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Supplementary Methods 

Monthly energy data by sector and province in China for 2016–2020 

We compiled the annual data of energy consumption over the 21 years of 1997 to 2017 by selecting 

30 provinces in China except for Tibet, Hong Kong, Macau and Taiwan due to lack of data. 

Following a method in the literature,1 the consumption of coal, oil, and gas was collected for 14 

sectors from the National Bureau of Statistics of China,2 which was converted to energy in joules 

using a constant heat value for coal (0.015–0.026 TJ [t coal]-1), oil (0.043–0.044 TJ [t oil]-1), and 

gas (430–3890 TJ [108 m3 gas]-1).1 Annual data of energy consumption over 1997–2017 in 14 

sectors in 30 provinces are listed in Supplementary Spreadsheet S1. 

To estimate the annual data of energy consumption by sector over 1997–2017 and the monthly 

data of energy consumption by sector over 2016–2020, the products produced or services supplied 

(see a list of these activities in Table S2) were compiled from the National Bureau of Statistics of 

China and the Ministry of Transport of the People’s Republic of China.3,4 Since the monthly 

activity data for January and February are given together, activities, energy consumption, and the 

corresponding CO2 emissions in January and February were considered as a total. 

Then, the energy consumption (J) was predicted by month based on the data of activity as: 

Jmths= ∑ αhzAmthz

ns

z=1

+β
hz

 (1) 

where h is a province, s is a sector, m is a month, t is a year, z is one of the predictors (see Table S2 

for a list of predictors used to predict the energy consumption in 14 sectors), ns is the number of 

predictors used to predict energy consumption in the sector, αhz and βhz are coefficients derived 

from regression models (see these coefficients in Supplementary Spreadsheet S1), and Amthz is 

the activity of predictor z in month m. Although the relationship between energy consumption and 

activity may deviate from a linearity in extreme cases, we assumed that linear functions can be 

used when most changes in activities during COVID-19 are within the ranges observed in 

historical data over 1997–2017 as shown in Supplementary Spreadsheet S1. 

For urban/rural residential energy usage and farming, forestry, animal husbandry, fishery, and 

water conservancy sectors, we developed 14×30=420 regression models between annual energy 

consumption and urban or rural population and predicted the annual energy consumption values 

for 2016–2020 by urban or rural population,3 which were evenly allocated to 12 months. For 

wholesale, retail trade and catering services and other service sectors, the annual energy 



 

 

consumption in the 5-year period of 2016–2020 was allocated to 12 months using the monthly 

distribution of production in China.3 

In addition to the 14 sectors listed in Table S2, the remaining sectors contributing 4% of the total 

energy consumption in China were combined into one sector. For this sector, the annual energy 

consumption in 2010–2017 was regressed against year,3 which was used to predict the annual 

energy consumption in 2018–2020. Then, the annual energy consumption was evenly allocated to 

12 months. 

For cement production, monthly activity data in January–May over 2016–2020 and in December 

over 2015–2019 were compiled from the National Bureau of Statistics of China.3 

Daily NO2 columnar concentration and meteorology 

A daily data set of satellite-based NO2 columnar concentration is retrieved from the backscattered 

radiance and solar irradiance at a wavelength of 270 to 500 nm with a spectral resolution of 

approximately 0.5 nm measured by a push broom ultraviolet-visible (UV-Vis) spectrometer in the 

Ozone Monitoring Instrument (OMI) on NASA's Aura satellite platform.5 The daily measurement 

mode of OMI samples the swath width of 2600 km for the complete wavelength range with a nadir 

field-of-view (FOV) resolution of 13 km×24 km (along×across track), which has been shown to 

be stable with minimal degradation over the past 14 years.6 For this study, we used the OMI global 

daily gridded NO2 product version 3.0 (OMNO2d: OMI/Aura NO2 Cloud-Screened Total and 

Tropospheric Column L3 Global Gridded 0.25º×0.25º V3) from the Earth Observing System Data 

and Information System Distributed Active Archive Centers (https://earthdata.nasa.gov/). 

