The Innovation, Volume 2

# **Supplemental Information**

# **Contribution of Temperature Increase**

## to Restrain the Transmission of COVID-19

Mengyuan Ren, Rongjuan Pei, Bahabaike Jiangtulu, Junxi Chen, Tao Xue, Guofeng Shen, Xiaoru Yuan, Kexin Li, Changxin Lan, Zhen Chen, Xinwen Chen, Yun Wang, Xiaoqian Jia, Zewu Li, Audil Rashid, Tippawan Prapamontol, Xiuge Zhao, Zhaomin Dong, Yali Zhang, Le Zhang, Rongwei Ye, Zhiwen Li, Wuxiang Guan, and Bin Wang

# **Supplemental Materials**

### This file includes:

Figs. S1 to S10 Tables S1, S3 to S6 (Table S2 is provided as another individual excel file.)

#### Other Supplemental Materials for this manuscript include the following:

Table S2: The increasing trend of the confirmed COVID-19 cases during Jan. 23–Feb. 21, 2020 and their fitting parameters using a Logistic model for the selected 27 provinces and 99 cities.

Data S1: The data of daily increased COVID-19 cases with and without corrections from the NHC website report.

Data S2: Human mobility index used to indicate of the individual movement among the concerned provinces or cities in our study. Sourced from the Baidu Co. service (see the website: <u>http://qianxi.baidu.com/</u>.

Data S3: The temperature and relative humidity during the study period in our study. Supplementary Code: The analysis R code for the key calculations.



**Figure S1.** The fitting curve of the increase trend of the COVID-19 cases in the individual 27 provinces of Chinese Mainland.



**Figure S2.** Geographic distributions of the average temperature in the province (A) and city (B) levels, and the average relative humidity in the province (C) and city (D) levels during Jan 14 – Feb 21, 2020. Only the large typical cities were marked.



**Figure S3.** Distributions of the temperature in the city (A) and province (B) levels, and relative humidity in the city (C) and province (D) levels during Jan 14 – Feb 21, 2020. Data was shown with minimum (Min), maximum (Max), mean value (Mean), and 25%, 50%, and 75% percentiles, respectively.



**Figure S4.** Scatter diagrams between the environmental temperature and absolute humidity (A) and relative humidity (B).



**Figure S5.** Associations of the ambient temperature (A: province level; B city level) and relative humidity (RH) (C: province; D: city) with the transmission rate of COVID-19 without adjusting for the mobility index, respectively. Transmission rate was defined as the increase rate of cumulated confirmed cases per-day in a logistic growth model (Eq. (1)). The regression coefficients ( $\beta_1$  and  $\beta_2$ ) were obtained using a linear mixed-effect model as the follows:  $R_{[t, s]} = \beta_1 T_t + \beta_2 R H_t + \beta_3 W S_t + \beta_4 P R_t + \beta_5 P D_t + \gamma(L)$ . This formula incorporated five fixed terms ( $\beta_{1-5}$ ) to model the effects of temperature (*T*), relative humility (*RH*), wind speed (*WS*), precipitation (*PR*), population density (*PD*), and a random intercept ( $\gamma$ ) to control for the location (*L*)-specific effects. Data was shown with the estimated value with 95% confidence interval.



**Figure S6.** Associations of the ambient temperature (A: province level; B city level) and relative humidity (RH) (C: province level; D: city level) with the transmission rate of COVID-19 using the raw confirmed COVID-19 cases from the NHC website (not including the 200 infected cases in Rencheng Prison of Shandong Province, China), respectively. Transmission rate was defined as the increase rate of cumulated confirmed cases per-day in a logistic growth model (Eq. (1)). The regression coefficients ( $\beta_1$  and  $\beta_2$ ) were obtained using a linear mixed-effect model as the follows:  $R_{/t, s]} = \beta_1 T_t + \beta_2 R H_t + \beta_3 W S_t + \beta_4 P R_t + \beta_5 M II_t + \beta_6 M O I_t + \beta_7 P D_t + \gamma(L)$ . This incorporated seven fixed terms ( $\beta_{1-7}$ ) to model the effects of temperature (*T*), relative humility (*RH*), wind speed (*WS*), precipitation (*PR*), population mobility indexes of moving-in (*MII*) and moving-out index (*MOI*), population density (*PD*), and a random intercept ( $\gamma$ ) to control for the location (*L*)-specific effects. Data was shown with the estimated value with 95% confidence interval.



