XINN, Volume 1

Supplemental Information

Changes in Life Expectancy of Respiratory Diseases from Attaining Daily PM_{2.5} Standard in China: A Nationwide Observational Study

Yin Yang, Jinlei Qi, Zengliang Ruan, Peng Yin, Shiyu Zhang, Jiangmei Liu, Yunning Liu, Rui Li, Lijun Wang, and Hualiang Lin

Supplemental Information

Table of Contents

Table S1. Life expectancy for Chinese population from 2013 to 2016.

 Table S2. Spearman correlation coefficients of air pollutant, temperature, and relative humidity.

Table S3. The region-specific estimates of changes in years of life lost and excess risk of mortality caused by total respiratory diseases and COPD per $10 \ \mu g/m^3$ increment of PM_{2.5} at lag02.

Table S4. The region-specific estimates of changes in years of life lost and excess risk of mortality caused by total respiratory diseases per $10 \ \mu\text{g/m}^3$ increment of PM_{2.5} at lag02 (stratified by gender).

Table S5. The region-specific estimates of changes in years of life lost and excess risk of mortality caused by COPD per $10 \ \mu g/m^3$ increment of PM_{2.5} at lag02 (stratified by gender).

Table S6. The region-specific estimates of changes in years of life lost associated with each 10 μ g/m³ increment in PM_{2.5} at lag02 in two-pollutant models.

Table S7. Sensitivity analyses for the changes in years of life lost associated with each 10 μ g/m³ increment in PM_{2.5} at lag02 in different models, with changing degrees of freedom.

Table S8. Sensitivity analyses for the changes in years of life lost associated with each 10 μ g/m³ increment in PM_{2.5} at lag02, with adding calendar year in the models. **Figure S1.** The flow chart of the analytical process.

Figure S2. Histogram of daily years of life lost in several Chinese cities during 2013 to 2016.

• 70	Life expectancy for Male, years			Life expectancy for Female, years				
Age -	2013	2014	2015	2016	2013	2014	2015	2016
<1	74.4	74.6	74.8	75.0	77.3	77.5	77.7	77.9
<4	74.2	74.3	74.5	74.6	77.1	77.2	77.4	77.5
<9	70.3	70.5	70.6	70.7	73.2	73.4	73.5	73.6
<14	65.5	65.6	65.7	65.8	68.4	68.5	68.6	68.8
15-19	60.6	60.7	60.8	60.9	63.4	63.5	63.7	63.8
20-24	55.7	55.8	55.9	56.0	58.5	58.6	58.8	58.9
25-29	50.8	50.9	51.1	51.2	53.6	53.8	53.9	54.0
30-34	46.0	46.1	46.2	46.4	48.8	48.9	49.0	49.2
35-39	41.2	41.3	41.5	41.6	43.9	44.1	44.2	44.3
40-44	36.5	36.6	36.7	36.8	39.1	39.2	39.4	39.5
45-49	31.8	31.9	32.0	32.1	34.4	34.5	34.6	34.7
50-54	27.2	27.2	27.3	27.5	29.7	29.8	29.9	30.0
55-59	22.7	22.8	22.9	23.0	25.1	25.2	25.3	25.4
60-64	18.5	18.5	18.6	18.7	20.7	20.8	20.9	21.0
65-69	14.6	14.7	14.8	14.9	16.6	16.7	16.8	16.9
70-74	11.3	11.4	11.4	11.5	13.0	13.1	13.2	13.3
75-79	8.6	8.7	8.7	8.8	9.9	10.0	10.0	10.1
80-84	6.6	6.6	6.7	6.7	7.4	7.4	7.5	7.5
85+	4.9	4.9	5.0	5.0	5.4	5.5	5.5	5.6

 Table S1. Life expectancy for Chinese population from 2013 to 2016.

	PM _{2.5}	O ₃	NO ₂	SO_2	Temperature	Relative humidity
PM _{2.5}	1.00					numarty
O ₃	0.42	1.00				
NO ₂	0.47	-0.01	1.00			
SO_2	0.28	0.47	0.36	1.00		
Temperature	-0.14	0.17	-0.30	-0.24	1.00	
Relative	0.04	0.12	0.12	0.14	0.22	1.00
humidity	-0.04	4 -0.13	-0.12	-0.14	0.22	1.00

Table S2. Spearman correlation coefficients of air pollutant, temperature, and relative humidity.

