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1.Supplementary text 

1.1 China’s Disease Surveillance Points system and study location selection 

The China’s Disease Surveillance Points System (DSPS) is administrated by the Chinese Center for 

Disease Control and Prevention (China CDC). This system selected county and district across China as 

surveillance points. Currently, the DSPS has included 605 districts and counties comprising 21.1% of all 

counties and districts in China, and covers a population of 323.8 million (24.3% of the total population). 

To ensure the representativeness of surveillance points, all selected counties and districts are evenly 

distributed across different geographical areas with different characteristics.[1] At each surveillance point, 

all deaths certified by clinical doctors or local CDC professionals are reported to the DSPS in real time 

using an internet-based reporting system. The data from the DSPS has been widely applied in policy 

making and disease burden assessment.[2] 

Although the DSPS covers a wide range of China territory, and can well represent the Chinese population, 

many surveillance points especially in western China have small population sizes, and the quality of 

mortality data were relatively poor which could be indicated by recorded low mortality rate (<5‰). The 

time-series analyses depend on both good quality of mortality data and adequate daily number of deaths. 

The small number of daily deaths caused by poor quality of mortality data or small population size may 

lead to biased associations of temperatures with YLL rates. In the present study, we therefore added 

surveillance points with good quality of data, which were selected from several provincial mortality 

surveillance system (Yunnan, Guangdong, Hunan, Zhejiang, and Jilin provinces). To ensure adequate 

statistical power, surveillance points from both provincial surveillance system and the DSPS were 

selected if they met anyone or both criteria: a) a population size >200,000, and b) an annual mortality 

rate >4‰. Under these two criteria, the daily average death count was larger than three, which was 

consistent with a previous similar study conducted in China.[3] 

1.2 Interpolation of daily meteorological factors  

We employed the Australian National University Splines (ANUSPLIN) thin plate smoothing software to 

interpolate the daily nationwide mean temperatures in China. The model was as follows: 

Tempi = f (lati, loni )+ b× alti + ei       (Equation 1) 



Where Tempi denotes the daily mean temperature at station i. f() denotes the thin plate function. lati, loni 

and alti are the latitude, longitude, and altitude for station i. b denotes the coefficient for alti, and ei 

denotes the error term at station i. Using this method, daily temperatures across China were obtained at 

a resolution of 0.01°×0.01°. The results of 10-fold cross-validation show good prediction accuracy of the 

interpolation method for daily mean temperature [R2 = 0.96, root mean squared prediction error (RMSE) 

= 2.37°C]. In the process of 10-fold cross-validation on the model, we selected only the 15th day in the 

following months: January 2006, February 2007, March 2008, April 2009, May 2010, July 2011, June 

2012, August 2013, September 2014, October 2015, November 2016, and December 2017; this was done 

as the inclusion of all study days during 2006-2017 would be time-consuming. We employed this method 

also to interpolate the daily nationwide relative humidity (RH), daily maximum temperatures (TMax) 

and daily minimum temperatures (TMin) in China. The results of fitting performance show that the R2 

of RH, TMax and TMin were 0.81, 0.94 and 0.94, respectively (Figure S2). 

1.3 Daily PM10 estimation using a land-use-regression (LUR) model 

We selected the PM10 as an agency of air quality during the entire study period (2006-2017), and adjusted 

for it in the DLNM assessing the associations of temperatures with YLL rates. PM10 is the only ambient 

air pollutant obtained during 2006-2012 in this study. Daily average PM10 during the 2013-2017 were 

obtained from the National Urban Air Quality Real-time Publishing Platform 

(http://106.37.208.233:20035/), which is administrated by the China National Environmental Monitoring 

Centre. The platform was put in operation since January 2013, and displays real-time concentrations of 

criteria air pollutants in all state-controlled monitoring stations. Daily average PM10 during 2006-2012 

were obtained from the China National Environmental Monitoring Centre. The 24-h mean concentrations 

for PM10 were simply averaged from all valid monitoring sties in a city. Since some selected locations 

were not covered by the air quality monitoring system, we employed a random forest model to assess the 

daily PM10 at each location. 

