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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Years of life lost (YLL) is used to estimate the effects of temperature

- Both low and high temperatures can increase the YLLs

- Average 1.02 YLL per death is attributed to temperature exposure

- Temperature causes larger YLLs per death in males, younger people, and central China
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Although numerous studies have investigated premature deaths
attributable to temperature, effects of temperature on years of life
lost (YLL) remain unclear. We estimated the relationship between
temperatures and YLL, and quantified the YLL per death caused by
temperature in China. We collected daily meteorological and mortal-
ity data, and calculated the daily YLL values for 364 locations (2013–
2017 in Yunnan, Guangdong, Hunan, Zhejiang, and Jilin provinces,
and 2006–2011 in other locations) in China. A time-series design
with a distributed lag nonlinear model was first employed to estimate
the location-specific associations between temperature and YLL
rates (YLL/100,000 population), and a multivariate meta-analysis
model was used to pool location-specific associations. Then, YLL
per death caused by temperatures was calculated. The temperature
and YLL rates consistently showed U-shaped associations. A mean
of 1.02 (95% confidence interval: 0.67, 1.37) YLL per death was
attributable to temperature. Cold temperature caused 0.98 YLL per
death with most from moderate cold (0.84). The mean YLL per death
was higher in those with cardiovascular diseases (1.14), males
(1.15), younger age categories (1.31 in people aged 65–74 years),
and in central China (1.34) than in those with respiratory diseases
(0.47), females (0.87), older people (0.85 in people R75 years old),
and northern China (0.64) or southern China (1.19). The mortality
burden was modified by annual temperature and temperature vari-
ability, relative humidity, latitude, longitude, altitude, education
attainment, and central heating use. Temperatures caused substan-
tial YLL per death in China, which was modified by demographic
and regional characteristics.

KEYWORDS: TEMPERATURE; YEARS OF LIFE LOST; MORTALITY
BURDEN; DISTRIBUTED LAG NONLINEAR MODEL; MULTIVARIATE
META-ANALYSIS; CHINA

INTRODUCTION
In the 21st century, climate change presents a global public health

concern.1 In the context of climate change, the population around the world
is becoming progressively more exposed to extreme temperatures.2

Numerous epidemiological studies have demonstrated the associations be-
ll
tween ambient temperature exposure and mortality and morbidity.1,3–8

These studies have found that temperatures could increase the risks of
mortality from cardiovascular, respiratory, cerebrovascular, and other
causes.9,10 However, most previous studies used death counts as a health
outcome,11 which may not adequately represent the actual mortality burden
attributable to temperature, as it provides an equal weight to every death
regardless of age. Although all lives are valuable, the loss of young lives re-
sults in a larger potential loss of social contributions.12 Therefore, death
counts may not capture the whole picture of mortality burden attributable
to ambient temperature, which is not helpful for policy prioritization and de-
cision making.

The years of life lost (YLL), an important component of disability-
adjusted life years (DALYs), is an indicator of premature mortality. It
considers the age at which a death occurs, and gives a greater weight
to deaths at younger ages.13 Some studies have argued that the YLL is
better than the death count as an indicator when assessing the mortal-
ity burden attributed to ambient temperature.14 However, few studies
have estimated the exposure-response associations between tempera-
ture and YLL.12,15–21 Moreover, most of these studies employed the
daily overall YLL as a health outcome, and did not adjust for the offset
effect of population size. As a result, the city- or community-specific as-
sociation between temperature and YLL cannot be simply combined.
Therefore, the extent to which temperature exposure reduces life expec-
tancy needs more examination.

China is the world's most populous country with over 1.4 billion peo-
ple. In the context of global warming, the annual average surface air
temperature in China increased at a rate of 0.32�C per decade during
the period from 1961 to 2017, which is higher than the global average
(0.12�C/decade) from 1951 to 2010.22,23 It is expected that the ambient
temperature in China will continue to increase in the future.23 Many pre-
vious studies have also estimated the exposure-response associations
of temperatures with death counts in China.9,24,25 However, the temper-
ature-related mortality burden estimated using YLL has not been as-
sessed in China.

In the current study, we employed a national dataset including 364 loca-
tions in China to examine the associations between temperature and YLL
rates (YLL per 100,000 population) and to quantify the YLL per death
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Table 1. General Characteristics of the Study Variables in 364 Locations across China

Mean (SD) Minimum 25th Centile Median 75th Centile Maximum

Daily nonaccidental YLL ratea

Total 22.5 (23.4) 0.0 12.0 19.5 28.5 1,020.4

Cardiovascular disease 8.0 (12.5) 0.0 2.5 5.8 10.4 799.1

CED 3.9 (6.6) 0.0 0.0 2.3 5.3 324.3

Respiratory disease 2.2 (4.4) 0.0 0.0 1.0 3.0 620.4

Sex

Male 26.6 (30.3) 0.0 11.6 21.9 35.0 1,826.0

Female 18.2 (24.6) 0.0 6.1 13.8 24.2 1,372.5

Age (years)

0–64 13.9 (18.0) 0.0 4.2 10.8 19.2 994.7

65–74 69.7 (100.7) 0.0 0.0 54.0 97.2 4,824.5

R75 138.2 (142.3) 0.0 66.1 119.3 182.7 5,077.2

Region

Northern 22.9 (15.9) 0.0 11.8 20.4 30.7 359.0

Central 24.7 (38.6) 0.0 11.9 19.2 28.0 1,020.4

Southern 21.6 (15.3) 0.0 12.1 19.4 28.3 928.5

Meteorological variable

Daily mean temperature (�C) 15.9 (9.9) �32.3 9.5 17.5 23.4 35.6

Daily maximum temperature (�C) 20.5 (10.0) �27.2 14.1 22.3 28.1 41.2

Daily minimum temperature (�C) 11.8 (10.4) �36.2 5.3 13.2 19.8 30.7

Temperature variability (�C) 9.3 (3.9) 0.3 6.3 9.4 12.3 23.2

Daily RH (%) 72.4 (15.6) 5.0 63.0 75.0 84.0 100.0

PM10 (mg/m
3) 81.6 (41.1) 8.3 51.4 76.7 103.0 767.3

aYLL rate was the average YLL per 100,000 population.
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attributable to temperature. Our findings will provide deep understanding of
the magnitude of adverse health effects caused by ambient temperature,
which is important for risk communication and interventions to reduce the
mortality burden due to temperatures because YLL is a better indicator
than death count to estimate mortality burden attributed to ambient
temperature.