Table S3. The region-specific estimates of changes in years of life lost and excess risk of mortality caused by total respiratory diseases and COPD per $10 \ \mu g/m^3$ increment of PM_{2.5} at lag02.

Dogion	Changes in years of	life lost (95% CI)	Excess risk of mortality, % (95% CI)		
Region	Respiratory diseases	COPD	Respiratory diseases	COPD	
East (n=31)	0.23 (0.11, 0.36)	0.18 (0.09, 0.27)	0.30 (0.14, 0.46)	0.28 (0.17, 0.39)	
South (n=8)	0.04 (-0.14, 0.22)	0.05 (-0.05, 0.16)	0.08 (-0.17, 0.33)	0.18 (-0.17, 0.53)	
Southwest (n=8)	0.42 (0.22, 0.62)	1.07 (-1.14, 3.27)	0.52 (0.33, 0.70)	1.04 (-0.13, 2.23)	
North (n=8)	-0.02 (-0.09, 0.05)	0.02 (-0.02, 0.05)	0.06 (-0.07, 0.18)	0.12 (-0.06, 0.30)	
Northeast (n=14)	0.07 (-0.08, 0.23)	0.03 (-0.07, 0.12)	0.04 (-0.18, 0.26)	0.003 (-0.28, 0.28)	
Northwest (n=12)	0.19 (-0.15, 0.53)	0.11 (-0.01, 0.22)	0.71 (0.22, 1.21)	0.64 (0.25, 1.04)	
Central (n=15)	0.21 (-0.27, 0.70)	0.04 (-0.38, 0.47)	0.19 (-0.18, 0.56)	0.16 (-0.24, 0.57)	
National (n=96)	0.16 (0.08, 0.24)	0.10 (0.05, 0.15)	0.26 (0.15, 0.37)	0.28 (0.15, 0.41)	

Table S4. The region-specific estimates of changes in years of life lost and excess risk of mortality caused by total respiratory diseases per 10 μ g/m³ increment of PM_{2.5} at lag02 (stratified by gender).

Dogion	Changes in years o	f life lost (95% CI)	Excess risk of mor	Excess risk of mortality, % (95% CI)		
Region	Male	Female	Male	Female		
East (n=31)	0.08 (0.003, 0.15)	0.13 (0.07, 0.20)	0.10 (-0.03, 0.24)	0.47 (0.29, 0.65)		
South (n=8)	0.02 (-0.11, 0.16)	0.01 (-0.09, 0.11)	0.10 (-0.16, 0.37)	0.04 (-0.33, 0.41)		
Southwest (n=8)	0.28 (0.14, 0.42)	0.14 (0.04, 0.23)	0.50 (0.30, 0.71)	0.77 (-0.09, 1.63)		
North (n=8)	-0.03 (-0.08, 0.03)	0.002 (-0.04, 0.04)	-0.04 (-0.20, 0.12)	0.17 (-0.01, 0.35)		
Northeast (n=14)	0.03 (-0.09, 0.14)	0.03 (-0.06, 0.13)	-0.01 (-0.34, 0.31)	0.16 (-0.09, 0.41)		
Northwest (n=12)	0.04 (-0.10, 0.18)	0.17 (-0.15, 0.49)	0.58 (0.09, 1.06)	0.54 (-0.14, 1.22)		
Central (n=15)	0.12 (-0.16, 0.41)	0.08 (-0.13, 0.29)	0.10 (-0.32, 0.52)	0.29 (-0.12, 0.69)		
National (n=96)	0.05 (0.01, 0.09)	0.07 (0.04, 0.11)	0.13 (0.02, 0.24)	0.35 (0.22, 0.48)		

Table S5. The region-specific estimates of changes in years of life lost and excess risk of mortality caused by COPD per 10 μ g/m³ increment of PM_{2.5} at lag02 (stratified by gender).