First, we extracted the latitude, longitude and altitude of each included air quality monitoring station 

across China, and extracted the daily mean temperature, and relative humidity at each monitoring station 

during the study period from the interpolated data in the appendix section 1.2. We also extracted the 

population density, length of road, types of land use (farm land, cropland, forest land, water area, and 

living land) and GDP per capital at each monitoring station using a radius of 1,300 meters, which was 

http://106.37.208.233:20035/),%20w


chosen based our previous studies.[4 5] The population density data in 2015 were obtained from GeoData 

Institute in University of Southampton (www.worldpop.org.uk), and the geographic information system 

(GIS) covariates (geographic map, road density, land use data and GDP per capita) were obtained from 

the Data Center for Resources and Environmental Sciences (http://www.resdc.cn). Then we established 

a LUR model implemented by a random forest model to input the above prepared predictors of all air 

quality monitoring stations and the daily PM10 data. One smooth temporal basis function was included 

in the model to fit the long-term and seasonal trend of PM10 concentrations (Figure S3). The results of 

fitness showed that the R2 was 73.90%, and the RMSE (Root mean square error) was 16.49 μg/m3 (Figure 

S4). We then extracted the daily mean temperature, relative humidity, latitude, longitude, altitude, 

population density, road density, land use data and GDP per capita at the center of each selected location, 

and put them into the established LUR model. Finally, we can obtain the daily mean PM10 concentrations 

during the study period at each location. 

1.4 Estimation of the associations of temperatures and TVs with YLL rates 

A two-stage approach was employed in our study. In the first stage, we employed a distributed lag 

nonlinear model (DLNM) to estimate the nonlinear and lag effects of mean temperature on daily YLL 

rates. The location specific association of temperate with daily YLL rates is entirely defined by a set of 

parameters namely regression coefficients in the function chosen for representing the associations. The 

model was as follows: 

E(YLLt)= α +β1T1,t,l(TM) + β2T2,t,l(TV)+ns(RH, df) +β3PM10 + ns(timet, df) +ηDOW+e    (Equation 2) 

Where t denotes the day of observation, YLLt denotes the expected YLL rate on day t, which was 

calculated by dividing the daily observed YLLt by the total population size (/100,000) in each included 

location. Therefore, the YLL rate included in the DLNM was the daily YLL in every 100,000 population 

(YLL/100,000); α denotes the intercept indicative of baseline risk; e denotes a Gaussian error. TM 

denotes the daily mean temperature. T1,t,l is a matrix obtained by applying the DLNM to mean temperature, 

and T2,t,l is a matrix obtained by applying the DLNM to TV that is adjusted for as a cofounding factor; β1 

and β2 denotes the vector of coefficients for T1,t,l and T2,t,l, respectively, and l denotes the number of lag 

days; β3 denotes the coefficient of daily PM10 concentrations; e denotes the error term. To ensure that the 

meta-analysis can provide meaningful and interpretable results in the second stage, we employed the 

http://www.resdc.cn/


same function by placing the internal and boundary knots at the same temperatures in all location-specific 

models. In particular, a quadratic B-spline (bs) and natural cubic B-spline (ns) were employed to estimate 

the nonlinear and lagged effects of mean temperature and TV, respectively. In the bs function, three 

internal knots placed at the 10th, 50th and 90th centiles and boundary knots placed at the average 

minimum and maximum temperatures of location specific temperature distributions were used to model 

the association of nonlinear curves of mean temperature and TV with the YLL rate. In the ns function, 

an intercept and three internal knots placed at equally spaced values was used to model the lagged effects 

of temperature and TV. We used a maximum lag period of 21 days to capture the long-term delay of the 

impact of cold, and also excluded the impact of the harvesting effect. The nonlinear associations of mean 

temperature and TV with the YLL rate can be interpreted as the effect of the exposure versus a reference 

which is usually centered on a specific value.[6] 

In all epidemiological studies, a basic issue is to control properly for potential confounding. The DLNM 

model can optimally adjust for confounders including those which change slowly over time (e.g. age, 

socioeconomic status) expressed as seasonality or long-time trends, day of week (DOW), other 

meteorological elements, and air pollutants.[7] Additionally, the time-series study design can control for 

the individual level risk factors such as smoking and alcohol consumption, because these factors at the 

population level do not vary from day to day, and hence will not influence the short-term effects of 

temperatures on mortality.[8] Consistent with previous studies,[9 10] we employed a ns of time with 

seven degrees of freedom (dfs) per year to control for the seasonal and long-term trends in mortality, a 

categorical variable to control for the day of the week (DOW), and a linear model to control for the same 

day PM10 concentration. DOW was a dummy variable representing the day of the week, and η was a 

vector of coefficients. It has been demonstrated that RH is an important contributor to heat stress.[11] 

We also employed a ns to adjust for the potential confounding effect of the present day RH with three 

dfs in the ns function, which could estimate the nonlinear effects of RH on the YLL rate in the same 

day.[3] Three internal knots placed at equally spaced values was used to model the nonlinear effects of 

RH. The family function for DLNM had a Gaussian distribution. 