Daily meteorological data were compiled from the Google Earth Engine cloud platform 

(https://developers.google.com/earth-engine/datasets/catalog). The data originate from three 

sources: 1) the relative humidity at 2 m above the ground, meridional wind at 10 m above the 

ground, zonal wind at 10 m above ground, columnar precipitable water content in the air, air 

temperature at 2 m above the ground, and surface wind speed at 10 m above the ground at a 

resolution of 0.25º×0.25º were generated by the Global Forecast System (GFS) operated by the 

National Center for Environmental Predictions (NCEP);7 2) the atmospheric pressure and 

planetary boundary layer height at a resolution of 0.2º×0.2º were generated by the Climate Forecast 

System (CFSv2) and Climate Forecast System Reanalysis (CFSR), respectively, operated by 

NCEP; 7 and 3) the ozone columnar concentration at a resolution of 0.01º×0.01º was measured by 

the Tropospheric Monitoring Instruments (TROPOMI) on the Sentinel-5 Precursor satellite.7 

https://earthdata.nasa.gov/


 

 

Average of NO2 columnar concentration by region 

Given the overlap of high CO2 emissions and high pollutant concentrations in China, we calculated 

an average NO2 columnar concentration weighted by CO2 emissions in each province as:8 

Chjt=
∑ Cijt ∙ Ei

detrended̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅nh

i=1

∑ Ei
detrended̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅nh

i=1

 (2) 

where h is a province, i is a grid, j is a day, t is a year, nh is number of grids in region h, Ei
detrended̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

is the gridded CO2 emission averaged in January–May 2016–2019. 

To obtain E̅i, we mapped our bottom-up estimation of CO2 emissions over January–May in 2016–

2019 to a spatial resolution of 0.1º×0.1º, using a global monthly gridded dataset of CO2 emission 

at a resolution of 0.1º×0.1º from the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) 

inventory developed by the Center for Global Environmental Research.9 In this product, the 

authors have disaggregated national CO2 emissions to 0.1º×0.1º grids using satellite-based 

observations of nightlight and global data sets of point sources.10 For each grid, CO2 emission rate 

in January–May over 2016–2019 is calculated as 

Emti
detrended=Emth

detrended Rmi

∑ Rmi
nh

i=1

,  i∈h (3) 

where i is a grid, m is a month, t is a year, h is a province, Rmi is the gridded CO2 emission from 

ODIAC averaged in January–May 2016–2018, nh is the number of grids in province h, and 

Emth
detrended is the detrended CO2 emissions in province h from our bottom-up estimate. 

Artificial scenarios of daily CO2 emissions in 2020 

To estimate the public-health costs of CO2 emissions, we estimated the costs of health care for 

cured cases and mortality costs for fatal cases during the COVID-19 pandemic. Considering the 

difference in the unit cost of a cured or fatal case, we divided the population into nine age groups 

(0-9, 10–19, 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, and ≥80 years old). We calculated the 

health-care and mortality costs in January–May 2020 for each province as: 

Th= ∑ dNdh

152

d=1

( cch∑ ση cc,η

9

η=1

 + fc
h
 ∑ δη fc,η

9

η=1

) (4) 

where h is a province, d is a day, η is an age group, 152 denotes the day 31 May 2020, Nhd is the 

daily number of confirmed COVID-19 cases, cch or fch is the fraction of cured or fatal cases during 

COVID-19 in each province,11 ση or δη is the fraction of an age group η in cured or fatal cases,12 



 

 

cc,η is the unit cost in the course of infection for a cured case,13 and fc,η is the unit cost in the 

course of infection for a fatal case.14 We estimated the economic values of these avoided 

mortalities by dividing the deaths into nine age groups and applying the age-specified cost of 

premature mortality based on mortality risk valuation.14 

To estimate the economic costs of health care and fatalities for COVID-19 cases associated with 

CO2 emissions, we simulated the evolution of daily COVID-19 cases from 1 January to 31 May 

2020 when one tonne of CO2 was emitted by maintaining the CO2-emitting activity on a given day 

in any province. We estimated the marginal costs (jh) as change in the costs (dTh) when the CO2 

emissions on a given day j were changed from Ejh to (Ejh+dEjh) in a given province as: 

ξjh=
dTh

dEjh

 (5) 

It should be noted change in CO2 emissions on day j only affects the rate of new COVID-19 cases 

on these days after day j (Nhd with d> j), as is considered in our model. 

To ensure the repeatability of calculation, the values of parameters for cch, fch, ση, δη, cc,η and 

fc,η are listed in Tables S4, S5. The data of CO2 emission reduction due to COVID-19 from 1 

January to 31 May (Ejh) were estimated by bottom-up or top-down methods (Figures 1,2 in the 

main text). The relationship between the daily number of new COVID-19 cases (Nhd) and the 

reduction of CO2 emissions was described in the main text (Eqs. 10-13). 