RESULTS
General Characteristics of the Study Samples

Table 1 shows the general characteristics of the YLL rates (YLL per
100,000 population) andweather factors in the 364 study locations. The total
YLL was 98.8 million, and the mean daily YLL rates for nonaccidental mortal-
ity, CVD-, cerebrovascular disease (CED)-, and RESP-related mortality were
22.5, 8.0, 3.9, and 2.2 per 100,000 per day, respectively. Geographically, the
largest mean daily YLL rate was observed in central China (24.7), while the
lowest was in southern China (21.6). The mean daily temperature, tempera-
ture variability, RH, and PM10 were 15.9�C, 9.3�C, 72.4%, and 81.6 mg/m3,
respectively. Daily temperature was significantly associated with daily tem-
perature variability (r = �0.13, p < 0.001), RH (r = 0.24, p < 0.001), and
PM10 (r = �0.32, p < 0.001) in all included locations. Other characteristics
are shown in Table S1 and Figure S5.

Exposure-Response Associations of Temperatures with YLL Rates
Figure 1 shows a U-shaped cumulative exposure-response relationship

between temperatures and YLL rates. The MYT was 27.4�C nationwide
2 The Innovation 2, 100072, February 28, 2021
with a higher MYT in southern China and a lower MYT in northern China.
Cold temperature had a larger impact than hot temperature on the overall
YLL rates. The overall YLL rates attributable to cold were greater in low-lati-
tude regions than in high-latitude regions, while reverse patterns were found
for heat-related YLL rates.We observed similar association patterns between
temperature and cause-specific YLL rates among different geographic re-
gions of China. For instance, cold temperatures had greater effects on the
YLL rate from CVD in southern China, and hot temperatures had bigger ef-
fects on YLL rates from CVD in northern China. Temperature had a greater
impact on YLL rates in males, populations R65 years old, and people with
CVD than on females, populations%65 years old, and those with respiratory
disease. The effects of extreme cold were more pronounced and lasted
longer than those of extreme heat (Figures S6 and S7).

Mortality Burden of Temperature Exposures
A mean of 1.02 (95% confidence interval [CI], 0.67–1.37) YLL per death

was associated with temperature exposures nationwide, out of which 0.98
(95% CI, 0.65, 1.32) years were attributable to cold, particularly moderate
cold (0.84; 95% CI, 0.52, 1.16). The mean YLL per death was higher in those
with CED (1.37; 95% CI, 0.87, 1.87) or CVD (1.14; 95% CI; 0.77, 1.52) than in
those with RESP (0.47; 95% CI, 0.26, 0.67), higher in the younger population
(1.31 in people 65–74 years old; 95% CI, 0.75, 1.86) than in the oldest group
(0.85 in peopleR75 years old; 95% CI, 0.64, 1.05), and higher in males (1.15;
95%CI, 0.71, 1.59) than in females (0.87; 95%CI, 0.43, 1.31) (Table 2 and S2).
We found higher YLL per death in central China (1.34; 95%CI, 0.79, 1.89) than
www.cell.com/the-innovation
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Figure 1. Pooled Cumulative Exposure-Response Relation-
ships between Daily Mean Temperature and YLL Rate Over
0–21 Days lag in All 364 Locations and in Different Sub-
groups across China
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in southern China (1.19; 95% CI, 0.70, 1.68) and northern China (0.64; 95% CI,
�0.98, 2.26), which was consistent with the spatial distribution of annual
mean YLL attributable to temperatures in China. The highest YLL values
were found in Shandong Province (906,700), and the lowest burden was
found in Hainan Province (21,100). At the city level, we found that Chongqing
city had the largest mortality burden (217,800), and Sansha city in Hannan
Province had the lowest mortality burden (20) (Figure 2).

Effect Modification Analysis
We observed an increase in YLL per death related to temperatures in loca-

tions with moderate annual temperatures, high annual temperature vari-
ability, low annual RH, moderate latitude, small longitude, high altitude, and
a short central heating period. The urbanization rate, GDP per capita, and ed-
ucation level were found to have weak modification effects on the YLL per
death (Figure S8).

Sensitivity Analyses
The associations of temperature with YLL per death were generally robust

to the changes in df for seasonality. The cold-attributed YLL rate and MYT
reduced with a smaller maximum lag day (Figure S9).

DISCUSSION
In this study, we found that temperatures were associated with an

increasedYLL rate, and ameanof 1.02YLL per deathwas attributable to tem-
peratures nationwide, with most from moderate cold. Higher YLL values per
death caused by temperatures were found in individuals with CVD and CED
than in individuals with RESP, in those from central China than in those from
southern or northern China, in the group aged 65–74 years than in the group
agedR75 years, and inmales than in females. To the best of our knowledge,
this is the first study involving a large number of locations and a large popu-
lation size to estimate the temperature-related premature death indicated
by YLL.

Although many studies have estimated the association between temper-
ature and mortality rates,9,25,26 few studies have assessed the relationship
ll
between temperature and YLL.12,15–18 In this study, we used the YLL rate
to quantify the association, and observed U-shaped relationships between
ambient temperatures andYLL rateswith higher cold effects, which is consis-
tent with several previous studies using death counts.27,28 Furthermore, we
found higher MYTs and larger cold effects in southern China than in northern
China, which also confirmed a similar pattern of minimummortality temper-
ature (MMT) in previous studies.24,29,30 For example, Ma et al.24 observed in
17 large Chinese cities that theMMT increased with decreasing latitude, with
a Spearman correlation coefficient equal to 0.62. The spatial heterogeneity of
cold effects is partially due to the differences in geography, adaptative capac-
ity, and climatic characteristics among regions.29,31 For example, people in
northern China generally have central heating in the winter season.32 The
meta-regression results in this study also showed a lower mortality burden
per death in locations with a central heating system than in other locations
(Figure S8).

