                   |
| 74035       | C                               | A                    | 0                   |
| 74060       | A                               | Т                    | 0                   |
| /4100       | A                               | Т                    | 0.1                 |
| 77280       | C                               | Т                    | 0                   |
| 77285       | Т                               | C                    | 0                   |
| 77299       | G                               | A                    | 0.227               |
| 77316       | T                               | G                    | 0                   |
| 85455       | Т                               | Α                    | 0                   |
| 85493       | Α                               | G                    | 0                   |
| 86210       | G                               | Α                    | 0                   |
| 86759       | Α                               | Т                    | 0                   |
| 94752       | А                               | С                    | 0.2                 |
| 96431       | Т                               | С                    | 0.15                |
| 96455       | А                               | G,T                  | 0                   |
| 102352      | А                               | Т                    | 0.278               |

#### References

- Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al. 2000. The genome sequence of Drosophila melanogaster. Science 287:2185–2195.
- Ané C, Larget B, Baum DA, Smith SD, Rokas A. 2006. Bayesian estimation of concordance among gene trees. Molecular Biology and Evolution 24: 412-426.
- Ahola V, Lehtonen R, Somervuo P, Salmela L, Koskinen P, Rastas P, Välimäki N, Paulin L, Kvist J, Wahlberg N, et al. 2014. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nature communications 5:4737.
- Campbell MS, Holt C, Moore B, Yandell M. 2014. Genome annotation and curation using MAKER and MAKER-P. Current Protocols in Bioinformatics 48:4–11.
- Consortium ISG, others. 2008. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect biochemistry and molecular biology 38:1036–1045.
- Davey JW, Chouteau M, Barker SL, Maroja L, Baxter SW, Simpson F, Merrill RM, Joron M, Mallet J, Dasmahapatra KK, et al. 2016. Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution. G3: Genes, Genomes, Genetics 6:695–708.
- Durand EY, Patterson N, Reich D, Slatkin M. 2011. Testing for ancient admixture between closely related populations. Molecular Biology and Evolution 28: 2239-2252.
- Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E, Silva PM, Galaverni M, Fan Z, Marx P, Lorente-Galdos B, et al. 2014. Genome sequencing highlights the dynamic early history of dogs. PLoS genetics 10:e1004016.

50

- Gallant JR, Imhoff VE, Martin A, Savage WK, Chamberlain NL, Pote BL, Peterson C, Smith GE, Evans B, Reed RD, et al. 2014. Ancient homology underlies adaptive mimetic diversity across butterflies. Nature communications 5:4817.
- Guerrero RF, Hahn MW. 2018. Quantifying the risk of hemiplasy in phylogenetic inference. Proceedings of the National Academy of Sciences 115:12787-12792.
- Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology 29:644.
- Gronau I, Hubisz MJ, Gulko B, Danko CG, Siepel A. 2011. Bayesian inference of ancient human demography from individual genome sequences. Nature genetics 43:1031.
- Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature protocols 8:1494.
- Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada M, Nagayasu E, Maruyama H, et al. 2014. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome research 24:1384–1395.
- Kent WJ. 2002. BLAT-the BLAST-like alignment tool. Genome research 12:656-664.
- Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome research 27:722–736.
- Korf I. 2004. Gene finding in novel genomes. BMC bioinformatics 5:59.
- Kriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simão FA, Zdobnov EM. 2018. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic acids research 47:D807–D811.

- Larget BR, Kotha SK, Dewey CN, Ané C. 2010. BUCKy: gene tree/species tree reconciliation with Bayesian concordance analysis. Bioinformatics 26: 2910-2911.
- Liu KJ, Dai J, Truong K, Song Y, Kohn MH, Nakhleh L. 2014. An HMM-based comparative genomic framework for detecting introgression in eukaryotes. PLoS computational biology 10:e1003649.
- Martin SH, Van Belleghem, SM. 2017. Exploring evolutionary relationships across the genome using topology weighting. Genetics 206:429-438.
- Martin SH, Davey JW, Jiggins CD. 2014. Evaluating the use of ABBA–BABA statistics to locate introgressed loci. *Molecular Biology and Evolution 32: 244-257.*
- Nishikawa H, Iijima T, Kajitani R, Yamaguchi J, Ando T, Suzuki Y, Sugano S, Fujiyama A, Kosugi S, Hirakawa H, et al. 2015. A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nature genetics 47:405.
- Pryszcz LP, Gabaldón T. 2016. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic acids research 44:e113–e113.
- Rodriguez F, Oliver JL, Marin A, Medina JR s. 1990. The general stochastic model of nucleotide substitution. Journal of theoretical biology 142:485–501.
- Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542.
- Shen J, Cong Q, Kinch LN, Borek D, Otwinowski Z, Grishin NV. 2016. Complete genome of Pieris rapae, a resilient alien, a cabbage pest, and a source of anticancer proteins. F1000Research 5.
- Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.
- Stanke M, Diekhans M, Baertsch R, Haussler D. 2008. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24:637–644.

- Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M. 2008. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome research 18:1979–1990.
- Than C, Ruths D, Nakhleh L. 2008. PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC bioinformatics 9:322.
- Vicoso B, Kaiser VB, Bachtrog D. 2013. Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution. Proceedings of the National Academy of Sciences 110:6453–6458.
- Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, Zdobnov EM. 2017. BUSCO applications from quality assessments to gene prediction and phylogenomics. Molecular biology and evolution 35:543–548.
- Wen D, Yu Y, Zhu J, Nakhleh L. 2018. Inferring phylogenetic networks using PhyloNet. Systematic Biology 67:735–740.
- Zhan S, Merlin C, Boore JL, Reppert SM. 2011. The monarch butterfly genome yields insights into long-distance migration. Cell 147:1171–1185.
- Zhang W, Dasmahapatra KK, Mallet J, Moreira GR, Kronforst MR. 2016. Genome-wide introgression among distantly related Heliconius butterfly species. Genome biology 17:25.