Finally, we calculated the marginal costs of health care and fatalities by maintaining CO2-emitting 

activity (j) as an average of the marginal costs in 30 provinces (h) which are weighted by 

provincial CO2 emission as: 

ξj=
∑ (ξjh Eh,2016-2019

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)30
h=1

∑  Eh,2016-2019
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅30

h=1

 (6) 

where j is a day, h is a province and Eh,2016-2019
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the detrended CO2 emission as an average for 

2016–2019 in province h. 

  



 

 

Supplementary Figures 

 

Figure S1. A scheme for estimating the impact of COVID-19 on daily CO2 emissions with a 

top-down or bottom-up method.  



 

 

  

Figure S2. Correlation coefficients between NO2 columnar concentration and nine 

meteorological variables. 

Correlation coefficients are mapped for the log10-transformed daily NO2 columnar concentrations 

against relative humidity at 2 m above the ground (a), zonal wind at 10 m above the ground (b), 

meridional wind at 10 m above ground (c), columnar precipitable water content in the air (d), 

atmospheric pressure at the ground (e), temperature at 2 m above the ground (f), surface wind 

speed at 10 m above the ground (g), planetary boundary layer height (h), ozone columnar 

concentration (i), and all variables (j). Grids with P>0.05 are marked in grey, while grids with 

missing data are shown in white.  



 

 

   

Figure S3. Comparison of NO2 columnar concentration during the 150 days around Chinese 

New Year from 2016–2019 to 2020. 

The concentration is shown as a 7-day moving average for a given day in 2020 and the same day 

in the lunar calendar in 2016–2019, which is used to compute the concentration confinement factor 

in Wuhan (a), Beijing (b), Shanghai (c), Guangzhou (d) and China (e). The standard deviation for 

the moving average in 2016–2019 is shown as the shaded area. The starting day of the Wuhan 

travel ban (23 January) and the end day of the Level I emergency response in Guangzhou (24 

February), Shanghai (24 March) and Beijing (30 April) in 2020 are marked by arrows.  



 

 

Supplementary Tables 

Table S1. Comparison of concentration confinement factor and emission confinement factor 

by province. 

To compare the satellite-based NO2 columnar concentration changes with the activity-based CO2 

emission reduction, we computed an emission confinement factor (ECF) and a concentration 

confinement factor (CCF) (see Eqs. 1,2 in the main text) as the ratio of NO2 columnar 

concentration and CO2 emissions between January and May in 2020 and the same period over 

2016–2019. The values of CCF and ECF are given by province for Jan–May. 