Our study first reported the mean YLL per death caused by temperature.
We found that amean of 1.02 YLL values per death was caused by exposure
to temperature during the study period. We also analyzed YLL caused by
different components of temperature, and found that cold temperatures,
particularly moderate cold temperatures, were mainly responsible for the ef-
fects. Using mortality as the outcome, Chen et al.9 also found that moderate
cold contributed to the largest fraction (ranging from64.55% to 80.57%) of to-
tal temperature effects with only a small fraction of mortality effects from
extreme cold (5.8%–10.16%) or extreme heat (2.73%–4.90%). The large frac-
tion ofmoderate cold effects is related to thehigh frequency ofmoderate cold
temperatures and their prolonged lag effects. The results of YLL per death
caused by temperatures increase the body of evidence for the public and pol-
icymakers tobetter understand themagnitudeof thehealth effects fromtem-
perature exposures and which populations and where are most at risk.

Previous studies based on daily mortality rates have found that exposure
to temperature has a greater effect on females than onmales.9,10 In contrast,
we found a greater YLL per death in males than in females. This result indi-
cates that the impact of temperatures on mortality burden was greater for
males than for females.10 The reasons for this sex difference are not totally
The Innovation 2, 100072, February 28, 2021 3



Table 2. YLL per Death (Years, 95% CI) Attributable to Temperatures in China

MYT
(�C) Total Cold Heat

Causes of death

Total
mortality

27.4 1.02 (0.67, 1.37) 0.98 (0.65, 1.32) 0.04 (0.03, 0.05)

CVD 27.3 1.14 (0.77, 1.52) 1.1 (0.74, 1.46) 0.05 (0.03, 0.06)

CED 27.6 1.37 (0.87, 1.87) 1.33 (0.84, 1.82) 0.04 (0.02, 0.05)

RESP 26.8 0.47 (0.26, 0.67) 0.43 (0.24, 0.61) 0.04 (0.02, 0.06)

Geographic regions

Northern �5.2 0.64 (�0.98, 2.26) 0.56 (�0.83, 1.96) 0.07 (�0.15, 0.3)

Central 27.5 1.34 (0.79, 1.89) 1.28 (0.75, 1.82) 0.06 (0.04, 0.08)

Southern 28.1 1.19 (0.70, 1.68) 1.16 (0.69, 1.64) 0.02 (0.01, 0.04)

Age of death (years)

0–64 27.9 1.08 (0.46, 1.71) 1.04 (0.44, 1.65) 0.04 (0.02, 0.07)

65–74 27.1 1.31 (0.75, 1.86) 1.27 (0.73, 1.81) 0.03 (0.02, 0.05)

R75 26.8 0.85 (0.64, 1.05) 0.81 (0.62, 1.01) 0.03 (0.03, 0.04)

Sex

Male 27.8 1.15 (0.71, 1.59) 1.12 (0.69, 1.55) 0.03 (0.02, 0.04)

Female 26.9 0.87 (0.43, 1.31) 0.82 (0.4, 1.24) 0.05 (0.03, 0.07)
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clear. Compared with females, males are more likely to have poor diets and
unhealthy lifestyles, moremental stress, and other aspects of exposure such
as occupational exposure to hazardous substances.33 Males therefore may
be more susceptible to ambient temperature, and have a shorter life expec-
tancy,whichmakeshigher YLL values formales. In addition, it was suggested
that females may have an innate enhanced potential to withstand immune
challenges due to more highly activated innate immune pathways,34 which
mayattenuate the effects of inflammation inducedby temperatures.35 There-
fore, while using YLL per death as a measure, we should give more attention
to males in planning public health interventions to mitigate the impact of
temperature.

We also found some significant regional modifiers of YLL per death
caused by temperatures, including annual mean temperature, temperature
variability, and RH, latitude, longitude, altitude, level of education, and usage
of central heating. These findings could not only help explain the spatial het-
erogeneous of temperature-related effects but also provide important infor-
mation for policy makers to plan specifically tailored preventive actions to
reduce the health impacts of temperatures.

This study also estimated the annualmeanmortality burden attributable to
temperatures at the province and city level in China, and observed substantial
mortality burden caused by temperatures, particularly in central China. These
findings have important implications for further understanding of the health
impacts of temperatures. In the context of global warning, temperature-
related deaths may increase in future in China.36 In addition, the rapid urban-
ization and population aging process may increase the impacts of tempera-
ture on human health.18,37 Therefore, efforts to adapt to climate change and
reduce its health impactsare urgently needed in China. Chinese governments
have conducted enormous health adaptation efforts to respond to climate
change, including adaptation policies, health warning systems, risk commu-
nication, and the provision of healthcareand social services.38However, there
remain challenges for adaptation to climate change in China. For example,
the integration or better collaboration across multiple government depart-
ments and improved community participation are needed to advance adap-
tation to climate change, andmore research on adaptation interventions and
their benefits and negative impacts is needed.
4 The Innovation 2, 100072, February 28, 2021
Strength and Limitations
The present study has several strengths. First, this study employed a large

database with good-quality data, which increases the generalizability of our
findings. Second, we applied a population-adjusted YLL rate to estimate
the associations of temperature with the YLL rate, which was used to
combine temperature effects across locations. Third, we estimated the
mean YLL per death resulting from temperature. These measures provide
novel insights because they provide an intuitive understanding of the health
impact of temperature.