In the second stage, we employed a multivariate meta-analysis method to combine the location-

specific 0-21 days’ lag in cumulative associations of temperature with the YLL rate.[12] 



Multivariate meta-analysis is a method originally developed to pool multiple correlated outcomes 

in randomized controlled trials. Here it is used to combine the location-specific nonlinear exposure-

response curves which are described with function defined by multiple parameters. The multiple 

parameters obtained from the first stage were used as outcomes for the multivariate meta-analysis, 

which aims to define an average exposure-response association across the locations, test and 

quantify the amount of heterogeneity, and further identify the sources of the heterogeneity. Here, in 

contrast to the original setting of randomized controlled trials, it is not necessary that the parameters 

are individually interpretable, and the associations is instead characterized through their joint 

distribution. The multivariate meta-analysis model can be written as follows: 

𝜃𝑖~𝑁𝑘(𝜃, 𝑆𝑖 + 𝜓)    (Equation 3) 

with 𝑆𝑖 + 𝜓 = Σ𝑖 . The marginal model has independent within-location and between-location 

components. In the within-location component, the estimated 𝜃𝑖 is assumed to be sampled with 

error from 𝑁𝑘(𝜃𝑖 , 𝑆𝑖), a multivariate normal distribution of dimension k (k is 5 in the present study), 

where 𝜃𝑖 is the vector of true unknown outcome parameter for location i. In the between-location 

component, 𝜃𝑖  is assumed to be sampled from 𝑁𝑘(𝜃, 𝑆𝑖) , where 𝜓  is the unknown between-

location (co)variance matrix. 𝜃  here can be interpreted as the population-average outcome 

parameters, namely the coefficients of the function s defining the average exposure-response 

association. A restricted maximum likelihood (REML) method was used to combine the location 

specific exposure response associations. 

The MYT (minimum YLL temperature) was re-centered based on the location-specific MYT 

identified in the first stage. We specified the combined exposure-response curves with three internal 



knots (the 10th, 50th and 90th centiles) and two boundary knots (the average minimum and 

maximum temperatures of location specific temperature distributions). This choice could generate 

the combined exposure-response curves with the uniform distribution of mean temperatures at 

national or regional levels. In order to reduce the heterogeneity between locations and uncertainty 

in the first-stage model, we used a best linear unbiased prediction (BLUP) model to generate the 

adjusted location-specific exposure-response curves.[12] The BLUP approach made use of a trade-

off between the city specific association and the second stage pooled estimation, which could thus 

provide more precise estimations, especially in cities with small numbers of deaths. We also 

provided the lag patterns in YLL rates associated with the average extreme cold temperature (2.5th 

centile), and extreme hot temperature (97.5th centile). 

1.5 Calculations of the YLL per death due to temperatures 

The YLL per death (YLLper) caused by temperatures was calculated using the following two 

equations:[13] 

𝑌𝐿𝐿𝑡𝑒𝑚 = ∑ 𝑌𝐿𝐿′ × 𝐹𝑟𝑒𝑞𝐼=𝑇𝑀𝑎𝑥
𝑖=𝑇𝑀𝑖𝑛        （Equation 4） 

Where, YLLtem denotes the total YLLs attributable to temperatures in every 100,000 population in a 

study location. TMin denotes the minimum daily temperature, and TMax denotes the maximum 

daily temperature in an included study location. YLL’ denotes the YLL rate attributable to each 

temperature, which could be estimated by Equation 2. Freq denotes the frequency of each TM in an 

included study location. 

𝑌𝐿𝐿𝑝𝑒𝑟 = 𝑌𝐿𝐿𝑡𝑒𝑚/𝑁     (Equation 5) 

Where YLLtem is calculated in Equation 4, and N denotes the number of deaths in every 100,000 



population in a study location. 

1.6 Calculations of the annual mean YLL due to temperatures in China 

The annual mean YLL (YLLcity) caused by temperatures in each city was calculated using the following 

equation. 

YLLcity = YLLtem×Pop/5    (Equation 6) 

Where YLLtem denotes the total YLLs attributable to temperatures in every 100,000 population in a 

study location, which is calculated in Equation 4. Pop is the annual mean population size (/100000). 

The number of 5 is the number of years studies (2013-2017). Then we summed the annual mean 

YLLs attributable to temperatures in all cities, and obtained the annual mean YLLs across China. 