Degion	Changes in years of	f life lost (95% CI)	Excess risk of mortality, % (95% CI)		
Region	Male	Female	Male	Female	
East (n=31)	0.06 (0.01, 0.10)	0.09 (0.04, 0.14)	0.16 (0.01, 0.31)	0.50 (0.28, 0.71)	
South (n=8)	0.06 (-0.01, 0.13)	0.01 (-0.03, 0.06)	0.30 (-0.001, 0.60)	0.02 (-0.65, 0.71)	
Southwest (n=8)	0.25 (0.14, 0.36)	0.14 (0.05, 0.22)	0.92 (-0.15, 2.01)	1.35 (0.06, 2.65)	
North (n=8)	0.002 (-0.03, 0.03)	0.02 (-0.01, 0.04)	0.01 (-0.24, 0.25)	0.28 (0.01, 0.55)	
Northeast (n=14)	0.01 (-0.06, 0.08)	0.01 (-0.04, 0.07)	-0.04 (-0.38, 0.31)	0.08 (-0.39, 0.54)	
Northwest (n=12)	0.08 (-0.01, 0.17)	0.04 (-0.07, 0.16)	0.61 (0.18, 1.04)	0.71 (0.03, 1.38)	
Central (n=15)	-0.01 (-0.26, 0.24)	0.05 (-0.11, 0.20)	-0.001 (-0.49, 0.49)	0.34 (-0.08, 0.77)	
National (n=96)	0.04 (0.01, 0.06)	0.03 (0.02, 0.05)	0.17 (0.03, 0.31)	0.37 (0.26, 0.48)	

	Changes in years of life lost (95% CI)			
Pollutant and Model	Respiratory diseases	COPD		
East (n=31)				
+ NO ₂ (two-pollutant model)	0.27 (0.10, 0.44)	0.17 (0.07, 0.28)		
+ SO ₂ (two-pollutant model)	0.29 (0.20, 0.37)	0.23 (0.14, 0.31)		
+ O ₃ (two-pollutant model)	0.23 (0.11, 0.35)	0.20 (0.11, 0.30)		
South (n=8)				
+ NO ₂ (two-pollutant model)	0.001(-0.19, 0.19)	0.07 (-0.02, 0.16)		
+ SO ₂ (two-pollutant model)	0.32 (-0.2, 0.83)	0.14 (0.03, 0.26)		
+ O ₃ (two-pollutant model)	0.17 (-0.04, 0.38)	0.16 (0.06, 0.26)		
Southwest (n=8)				
+ NO ₂ (two-pollutant model)	0.36 (0.15, 0.56)	1.77 (-1.06, 4.61)		
+ SO ₂ (two-pollutant model)	0.75 (0.52, 0.99)	0.61 (-1.38, 2.60)		
+ O ₃ (two-pollutant model)	0.40 (0.19, 0.61)	1.49 (-0.92, 3.89)		
North (n=8)				
+ NO ₂ (two-pollutant model)	-0.05 (-0.14, 0.05)	-0.01 (-0.05, 0.03)		
+ SO ₂ (two-pollutant model)	0.01 (-0.07, 0.08)	0.03 (-0.01, 0.07)		
+ O ₃ (two-pollutant model)	-0.03 (-0.1, 0.04)	0.01 (-0.03, 0.05)		
Northeast (n=14)				
+ NO ₂ (two-pollutant model)	-0.01 (-0.2, 0.17)	-0.03 (-0.10, 0.05)		
+ SO ₂ (two-pollutant model)	0.07 (-0.07, 0.20)	0.01 (-0.08, 0.10)		
+ O ₃ (two-pollutant model)	0.02 (-0.11, 0.16)	0.01(-0.07, 0.08)		
Northwest (n=12)				
+ NO ₂ (two-pollutant model)	-0.05 (-0.25, 0.14)	0.06 (-0.07, 0.19)		
+ SO ₂ (two-pollutant model)	0.30 (-0.06, 0.65)	0.15 (0.03, 0.27)		
+ O ₃ (two-pollutant model)	0.07 (-0.13, 0.28)	0.07 (-0.06, 0.20)		
Central (n=15)				

Table S6. The region-specific estimates of changes in years of life lost associated with each 10 μ g/m³ increment in PM_{2.5} at lag02 in two-pollutant models.