This study also has several limitations. First, similar to many previous
studies, it was inherently an ecological study. Our findings should thus be in-
terpreted with caution. Second, more locations were selected in several
southern provinces in China, which may lead to selection bias in the results,
such as the MYT and meta-regression results, since these five provinces
may have more weight than the other provinces. For example, the higher
MYT found in this study than in previous studies may be related to the
unbalanced selection of locations.4,9 Third, climate change is a global public
health concern. The present study included only locations in China (except for
Hainan Province), which may limit the generalizability of our findings to other
countries and regions. Fourth, we divided all study locations into three major
zones based on their latitudes, which may potentially mask the difference in
climate variability between provinceswithin the same zone. However, ameta-
regression analysis was used to examine the effects of several location-level
characteristics on the association of temperaturewith YLL rates. Fifth, we did
not include the same study period in all locations due to the unavailability of
mortality data. However, a study conducted in Shanghai indicated that both
hot and cold effects on mortality did not substantially change during 2001–
2012.39 Sixth, cancer is ranked top in the cause-of-death spectrum across
many countries in the world.40 However, we did not estimate the association
of temperature with cancer mortality in this study because daily cancer mor-
tality data were not collected. Finally, the study locations were selected from
both the DSPS and provincialmortality surveillance system. Although the pro-
vincial mortality surveillance system followed the DSPS standards, disparity
between the two systems may potentially lead to bias.

Conclusions
Temperatures, especially moderate cold, have been found to be associ-

ated with substantial mortality burden of 1.02 YLL per death in China. The
mortality effects of temperatures were modified by demographic and
regional characteristics. Our findings add to the increasing body of knowl-
edge to better inform policy making and adaptation intervention in the
context of climate change.

MATERIALS AND METHODS
Study Location Selection

Study locations in Yunnan, Guangdong, Hunan, Zhejiang, and Jilin provinces during
2013–2017were selected fromprovincialmortality surveillance systems. Locations in
other provinces during 2006–2011 were obtained from China's Disease Surveillance
Points System (DSPS) (see the Appendix).25,41 The DSPS is administered by the Chi-
nese Center for Disease Control and Prevention (China CDC), and the provincial mor-
tality surveillance system was administered by the provincial CDC following the same
protocol as that of DSPS. At each surveillance point, all deaths certified by clinical doc-
tors or local CDC professionals are reported to the DSPS using an internet-based re-
porting system. The data from the DSPS have been widely applied in policy making
and disease burden assessment.9,25,42

To ensure adequate statistical power, study locations from both provincial surveil-
lance systems and DSPS were selected if they met either or both criteria: (1) a popu-
lation size>200,000, and (2) an annualmortality rate>4&.25We set these two criteria
because time-series analyses depend on both good quality of mortality data and
adequate daily number of deaths. A total of 364 locations were selected and catego-
rized into three groups:43 northern China (latitude R40� ; 46 locations), central China
(latitude R30� and <40� ; 72 locations), and southern China (latitude <30� ; 246 loca-
tions) (Figure S1). A total of 203.7 million people permanently live in the study
locations.42

Data Collection
Daily nonaccidental mortality data during 2013–2017 were obtained from the cor-

respondingprovincial CDCs in the abovefiveprovinces.However, we only obtained the
www.cell.com/the-innovation
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Figure 2. Spatial Distribution of Annual Mean YLL Attributable to Temperatures in China (A) At the provincial level. (B) At the city level.
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daily mortality data during 2006–2011 in locations beyond the five provinces.25 There-
fore, there are two study periods in this study. The population and mortality data of all
provinces were obtained from the 6th national population census conducted in 2010
(Census data: http://www.stats.gov.cn), whichwas used to calculatemale and female
life tables (<1 year, 1–4 years, and every 5 years from ages 5 to 100+ years) of each
ll
province using the methods provided by the World Health Organization.44 We then
calculated the individual YLL by matching the death age and sex of each individual re-
cord to the province-specific life table. All deathswere classified into groups according
to the International Classification of Diseases, 10th revision (ICD-10) categories: non-
accidental causes (codes: A00-R99), cardiovascular disease (CVD, codes I00-I99),
The Innovation 2, 100072, February 28, 2021 5
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respiratory disease (RESP, codes J00-J98), and cerebrovascular disease (RED, codes
I60–I69). The daily total YLL for each causewas calculated by summing the YLL for all
deaths on the same day. We also calculated the daily YLL by sex and age group (0–64
years, 65–74 years, and R75 years).

The annual mean population size during 2013–2017 for each study location in the
five provinces was obtained from national or local statistical yearbooks, and popula-
tion data for the other study locations were extracted from the 6th national population
census, conducted in 2010 (Census data: http://www.stats.gov.cn). Based on these
data,we calculated the daily YLL rate (YLL per 100,000 population) by dividing the daily
recorded YLL by the corresponding population size of each location, which was used
to estimate the association of temperature with YLL. Then, the association in every
location was combined in a multivariate meta-analysis model. We also collected the
annual mean population size during 2013–2017 for each city in China, which was
used to estimate the total mortality burden in China.

Daily meteorological data including mean temperature and relative humidity (RH)
from698weather stationsacrossChinawere extracted from theChinaMeteorological
Data Sharing Service System (Weather data: http://data.cma.cn/). We employed the
Australian National University Splines (ANUSPLIN) thin plate smoothing software to
interpolate the daily mean temperature, TMax, TMin, and RH at a 0.01 � 3 0.01 � res-
olution across China. The results of 10-fold cross-validation showed that the R2 values
of the daily mean temperature, TMax, TMin, and RH were 0.96, 0.94, 0.94, and 0.81,
respectively, and the corresponding root mean squared errors (RMSEs) were 2.37�C,
2.8�C, 2.8�C, and 7.7%. These results suggest good prediction accuracy of the interpo-
lation method (see the Appendix).45 We obtained the daily mean temperature, TMax,
TMin, and RH of the grids where each selected location overlapped. We then calcu-
lated the daily temperature variability by estimating the standard deviation of daily
maximum and minimum temperatures (TMaxlag0, TMaxlag1, TMinlag0, and TMinlag1)
of the preceding 2 days.46Here, we calculated the daily temperature variability as a po-
tential cofounder ofmean temperature, because previous studies showed that temper-
ature variability was also an independent risk factor for mortality.46,47