All codes were available in https://github.com/gztt2002/YLL-of-Tm-and-Tv. 
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2.Supplementary tables 

Table S1. General characteristics of included 364 locations in China 

 Mean (SD) Minimum 25th centile Median 75th centile Maximum 

Population size (×10,000) 56.9 (31.9) 2.3 33.7 49.2 74.1 207.2 

Percentage of male (%) 51.1 (1.2) 48.4 50.4 51.0 51.7 56.8 

Percentage of elderly (%) 10.4 (2.3) 3.5 8.8 10.4 11.7 18.7 

GDP per capital (×1000 yuan) 3.3 (2.5) 0.4 1.6 2.7 4.2 21.5 

Urbanization rate (%) 52.8 (24.4) 6.4 34.5 46.9 67.7 100.0 

Average years of education  10.0 (1.5) 5.2 9.1 9.8 10.7 16.7 

 

  



Table S2. YLL per death due to different components of temperature across 364 locations in 

China 

 YLL per death (years, 95%CI) 

Extreme cold Moderate cold Moderate heat Extreme heat 

Causes of death     

Total mortality 0.14 (0.12, 0.16) 0.84 (0.52, 1.16) 0.01 (0.01, 0.02) 0.03 (0.02, 0.03) 

Cardiovascular disease 0.17 (0.15, 0.19) 0.93 (0.59, 1.27) 0.01 (0.01, 0.02) 0.03 (0.02, 0.04) 

Cerebrovascular disease 0.17 (0.14, 0.20) 1.16 (0.70, 1.62) 0.01 (0.00, 0.02) 0.03 (0.02, 0.04) 

Respiratory disease 0.14 (0.11, 0.18) 0.28 (0.13, 0.44) 0.01 (0.01, 0.02) 0.02 (0.01, 0.03) 

Geographic regions     

Northern 0.05 (0.01, 0.10) 0.51 (-0.84, 1.86) 0.03 (-0.12, 0.19) 0.04 (-0.03, 0.11) 

Central 0.15 (0.12, 0.17) 1.14 (0.64, 1.64) 0.02 (0.01, 0.03) 0.04 (0.03, 0.05) 

Southern 0.12 (0.09, 0.14) 1.05 (0.59, 1.50) 0.01 (0.00, 0.01) 0.02 (0.01, 0.03) 

Age of death (Years)     

0-64 0.2 (0.15, 0.25) 0.84 (0.29, 1.39) 0.01 (0.00, 0.01) 0.03 (0.02, 0.05) 

65-74 0.16 (0.13, 0.2) 1.11 (0.60, 1.62) 0.01 (0.00, 0.02) 0.02 (0.01, 0.03) 

≥75 0.12 (0.11, 0.14) 0.69 (0.51, 0.87) 0.01 (0.01, 0.02) 0.02 (0.02, 0.03) 

Sex     

Male 0.15 (0.12, 0.17) 0.98 (0.57, 1.38) 0.01 (0.00, 0.01) 0.02 (0.02, 0.03) 

Female 0.14 (0.12, 0.17) 0.68 (0.28, 1.07) 0.02 (0.01, 0.03) 0.03 (0.02, 0.04) 

 

  



3.Supplementary figures 

 

Figure S1. The geographic distribution of 364 locations in China 

  



 

Figure S2. Scatter plot of 10-fold cross-validation of interpolated meteorological factors in 698 

weather stations in China 

Note: Since 10-fold cross-validation of all study days during 2006-2017 was time consuming, we only 

selected the 15th day in the following months to test the fitting performance of the model: January 2006, 

February 2007, March 2008, April 2009, May 2010, July 2011, June 2012, August 2013, September 2014, 

October 2015, November 2016, and December 2017. 

RMSE: root mean squared prediction error (°C) 

  



 

Figure S3. The process of daily PM10 concentration estimation 

  

Latitude, longitude and altitude information extraction (air quality monitoring station and 

study locations) 

Spatiotemporal data collection and extraction: 

 PM10 

 Meteorological data (TM and RH) were extracted using 

the ANUSPLIN method 

 Geographic map 

 Population density 

 Road density 

 Land use data 

 GDP per capital 

The LUR model was established using random forest modeling and tested based on the 

spatiotemporal data of air quality monitoring stations across China 

Input the spatiotemporal data of each study location into 

the LUR model. 

Daily PM10 concentrations were estimated 



 

Figure S4. Performance and validation of estimating the daily PM10 concentration in China 

  



 

Figure S5. The distribution of daily average YLL rate (/100,000 population) in 364 locations in China 
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Figure S6. Overall lag structure in effects of extreme cold temperature on daily YLL rates in all 

364 locations and in different subgroups in China 

Effects were defined as the risks at the mean of the 2.5th centile of temperature distributions 

compared with the estimated MYT 

  



 

Figure S7. Overall lag structure in effects of extreme hot temperature on daily YLL rates in all 364 

locations and in different subgroups in China 

Effects were defined as the risks at the mean of the 97.5th centile of temperature distributions 

compared with the estimated MYT 

 



 

Figure S8. Univariable meta-regression results of the modification effects of city level 

characteristics on the YLL per death caused by temperatures in 364 locations in China  



 

Figure S9. Sensitivity analyses on the impacts of lag days and df (/year) on the nationwide 

exposure-response relationship between temperature and YLL rate in China 
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