Province 
CCF ECF 

Jan-Feb Mar Apr May Jan-Feb Mar Apr May 

Beijing 0.72  0.71  0.61  0.82  0.91 0.95 1.02 0.98 

Tianjin 0.70  0.58  0.58  0.70  0.76 0.72 0.76 0.75 

Hebei 0.68  0.64  0.66  0.68  0.92 0.96 0.91 0.91 

Shanxi 0.65  0.68  0.59  0.65  0.95 1.07 1.14 1.12 

Inner Mongolia 0.83  0.85  0.80  0.82  0.88 0.83 0.91 0.89 

Liaoning 0.84  0.78  0.80  0.73  0.91 0.88 0.90 0.96 

Jilin 0.90  0.78  0.91  0.75  0.94 0.89 0.92 0.95 

Heilongjiang 0.76  0.64  0.73  0.64  0.82 0.88 0.87 0.84 

Shanghai 0.74  0.88  0.92  1.05  0.81 0.79 0.85 0.89 

Jiangsu 0.71  0.71  0.83  0.82  0.75 0.83 1.01 1.06 

Zhejiang 0.71  0.91  0.92  0.90  0.70 0.84 0.86 0.98 

Anhui 0.62  0.63  0.70  0.71  0.85 0.96 0.98 0.99 

Fujian 0.74  0.73  0.72  0.67  0.77 0.94 0.86 0.87 

Jiangxi 0.65  0.68  0.67  0.82  0.78 0.88 0.91 1.01 

Shandong 0.60  0.54  0.59  0.65  0.89 1.03 0.98 0.96 

Henan 0.63  0.68  0.76  0.72  0.88 1.02 1.03 1.09 

Hubei 0.74  0.75  0.95  0.99  0.67 0.61 0.77 0.86 

Hunan 0.67  0.65  0.71  0.87  0.91 1.07 1.11 1.21 

Guangdong 0.67  0.66  0.76  0.65  0.81 0.90 0.96 1.09 

Guangxi 0.83  0.86  0.95  0.81  1.01 1.06 1.12 1.07 

Hainan 0.90  0.93  0.92  0.93  0.82 0.84 0.85 0.99 

Chongqing 0.68  0.68  0.71  0.65  0.75 0.87 0.93 1.01 

Sichuan 0.76  0.71  0.75  0.74  0.86 0.88 0.95 1.01 

Guizhou 0.72  0.72  0.79  0.64  0.73 0.77 0.89 0.95 

Yunnan 0.74  0.98  0.98  0.82  0.75 0.89 0.90 0.92 

Shaanxi 0.74  0.83  0.72  0.87  0.85 0.84 0.86 0.90 

Gansu 0.86  0.96  0.90  0.95  0.85 0.85 1.01 1.10 

Qinghai 0.90  0.99  1.02  1.06  0.83 1.01 1.09 1.03 

Ningxia 0.90  0.97  0.85  1.00  0.85 0.88 1.04 1.02 



 

 

Xinjiang 0.73  0.69  0.78  0.75  0.93 0.89 1.03 0.95 

 



 

 

Table S2. Activity data used to predict the monthly energy consumption. 

A total of 28 types of activity data were used to predict the monthly energy consumption in 14 

sectors by 420 regression models for 30 provinces. The number of activity data items used to 

predict the energy consumption in each sector, equal to the number of independent variables in the 

regression model by sector, is given in parenthesis. 

# Sector name Activity data 

1 Production and supply of electric power, 

steam and hot water 

Thermal power generation (1) 

2 Smelting and pressing of ferrous metals Pig iron production, and steel production (2) 

3 Non-metal mineral products Cement production (1) 

4 Transportation, storage, post and 

telecommunication services 

Passenger turnover, cargo turnover, and express 

delivery number (3) 

5 Urban residential energy usage Urban population (1) 

6 Coal mining and dressing Raw coal production (1) 

7 Petroleum processing and coking Gasoline, kerosene, diesel, energy oil, and coke 

production (5) 

8 Rural residential energy usage Rural population (1) 

9 Wholesale, retail trade and catering 

services 

Total retail sales of social consumer goods (1) 

10 Other service sectors Total retail sales of social consumer goods (1) 

11 Raw chemical materials and chemical 

products 

Sulfuric acid, Caustic soda, fertilizer, plastic, 

and fiber production (5) 

12 Farming, forestry, animal husbandry, 

fishery and water conservancy 

Gross output value of agriculture, forestry, 

animal husbandry and fishery (4) 

13 Smelting and pressing of nonferrous 

metals 

Production of ten non-ferrous metals (1) 

14 Construction New construction area of real estate (1) 

  



 

 

Table S3. Coefficients in the regression of daily rate of COVID-19 cases against the CO2 

emission reduction by province. 

The slope, intercept, and square of Pearson’s correlation coefficient (R2), and the p-value of linear 

regression between the daily rate of new COVID-19 cases and the total CO2 emission reduction 

estimated using a bottom-up or top-down method are given by province. 