The values of the daily mean particulate matter with an aerodynamic diameter of
10 mm or less (PM10) during 2006–2017 were obtained from the China National Envi-
ronmental Monitoring Center. Since some studied locations were not covered by the
air quality monitoring system, we employed a land-use-regression model to assess
the daily PM10 value at each location using the following predictors: daily mean tem-
perature, daily RH, latitude, longitude, altitude, population density, road density, types of
land use, and gross domestic product (GDP) per capita. The fitness results showed
that the R2 was 73.90%, and the RMSE was 16.49 mg/m3. The method has been
described in our previous study48 (see the Appendix).

TheGDPper capita in 2010 for each locationwas obtained from the Data Center for
Resources and Environmental Sciences (GDP data: http://www.resdc.cn). Other 2010
city-level characteristics, including the urbanization rate, mean years of education, and
use of central heating, were collected from national and provincial statistical
yearbooks.

We collected the daily mean temperatures, population size, and its components in
each city during 2013–2017, using the samemethodsmentioned above. Based on the
regional exposure-response associations between temperatures and the YLL rate in
364 locations, we estimated the annual mean YLL attributable to temperatures in
each city in China.
Statistical Analysis
Weused a two-stage approach in our study. In the first stage, we used a distributed

lag nonlinear model (DLNM) linked with a Gaussian distribution function to estimate
the associations of temperature with the YLL rate in each location.49 A cross-basis
function was introduced to model the nonlinear and lag associations of temperature
and temperature variability with the YLL rate, in which the temperature variability was
adjusted for as a potential confounder. The DLNM can optimally adjust for other con-
founders, including those that change slowly over time expressed as seasonality, day
of the week (DOW), other meteorological factors (e.g., RH), and air pollutants (e.g.,
PM10). We employed a natural cubic B-spline (ns) of time with seven degrees of
freedom (df) per year to control for the seasonal and long-term trends in mortality, a
categorical variable to control for the DOW, and a linear model to control for the
same day PM10 concentration. An ns was also employed to adjust for the potential
confounding effect of the present day RH with three df in the ns function, which can
estimate the nonlinear effects of the RH on the YLL rate in the same day.9 We used
21 days as the maximum lag period for both mean temperature and temperature
variability.4,25,46,48,50

In the secondstage,we employed amultivariatemeta-analysis to combine the loca-
tion-specific cumulative associations of temperatures with the YLL rate at 21 lag
days.51 The MYT (minimum YLL temperature) was identified in the combined curves
of the YLL rate with temperature (see the Appendix).

Based on the overall cumulative YLL rate of temperature devised from the com-
bined curve, we estimated the mean YLL per death caused by temperature and its
components. We divided daily mean temperatures into four components, namely
extreme cold, moderate cold, moderate heat, and extreme heat (defined as %2.5th
6 The Innovation 2, 100072, February 28, 2021
percentile, the 2.5th percentile to the MYT, MYT to the 97.5th percentile, and >97.5th

percentile of temperature, respectively). Similarly, we applied regional cumulative
exposure-response associations between temperature and YLL rate to the daily
mean temperatures and population data in each city (see the Appendix).

A univariablemeta-regressionmodel was employed to explore the impacts of loca-
tion-level characteristics onYLLper death caused by temperature. These location-level
variables included were the urbanization rate, mean years of education, annual mean
temperature, annualmean temperature variability, annual meanRH, latitude, longitude,
altitude, GDP per capita, and central heating.

All analyses were performed using R software (version 3.5.0, R Foundation for Sta-
tistical Computing, Vienna, Austria). Thedlnmandmvmetapackageswere the primary
packages used. Two-tailed p values < 0.05 were considered to be statistically signif-
icant. All codes are available at https://github.com/gztt2002/YLL-of-Tm-and-Tv.

Sensitivity Analyses
A series of sensitivity analyses were conducted to test the robustness of the esti-

mates nationwide. We employed alternative maximum lag periods of 14 and 28 days,
and changed the df of time from 6 to 8 per year.

WEB RESOURCES
The mortality data can only be applied for through a government data

sharing portal (www.phsciencedata.cn/Share/edtShare.jsp) or from the pro-
vincial mortality surveillance system. Data on the environment and location
characteristics are available on the government's statistic yearbooks or web-
sites listed in the methods section. All codes were available in https://github.
com/gztt2002/YLL-of-Tm-and-Tv.

ETHICAL APPROVAL
This study was approved by the Ethics Committee of Guangdong Provin-

cial Center for Disease Control and Prevention (2019025). Data were
analyzed at aggregate level and no participants were contacted.
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1.Supplementary text 

1.1 China’s Disease Surveillance Points system and study location selection 

The China’s Disease Surveillance Points System (DSPS) is administrated by the Chinese Center for 

Disease Control and Prevention (China CDC). This system selected county and district across China as 

surveillance points. Currently, the DSPS has included 605 districts and counties comprising 21.1% of all 

counties and districts in China, and covers a population of 323.8 million (24.3% of the total population). 

To ensure the representativeness of surveillance points, all selected counties and districts are evenly 

distributed across different geographical areas with different characteristics.[1] At each surveillance point, 

all deaths certified by clinical doctors or local CDC professionals are reported to the DSPS in real time 

using an internet-based reporting system. The data from the DSPS has been widely applied in policy 

making and disease burden assessment.[2] 

Although the DSPS covers a wide range of China territory, and can well represent the Chinese population, 

many surveillance points especially in western China have small population sizes, and the quality of 

mortality data were relatively poor which could be indicated by recorded low mortality rate (<5‰). The 

time-series analyses depend on both good quality of mortality data and adequate daily number of deaths. 