**Figure S7.** Associations of the ambient temperature (A-D: province level; E-H: city level) with the transmission rate of COVID-19 using the raw confirmed COVID-19 cases. Transmission rate was defined as the increase rate of cumulated confirmed cases per-day in a logistic growth model (Eq. (1)). The regression coefficient ( $\beta_1$ ) was obtain using a linear mixed-effect model as the following models:

Model-I [All]:  $R_{ft,s]} = \beta_1 T_t + \beta_2 R H_t + \beta_3 W S_t + \beta_4 P R_t + \beta_5 M II_t + \beta_6 M OI_t + \beta_7 P D_t + \gamma(L)$ Model-II [No PR]:  $R_{ft,s]} = \beta_1 T_t + \beta_2 R H_t + \beta_3 W S_t + \beta_5 M II_t + \beta_6 M OI_t + \beta_7 P D_t + \gamma(L)$ Model-III [No WS]:  $R_{ft,s]} = \beta_1 T_t + \beta_2 R H_t + \beta_4 P R_t + \beta_5 M II_t + \beta_6 M OI_t + \beta_7 P D_t + \gamma(L)$ Model-IV [No MII&MOI]:  $R_{ft,s]} = \beta_1 T_t + \beta_2 R H_t + \beta_3 W S_t + \beta_4 P R_t + \beta_7 P D_t + \gamma(L)$ Model-V [No PD]:  $R_{ft,s]} = \beta_1 T_t + \beta_2 R H_t + \beta_3 W S_t + \beta_4 P R_t + \beta_5 M II_t + \beta_6 M OI_t + \gamma(L)$ 

This incorporated seven fixed terms ( $\beta_{1-7}$ ) to model the effects of temperature (*T*), relative humility (*RH*), wind speed (*WS*), precipitation (*PR*), population mobility indexes of moving-in (*MII*) and moving-out index (*MOI*), population density (*PD*), and a random intercept ( $\gamma$ ) to control for the location (*L*)-specific effects. Data was shown with the estimated value with 95% confidence interval. The results at lag time = 8 days were highlighted by a gray rectangle.



**Figure S8.** Distribution of the lag time including the incubation time and the interval between the symptom onset and the report of the COVID-19 case confirmation (report interval). The 5%, 25%, 50%, 75%, and 95% percentiles and mean value were 5.1, 8.1, 10.7, 13.8, 19.3, and 11.3 days. The distribution of incubation time and report interval both obey a Gamma distribution with the tuning parameters of (a=2.24, b=2.59)<sup>1</sup> and (a=5.807, b=0.948)<sup>2</sup>, respectively.



**Figure S9.** Modification effect of the central heating on the associations of the ambient temperature with the transmission rate of COVID-19 without adjusting for the mobility index in the province and city levels, respectively. Transmission rate was defined as the increase rate of cumulated confirmed cases per-day in a logistic growth model (Eq. (1)). The regression coefficient  $(\beta_1)$  was obtained using a linear mixed-effect model as the follows:  $R_{ft, s]} = \beta_1 T_t + \beta_2 R H_t + \beta_3 W S_t + \beta_4 P R_t + \beta_5 P D_t + \gamma(L)$ . This formula incorporated five fixed terms ( $\beta_{1-5}$ ) to model the effects of temperature (*T*), relative humility (*RH*), wind speed (*WS*), precipitation (*PR*), population density (*PD*), and a random intercept ( $\gamma$ ) to control for the location (*L*)-specific effects. Data was shown with the estimated value with 95% confidence interval.



**Figure S10**. The non-linear relationship between ambient temperature and COVID-19 transmission when LT = 8 days among regions with (C&D) and without (A&B) central heating. Transmission rate was defined as the increase rate of cumulated confirmed cases per-day in a logistic growth model (Eq. (1)). The change of regression coefficient ( $\Delta\beta_1$ ) was obtained using a non-linear mixed-effect model as the follows:  $R_{[t, s]} = g(T_t) + \beta_2 R H_t + \beta_3 W S_t + \beta_4 P R_t + \beta_5 M I I_t + \beta_6 M O I_t + \beta_7 P D_t + \gamma(L)$ . This formula incorporated a smoothing spline term (g), six fixed terms ( $\beta_2$ - $\gamma$ ) to model the effects of temperature (T), relative humility (RH), wind speed (WS), precipitation (PR), population mobility indexes of moving-in (MII) and moving-out index (MOI), population density (PD), and a random intercept ( $\gamma$ ) to control for the location (L)-specific effects. Solid and dot lines represented the estimation of  $\Delta\beta_1$  and its 95% confidence interval, respectively. The reference value of temperature was 0°C. Box plots described the distribution of temperature during the period.