+ O ₃ (two-pollutant model)	0.12 (0.06, 0.19)	0.08 (0.04, 0.12)
+ SO ₂ (two-pollutant model)	0.23 (0.13, 0.33)	0.14 (0.07, 0.21)
+ NO ₂ (two-pollutant model)	0.16 (0.05, 0.27)	0.08 (0.02, 0.14)
National (n=96)		
+ O ₃ (two-pollutant model)	0.04 (-0.06, 0.15)	0.04 (-0.26, 0.33)
+ SO ₂ (two-pollutant model)	0.20 (-0.35, 0.74)	-0.01 (-0.48, 0.47)
+ NO ₂ (two-pollutant model)	0.15 (-0.49, 0.78)	-0.10 (-0.67, 0.46)

Table S7. Sensitivity analyses for the changes in years of life lost associated with each 10 μ g/m³ increment in PM_{2.5} at lag02 in different models, with changing degrees of freedom.

Decienc	df of temperature					
Regions	5	6	7			
East (n=31)	0.23 (0.11, 0.36)	0.23 (0.11, 0.36)	0.23 (0.11, 0.36)			
South (n=8)	0.04 (-0.14, 0.22)	0.04 (-0.14, 0.22)	0.02 (-0.16, 0.2)			
Southwest (n=8)	0.42 (0.22, 0.62)	0.42 (0.22, 0.62)	0.42 (0.22, 0.62)			
North (n=8)	-0.02 (-0.09, 0.05)	-0.02 (-0.09, 0.05)	-0.02 (-0.09, 0.05)			
Northeast (n=14)	0.07 (-0.08, 0.22)	0.07 (-0.08, 0.23)	0.07 (-0.08, 0.23)			
Northwest (n=12)	0.19 (-0.15, 0.54)	0.19 (-0.15, 0.53)	0.19 (-0.15, 0.53)			
Central (n=15)	0.22 (-0.27, 0.70)	0.21 (-0.27, 0.70)	0.22 (-0.27, 0.70)			
National (n=96)	0.16 (0.08, 0.24)	0.16 (0.08, 0.24)	0.16 (0.08, 0.24)			

Table S8. Sensitivity analyses for the changes in years of life lost associated with each 10 μ g/m³ increment in PM_{2.5} at lag02, with adding calendar year in the models.

Dogion	Changes in years of	life lost (95% CI)	Excess risk of mortality, % (95% CI)		
Kegion	Respiratory diseases	COPD	Respiratory diseases	COPD	
East (n=31)	0.11 (0.05, 0.17)	0.06 (0.02, 0.10)	0.18 (0.04, 0.32)	0.19 (0.08, 0.29)	
South (n=8)	0.004 (-0.17, 0.18)	0.06 (-0.02, 0.15)	0.09 (-0.19, 0.37)	0.20 (-0.14, 0.54)	
Southwest (n=8)	0.30 (0.13, 0.48)	0.27 (0.13, 0.42)	0.34 (0.18, 0.51)	0.66 (-0.12, 1.45)	
North (n=8)	-0.05 (-0.12, 0.03)	0.01 (-0.03, 0.05)	0.01 (-0.11, 0.13)	0.10 (-0.08, 0.28)	
Northeast (n=14)	0.02 (-0.13, 0.18)	0.03 (-0.09, 0.14)	0.002 (-0.27, 0.28)	-0.01 (-0.31, 0.31)	
Northwest (n=12)	0.19 (-0.25, 0.64)	0.05 (-0.07, 0.16)	0.58 (0.13, 1.04)	0.64 (0.17, 1.11)	
Central (n=15)	-0.04 (-0.14, 0.05)	-0.06 (-0.32, 0.2)	0.03 (-0.23, 0.28)	-0.01 (-0.33, 0.31)	
National (n=96)	0.05 (-0.003, 0.11)	0.04 (0.01, 0.07)	0.12 (0.05, 0.20)	0.17 (0.08, 0.25)	

Figure S1. The flow chart of the analytical process.

Figure S2. Histogram of daily years of life lost in several Chinese cities during 2013 to 2016.