The small number of daily deaths caused by poor quality of mortality data or small population size may 

lead to biased associations of temperatures with YLL rates. In the present study, we therefore added 

surveillance points with good quality of data, which were selected from several provincial mortality 

surveillance system (Yunnan, Guangdong, Hunan, Zhejiang, and Jilin provinces). To ensure adequate 

statistical power, surveillance points from both provincial surveillance system and the DSPS were 

selected if they met anyone or both criteria: a) a population size >200,000, and b) an annual mortality 

rate >4‰. Under these two criteria, the daily average death count was larger than three, which was 

consistent with a previous similar study conducted in China.[3] 

1.2 Interpolation of daily meteorological factors  

We employed the Australian National University Splines (ANUSPLIN) thin plate smoothing software to 

interpolate the daily nationwide mean temperatures in China. The model was as follows: 

Tempi = f (lati, loni )+ b× alti + ei       (Equation 1) 



Where Tempi denotes the daily mean temperature at station i. f() denotes the thin plate function. lati, loni 

and alti are the latitude, longitude, and altitude for station i. b denotes the coefficient for alti, and ei 

denotes the error term at station i. Using this method, daily temperatures across China were obtained at 

a resolution of 0.01°×0.01°. The results of 10-fold cross-validation show good prediction accuracy of the 

interpolation method for daily mean temperature [R2 = 0.96, root mean squared prediction error (RMSE) 

= 2.37°C]. In the process of 10-fold cross-validation on the model, we selected only the 15th day in the 

following months: January 2006, February 2007, March 2008, April 2009, May 2010, July 2011, June 

2012, August 2013, September 2014, October 2015, November 2016, and December 2017; this was done 

as the inclusion of all study days during 2006-2017 would be time-consuming. We employed this method 

also to interpolate the daily nationwide relative humidity (RH), daily maximum temperatures (TMax) 

and daily minimum temperatures (TMin) in China. The results of fitting performance show that the R2 

of RH, TMax and TMin were 0.81, 0.94 and 0.94, respectively (Figure S2). 

1.3 Daily PM10 estimation using a land-use-regression (LUR) model 

We selected the PM10 as an agency of air quality during the entire study period (2006-2017), and adjusted 

for it in the DLNM assessing the associations of temperatures with YLL rates. PM10 is the only ambient 

air pollutant obtained during 2006-2012 in this study. Daily average PM10 during the 2013-2017 were 

obtained from the National Urban Air Quality Real-time Publishing Platform 

(http://106.37.208.233:20035/), which is administrated by the China National Environmental Monitoring 

Centre. The platform was put in operation since January 2013, and displays real-time concentrations of 

criteria air pollutants in all state-controlled monitoring stations. Daily average PM10 during 2006-2012 

were obtained from the China National Environmental Monitoring Centre. The 24-h mean concentrations 

for PM10 were simply averaged from all valid monitoring sties in a city. Since some selected locations 

were not covered by the air quality monitoring system, we employed a random forest model to assess the 

daily PM10 at each location. 

First, we extracted the latitude, longitude and altitude of each included air quality monitoring station 

across China, and extracted the daily mean temperature, and relative humidity at each monitoring station 

during the study period from the interpolated data in the appendix section 1.2. We also extracted the 

population density, length of road, types of land use (farm land, cropland, forest land, water area, and 

living land) and GDP per capital at each monitoring station using a radius of 1,300 meters, which was 

http://106.37.208.233:20035/),%20w


chosen based our previous studies.[4 5] The population density data in 2015 were obtained from GeoData 

Institute in University of Southampton (www.worldpop.org.uk), and the geographic information system 

(GIS) covariates (geographic map, road density, land use data and GDP per capita) were obtained from 

the Data Center for Resources and Environmental Sciences (http://www.resdc.cn). Then we established 

a LUR model implemented by a random forest model to input the above prepared predictors of all air 

quality monitoring stations and the daily PM10 data. One smooth temporal basis function was included 

in the model to fit the long-term and seasonal trend of PM10 concentrations (Figure S3). The results of 

fitness showed that the R2 was 73.90%, and the RMSE (Root mean square error) was 16.49 μg/m3 (Figure 

S4). We then extracted the daily mean temperature, relative humidity, latitude, longitude, altitude, 

population density, road density, land use data and GDP per capita at the center of each selected location, 

and put them into the established LUR model. Finally, we can obtain the daily mean PM10 concentrations 

during the study period at each location. 

1.4 Estimation of the associations of temperatures and TVs with YLL rates 

A two-stage approach was employed in our study. In the first stage, we employed a distributed lag 

nonlinear model (DLNM) to estimate the nonlinear and lag effects of mean temperature on daily YLL 

rates. The location specific association of temperate with daily YLL rates is entirely defined by a set of 

parameters namely regression coefficients in the function chosen for representing the associations. The 

model was as follows: 

E(YLLt)= α +β1T1,t,l(TM) + β2T2,t,l(TV)+ns(RH, df) +β3PM10 + ns(timet, df) +ηDOW+e    (Equation 2) 

Where t denotes the day of observation, YLLt denotes the expected YLL rate on day t, which was 

calculated by dividing the daily observed YLLt by the total population size (/100,000) in each included 

location. Therefore, the YLL rate included in the DLNM was the daily YLL in every 100,000 population 