| Provinces    | Events                                       | Details                                                                    | Correcting the reported data based on the event                                                    | Sources <sup>a</sup>   |
|--------------|----------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------|
| Tianjin      | Baodi department store aggregation infection | Cluster of infection of 40 cases;<br>No observed abnormal cumulated number | Keep unchanged.                                                                                    | Reference <sup>3</sup> |
| Shandong     | Prison aggregation infection                 | Feb. 21, 2020: 200 new cases were confirmed in Rencheng prison             | These 200 cases were deleted since 21st Feb, 2020                                                  | Website #1:            |
| Zhejiang     | Abnormal data                                | Jan. 31, 2020: "decreased" cumulated cases occurred                        | Corrected using the reported data from the Zhejiang Health<br>Commissions official website         | Website #2:            |
| Zhejiang     | Abnormal data in<br>Hangzhou City            | Feb. 9, 2020: "decreased" cumulated cases occurred                         | Kept unchanged. (Original data was consistent with<br>Zhejiang Health Commissions official website | Website #3:            |
| Gansu        | Abnormal data in<br>Gannan City              | Jan. 21, 2020: "decreased" cumulated cases occurred                        | Corrected using the reported data from the Gansu Health<br>Commissions official website            | Website #4:            |
| Henan        | Abnormal data in<br>Yongcheng City           | Decreased cumulated cases occurred                                         | Corrected using the reported data from the Henan Health<br>Commissions official website            | Website #5:            |
| Heilongjiang | Abnormal data in Suihua<br>City              | Feb. 9, 2020: "decreased" cumulated cases occurred                         | Keep unchanged. (Original data was consistent with Heilongjiang Health Commissions official data)  | Website #6:            |
| Nanjing      | Abnormal data                                | Decreased cumulated cases occurred                                         | Corrected using the reported data from the Nanjing Health<br>Commissions official website          | Website #7:            |
| Shaanxi      | Abnormal data in Xian<br>City                | Feb. 2, 2020: "decreased" cumulated cases occurred                         | Corrected using the reported data from the Shaanxi Health<br>Commissions official website          | Website #8:            |
| Sichuan      | Abnormal data in<br>Meishan city             | Feb. 21, 2020: "decreased" cumulated cases occurred                        | Corrected using the reported data from the Sichuan Health<br>Commissions official website          | Website #9:            |
| Yunnan       | Abnormal data in Dali<br>City                | Decreased cumulated cases occurred                                         | Corrected using the reported data from the Yunnan Health<br>Commissions official website           | Website #10:           |
| Yunnan       | abnormal data in<br>Xishuangbanna City       | Decreased cumulated cases occurred                                         | Corrected using the reported data from the Yunnan Health<br>Commissions official website           | Website #11:           |

Table S1. Detailed data correction operation on the original information reported on the official website of the National Health Commission

<sup>a</sup> The detailed websites:

Website #1: https://www.yicai.com/news/100515523.html

Website #2: http://www.zjwjw.gov.cn/art/2020/2/1/art 1202194 41865259.html

Website #3: http://www.zjwjw.gov.cn/art/2020/2/10/art 1202101 41894522.html

Website #4: http://wsjk.gansu.gov.cn/single/10910/84364.html

Website #5: <u>http://hnwsjsw.gov.cn/channels/xxgk.shtml</u>

- Website #6: http://wsjkw.hlj.gov.cn/index.php/Home/Zwgk/show/newsid/7769/navid/42/stypeid/
- Website #7: http://wjw.jiangsu.gov.cn/art/2020/2/5/art 7290 8961839.html
- Website #8: http://sxwjw.shaanxi.gov.cn/art/2020/2/3/art 9\_67666.html
- Website #9: <u>http://wsjkw.sc.gov.cn/</u>
- Website #10: http://ynswsjkw.yn.gov.cn/wjwWebsite/web/doc/UU158147060382734153
- Website #11: http://ynswsjkw.yn.gov.cn/wjwWebsite/web/doc/UU158230893462979208

| Parameters <sup>a</sup> |                     | Province level        |                      | City level            |                         |                         |  |
|-------------------------|---------------------|-----------------------|----------------------|-----------------------|-------------------------|-------------------------|--|
|                         | All <sup>b</sup>    | Public heating status |                      | A 11                  | Public heating status   |                         |  |
|                         |                     | No                    | Yes                  | All                   | No                      | Yes                     |  |
| Т                       | -0.31 (-1.35~0.73)  | -3.15 (-6.56~0.26)    | -0.98 (-2.10~0.14)   | -0.08 (-0.23~0.07)    | -0.18 (-0.51~0.16)      | -0.06 (-0.20~0.08)      |  |
| RH                      | -0.19 (-0.33~-0.05) | -0.45 (-0.83~-0.07)   | -0.20 (-0.37~-0.03)  | -0.02 (-0.04~-0.002)  | -0.02 (-0.06~0.01)      | -0.04 (-0.06~-0.02)     |  |
| $T \times RH$           | -0.01 (-0.02~0.004) | 0.02 (-0.02~0.05)     | 0.002 (-0.014~0.018) | -0.001 (-0.003~0.001) | -0.0001(-0.0039~0.0037) | -0.0008 (-0.028~0.0012) |  |
| P °                     | 0.17                | 0.43                  | 0.81                 | 0.28                  | 0.95                    | 0.45                    |  |