Province 
Bottom-up method Top-down method 

Slope Intercept R2 p-value Slope Intercept R2 p-value 

Beijing -7.46 0.16 0.75 <0.001 -5.57 0.16 0.74 <0.001 

Tianjin -3.72 0.13 0.22 0.01 -3.57 0.13 0.22 0.01 

Hebei -10.51 0.25 0.57 <0.001 -7.69 0.28 0.57 <0.001 

Shanxi -9.86 0.13 0.82 <0.001 -6.88 0.18 0.81 <0.001 

Inner-Mongolia -3.11 0.08 0.08 0.38 -3.03 0.08 0.08 0.39 

Liaoning -7.3 0.09 0.2 0.13 -7.06 0.09 0.21 0.11 

Jilin -7.13 0.08 0.21 0.18 -7.13 0.08 0.21 0.18 

Heilongjiang -7.74 0.3 0.66 <0.001 -7.72 0.3 0.66 <0.001 

Shanghai -6.89 0.12 0.56 <0.001 -6.49 0.12 0.57 <0.001 

Jiangsu -9.77 0.26 0.82 <0.001 -9.56 0.26 0.82 <0.001 

Zhejiang -9.31 0.2 0.54 <0.001 -10.35 0.19 0.53 <0.001 

Anhui -12.47 0.35 0.91 <0.001 -9.52 0.37 0.92 <0.001 

Fujian -11.54 0.23 0.66 <0.001 -12.11 0.23 0.66 <0.001 

Jiangxi -15.46 0.32 0.84 <0.001 -13.37 0.35 0.86 <0.001 

Shandong -2.2 0.02 0.03 0.42 -1.22 0 0.02 0.53 

Henan -7.97 0.18 0.73 <0.001 -6.08 0.2 0.74 <0.001 

Hubei -4.57 0.25 0.76 <0.001 -5.7 0.24 0.75 <0.001 

Hunan -8.8 0.14 0.49 <0.001 -7.39 0.16 0.51 <0.001 

Guangdong -9.29 0.16 0.5 <0.001 -8.05 0.18 0.52 <0.001 

Guangxi -23.92 0.02 0.21 0.09 -13.23 0.04 0.27 0.05 

Hainan -9.25 0.05 0.17 0.12 -17.14 0.05 0.22 0.06 

Chongqing -4.06 0.1 0.46 <0.001 -3.86 0.1 0.46 <0.001 

Sichuan -9.53 0.22 0.69 <0.001 -7.71 0.22 0.68 <0.001 

Guizhou -14.6 0.43 0.63 0.001 -15.42 0.43 0.64 0.001 

Yunnan -5.11 0.08 0.14 0.11 -5.43 0.08 0.14 0.11 

Shaanxi -15.55 0.26 0.76 <0.001 -13.07 0.28 0.77 <0.001 

Gansu -1.84 0.04 0.01 0.7 -2.37 0.04 0.01 0.7 

Ningxia -14.9 0.27 0.51 0.07 -17.96 0.26 0.51 0.07 

Xinjiang -7.02 0.15 0.4 0.003 -4.15 0.16 0.38 0.004 

  



 

 

Table S4. The fraction of cured and fatal cases by province. 

Province 
Fraction of cured cases (%) Fraction of fatal cases (%) 

(RRTD, 2020)11 

Beijing 98.99 1.01 

Tianjin 98.48 1.52 

Hebei 98.28 1.72 

Shanxi 100 0 

Inner-Mongolia 99.58 0.42 

Liaoning 98.7 1.3 

Jilin 98.71 1.29 

Heilongjiang 98.63 1.37 

Shanghai 99.01 0.99 

Jiangsu 100 0 

Zhejiang 99.92 0.08 

Anhui 99.39 0.61 

Fujian 99.72 0.28 

Jiangxi 99.89 0.11 

Shandong 99.12 0.88 

Henan 98.28 1.72 

Hubei 93.38 6.62 

Hunan 99.61 0.39 

Guangdong 99.51 0.49 

Guangxi 99.21 0.79 

Hainan 96.49 3.51 

Chongqing 98.97 1.03 

Sichuan 99.49 0.51 

Guizhou 98.64 1.36 

Yunnan 98.92 1.08 

Shaanxi 99.06 0.94 

Gansu 98.77 1.23 

Qinghai 100 0 

Ningxia 100 0 

Xinjiang 96.05 3.95 

  



 

 

Table S5. Age distribution and unit cost for a cured or fatal case. 

The population was divided into nine age groups. The age distribution and unit cost in the course 

of infection for a cured or fatal case were applied for each group. The uncertainties as a percentage 

of the 95% confidence interval to the central value in the unit costs are given in parentheses, and 

are applied in our Monte Carlo simulations. 

Age group 

Fraction of age 

group in cured 

cases 

(%) 

Fraction of age 

group in fatal 

cases 

(%) 

Cost for a  

cured case 

(thousand 2020 

$) 

Cost for a 

fatal case 

(million 2020 $) 

 Novel, 202012 Novel, 202012 
Bartsch et al, 

202013 

Thunström et al, 

202014 

0–9 0.90 0.00 14.7 (±3%) 14.7 (±3%) 

10–19 1.20 0.10 14.7 (±3%) 15.3 (±3%) 

20–29 8.10 0.70 17.0 (±3%) 16.1 (±3%) 

30–39 17.00 1.80 17.0 (±3%) 15.8 (±3%) 

40–49 19.20 3.70 20.6 (±3%) 13.8 (±3%) 

50–59 22.40 12.70 20.6 (±3%) 10.3 (±3%) 

60–69 19.20 30.20 19.2 (±3%) 6.7 (±3%) 

70–79 8.80 30.50 19.2 (±3%) 3.7 (±3%) 

≥80 3.20 20.30 15.4 (±3%) 1.5 (±3%) 
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