(YLL/100,000); α denotes the intercept indicative of baseline risk; e denotes a Gaussian error. TM 

denotes the daily mean temperature. T1,t,l is a matrix obtained by applying the DLNM to mean temperature, 

and T2,t,l is a matrix obtained by applying the DLNM to TV that is adjusted for as a cofounding factor; β1 

and β2 denotes the vector of coefficients for T1,t,l and T2,t,l, respectively, and l denotes the number of lag 

days; β3 denotes the coefficient of daily PM10 concentrations; e denotes the error term. To ensure that the 

meta-analysis can provide meaningful and interpretable results in the second stage, we employed the 

http://www.resdc.cn/


same function by placing the internal and boundary knots at the same temperatures in all location-specific 

models. In particular, a quadratic B-spline (bs) and natural cubic B-spline (ns) were employed to estimate 

the nonlinear and lagged effects of mean temperature and TV, respectively. In the bs function, three 

internal knots placed at the 10th, 50th and 90th centiles and boundary knots placed at the average 

minimum and maximum temperatures of location specific temperature distributions were used to model 

the association of nonlinear curves of mean temperature and TV with the YLL rate. In the ns function, 

an intercept and three internal knots placed at equally spaced values was used to model the lagged effects 

of temperature and TV. We used a maximum lag period of 21 days to capture the long-term delay of the 

impact of cold, and also excluded the impact of the harvesting effect. The nonlinear associations of mean 

temperature and TV with the YLL rate can be interpreted as the effect of the exposure versus a reference 

which is usually centered on a specific value.[6] 

In all epidemiological studies, a basic issue is to control properly for potential confounding. The DLNM 

model can optimally adjust for confounders including those which change slowly over time (e.g. age, 

socioeconomic status) expressed as seasonality or long-time trends, day of week (DOW), other 

meteorological elements, and air pollutants.[7] Additionally, the time-series study design can control for 

the individual level risk factors such as smoking and alcohol consumption, because these factors at the 

population level do not vary from day to day, and hence will not influence the short-term effects of 

temperatures on mortality.[8] Consistent with previous studies,[9 10] we employed a ns of time with 

seven degrees of freedom (dfs) per year to control for the seasonal and long-term trends in mortality, a 

categorical variable to control for the day of the week (DOW), and a linear model to control for the same 

day PM10 concentration. DOW was a dummy variable representing the day of the week, and η was a 

vector of coefficients. It has been demonstrated that RH is an important contributor to heat stress.[11] 

We also employed a ns to adjust for the potential confounding effect of the present day RH with three 

dfs in the ns function, which could estimate the nonlinear effects of RH on the YLL rate in the same 

day.[3] Three internal knots placed at equally spaced values was used to model the nonlinear effects of 

RH. The family function for DLNM had a Gaussian distribution. 

In the second stage, we employed a multivariate meta-analysis method to combine the location-

specific 0-21 days’ lag in cumulative associations of temperature with the YLL rate.[12] 



Multivariate meta-analysis is a method originally developed to pool multiple correlated outcomes 

in randomized controlled trials. Here it is used to combine the location-specific nonlinear exposure-

response curves which are described with function defined by multiple parameters. The multiple 

parameters obtained from the first stage were used as outcomes for the multivariate meta-analysis, 

which aims to define an average exposure-response association across the locations, test and 

quantify the amount of heterogeneity, and further identify the sources of the heterogeneity. Here, in 

contrast to the original setting of randomized controlled trials, it is not necessary that the parameters 

are individually interpretable, and the associations is instead characterized through their joint 

distribution. The multivariate meta-analysis model can be written as follows: 

𝜃𝑖~𝑁𝑘(𝜃, 𝑆𝑖 + 𝜓)    (Equation 3) 

with 𝑆𝑖 + 𝜓 = Σ𝑖 . The marginal model has independent within-location and between-location 

components. In the within-location component, the estimated 𝜃𝑖 is assumed to be sampled with 

error from 𝑁𝑘(𝜃𝑖 , 𝑆𝑖), a multivariate normal distribution of dimension k (k is 5 in the present study), 

where 𝜃𝑖 is the vector of true unknown outcome parameter for location i. In the between-location 

component, 𝜃𝑖  is assumed to be sampled from 𝑁𝑘(𝜃, 𝑆𝑖) , where 𝜓  is the unknown between-

location (co)variance matrix. 𝜃  here can be interpreted as the population-average outcome 

parameters, namely the coefficients of the function s defining the average exposure-response 

association. A restricted maximum likelihood (REML) method was used to combine the location 

specific exposure response associations. 

The MYT (minimum YLL temperature) was re-centered based on the location-specific MYT 

identified in the first stage. We specified the combined exposure-response curves with three internal 



knots (the 10th, 50th and 90th centiles) and two boundary knots (the average minimum and 

maximum temperatures of location specific temperature distributions). This choice could generate 

the combined exposure-response curves with the uniform distribution of mean temperatures at 

national or regional levels. In order to reduce the heterogeneity between locations and uncertainty 

in the first-stage model, we used a best linear unbiased prediction (BLUP) model to generate the 

adjusted location-specific exposure-response curves.[12] The BLUP approach made use of a trade-

off between the city specific association and the second stage pooled estimation, which could thus 

provide more precise estimations, especially in cities with small numbers of deaths. We also 

provided the lag patterns in YLL rates associated with the average extreme cold temperature (2.5th 

centile), and extreme hot temperature (97.5th centile). 

1.5 Calculations of the YLL per death due to temperatures 

The YLL per death (YLLper) caused by temperatures was calculated using the following two 

equations:[13] 

𝑌𝐿𝐿𝑡𝑒𝑚 = ∑ 𝑌𝐿𝐿′ × 𝐹𝑟𝑒𝑞𝐼=𝑇𝑀𝑎𝑥
𝑖=𝑇𝑀𝑖𝑛        （Equation 4） 

Where, YLLtem denotes the total YLLs attributable to temperatures in every 100,000 population in a 

study location. TMin denotes the minimum daily temperature, and TMax denotes the maximum 

daily temperature in an included study location. YLL’ denotes the YLL rate attributable to each 

temperature, which could be estimated by Equation 2. Freq denotes the frequency of each TM in an 

included study location. 

𝑌𝐿𝐿𝑝𝑒𝑟 = 𝑌𝐿𝐿𝑡𝑒𝑚/𝑁     (Equation 5) 

Where YLLtem is calculated in Equation 4, and N denotes the number of deaths in every 100,000 



population in a study location. 

1.6 Calculations of the annual mean YLL due to temperatures in China 

The annual mean YLL (YLLcity) caused by temperatures in each city was calculated using the following 

equation. 

YLLcity = YLLtem×Pop/5    (Equation 6) 

Where YLLtem denotes the total YLLs attributable to temperatures in every 100,000 population in a 

study location, which is calculated in Equation 4. Pop is the annual mean population size (/100000). 

The number of 5 is the number of years studies (2013-2017). Then we summed the annual mean 

YLLs attributable to temperatures in all cities, and obtained the annual mean YLLs across China. 

All codes were available in https://github.com/gztt2002/YLL-of-Tm-and-Tv. 
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2.Supplementary tables 

Table S1. General characteristics of included 364 locations in China 

 Mean (SD) Minimum 25th centile Median 75th centile Maximum 

Population size (×10,000) 56.9 (31.9) 2.3 33.7 49.2 74.1 207.2 

Percentage of male (%) 51.1 (1.2) 48.4 50.4 51.0 51.7 56.8 

Percentage of elderly (%) 10.4 (2.3) 3.5 8.8 10.4 11.7 18.7 

GDP per capital (×1000 yuan) 3.3 (2.5) 0.4 1.6 2.7 4.2 21.5 

Urbanization rate (%) 52.8 (24.4) 6.4 34.5 46.9 67.7 100.0 

Average years of education  10.0 (1.5) 5.2 9.1 9.8 10.7 16.7 

 

  



Table S2. YLL per death due to different components of temperature across 364 locations in 

China 

 YLL per death (years, 95%CI) 

Extreme cold Moderate cold Moderate heat Extreme heat 

Causes of death     

Total mortality 0.14 (0.12, 0.16) 0.84 (0.52, 1.16) 0.01 (0.01, 0.02) 0.03 (0.02, 0.03) 

Cardiovascular disease 0.17 (0.15, 0.19) 0.93 (0.59, 1.27) 0.01 (0.01, 0.02) 0.03 (0.02, 0.04) 

Cerebrovascular disease 0.17 (0.14, 0.20) 1.16 (0.70, 1.62) 0.01 (0.00, 0.02) 0.03 (0.02, 0.04) 

Respiratory disease 0.14 (0.11, 0.18) 0.28 (0.13, 0.44) 0.01 (0.01, 0.02) 0.02 (0.01, 0.03) 

Geographic regions     

Northern 0.05 (0.01, 0.10) 0.51 (-0.84, 1.86) 0.03 (-0.12, 0.19) 0.04 (-0.03, 0.11) 

Central 0.15 (0.12, 0.17) 1.14 (0.64, 1.64) 0.02 (0.01, 0.03) 0.04 (0.03, 0.05) 

Southern 0.12 (0.09, 0.14) 1.05 (0.59, 1.50) 0.01 (0.00, 0.01) 0.02 (0.01, 0.03) 

Age of death (Years)     

0-64 0.2 (0.15, 0.25) 0.84 (0.29, 1.39) 0.01 (0.00, 0.01) 0.03 (0.02, 0.05) 

65-74 0.16 (0.13, 0.2) 1.11 (0.60, 1.62) 0.01 (0.00, 0.02) 0.02 (0.01, 0.03) 

≥75 0.12 (0.11, 0.14) 0.69 (0.51, 0.87) 0.01 (0.01, 0.02) 0.02 (0.02, 0.03) 

Sex     

Male 0.15 (0.12, 0.17) 0.98 (0.57, 1.38) 0.01 (0.00, 0.01) 0.02 (0.02, 0.03) 

Female 0.14 (0.12, 0.17) 0.68 (0.28, 1.07) 0.02 (0.01, 0.03) 0.03 (0.02, 0.04) 

 

  



3.Supplementary figures 

 

Figure S1. The geographic distribution of 364 locations in China 

  



 

Figure S2. Scatter plot of 10-fold cross-validation of interpolated meteorological factors in 698 

weather stations in China 

Note: Since 10-fold cross-validation of all study days during 2006-2017 was time consuming, we only 

selected the 15th day in the following months to test the fitting performance of the model: January 2006, 

February 2007, March 2008, April 2009, May 2010, July 2011, June 2012, August 2013, September 2014, 

October 2015, November 2016, and December 2017. 

RMSE: root mean squared prediction error (°C) 

  



 

Figure S3. The process of daily PM10 concentration estimation 

  

Latitude, longitude and altitude information extraction (air quality monitoring station and 

study locations) 

Spatiotemporal data collection and extraction: 

 PM10 

 Meteorological data (TM and RH) were extracted using 

the ANUSPLIN method 

 Geographic map 

 Population density 

 Road density 

 Land use data 

 GDP per capital 

The LUR model was established using random forest modeling and tested based on the 

spatiotemporal data of air quality monitoring stations across China 

Input the spatiotemporal data of each study location into 

the LUR model. 

Daily PM10 concentrations were estimated 



 

Figure S4. Performance and validation of estimating the daily PM10 concentration in China 

  



 

Figure S5. The distribution of daily average YLL rate (/100,000 population) in 364 locations in China 
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Figure S6. Overall lag structure in effects of extreme cold temperature on daily YLL rates in all 

364 locations and in different subgroups in China 

Effects were defined as the risks at the mean of the 2.5th centile of temperature distributions 

compared with the estimated MYT 

  



 

Figure S7. Overall lag structure in effects of extreme hot temperature on daily YLL rates in all 364 

locations and in different subgroups in China 

Effects were defined as the risks at the mean of the 97.5th centile of temperature distributions 

compared with the estimated MYT 

 



 

Figure S8. Univariable meta-regression results of the modification effects of city level 

characteristics on the YLL per death caused by temperatures in 364 locations in China  



 

Figure S9. Sensitivity analyses on the impacts of lag days and df (/year) on the nationwide 

exposure-response relationship between temperature and YLL rate in China 
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