Table S3. The interaction effects between temperature and relative humidity on the transmission rate of COVID-19

<sup>a</sup> Temperature (*T*) and relative humidity (*RH*);

<sup>b</sup> Including all the locations;

<sup>c</sup> Test for the interaction between the temperature and relative humidity using a linear mixed-effect model as the follows,

 $R_{[t,s]} = \beta_1 T_t + \beta_2 R H_t + \beta_3 W S + \beta_4 P R_t + \beta_5 M II_t + \beta_6 M OI_t + \beta_7 P D_t + \beta_8 T_t \times R H_t + \gamma(L)$ , where The regression incorporated seven fixed terms ( $\beta_{1-8}$ ) to model the effects of temperature (*T*), relative humility (*RH*), wind speed (*WS*), precipitation (*PR*), population mobility indexes of moving-in (*MII*) and moving-out index (*MOI*), population density (*PD*), the interaction between *T* and *RH*, and a random intercept to control for the location (*L*)-specific effects. A total 27 provinces and 99 cities were included when the lag time = 8 days

| Province name  | City name | N <sup>a</sup> | $\beta_1{}^{b}$ |  |  |  |
|----------------|-----------|----------------|-----------------|--|--|--|
| Province level |           |                |                 |  |  |  |
| Henan          | /         | 1267           | -3.424          |  |  |  |
| Anhui          | /         | 988            | -2.021          |  |  |  |
| Hunan          | /         | 1011           | -1.955          |  |  |  |
| Jiangxi        | /         | 934            | -1.944          |  |  |  |
| Guangdong      | /         | 1333           | -1.924          |  |  |  |
| Sichuan        | /         | 525            | -1.869          |  |  |  |
| Jiangsu        | /         | 631            | -1.837          |  |  |  |
| Zhejiang       | /         | 1203           | -1.714          |  |  |  |
| Yunnan         | /         | 174            | -1.702          |  |  |  |
| Shanghai       | /         | 334            | -1.691          |  |  |  |
| Hainan         | /         | 168            | -1.681          |  |  |  |
| Chongqing      | /         | 567            | -1.678          |  |  |  |
| Guizhou        | /         | 146            | -1.611          |  |  |  |
| Guangxi        | /         | 246            | -1.593          |  |  |  |
| Fujian         | /         | 293            | -1.582          |  |  |  |
| Heilongjiang   | /         | 480            | -1.075          |  |  |  |
| Shandong       | /         | 549            | -1.054          |  |  |  |
| Ningxia        | /         | 71             | -0.999          |  |  |  |
| Shaanxi        | /         | 245            | -0.857          |  |  |  |
| Beijing        | /         | 396            | -0.744          |  |  |  |
| Tianjin        | /         | 132            | -0.654          |  |  |  |
| Gansu          | /         | 91             | -0.641          |  |  |  |
| Hebei          | /         | 308            | -0.619          |  |  |  |
| Shanxi         | /         | 132            | -0.609          |  |  |  |
| Inner Mongolia | /         | 75             | -0.563          |  |  |  |
| Jilin          | /         | 91             | -0.561          |  |  |  |
| Liaoning       | /         | 121            | -0.367          |  |  |  |
|                | C         | ity level      |                 |  |  |  |
| Sichuan        | Chengdu   | 143            | -0.404          |  |  |  |
| Guangdong      | Shantou   | 25             | -0.350          |  |  |  |
| Hunan          | Shaoyang  | 102            | -0.333          |  |  |  |
| Anhui          | Fuyang    | 155            | -0.328          |  |  |  |
| Fujian         | Xiamen    | 35             | -0.321          |  |  |  |
| Hunan          | Yueyang   | 156            | -0.305          |  |  |  |
| Anhui          | Liu'an    | 69             | -0.262          |  |  |  |
| Guizhou        | Bijie     | 23             | -0.259          |  |  |  |
| Jiangsu        | Wuxi      | 55             | -0.253          |  |  |  |
| Jiangsu        | Suzhou    | 87             | -0.253          |  |  |  |
| Sichuan        | Neijiang  | 22             | -0.252          |  |  |  |
| Guizhou        | Guiyang   | 36             | -0.248          |  |  |  |
| Jiangsu        | Changzhou | 51             | -0.241          |  |  |  |
| Guangdong      | Zhongshan | 66             | -0.239          |  |  |  |
| Jiangsu        | Nanjing   | 93             | -0.237          |  |  |  |
| Zhejiang       | Jiaxing   | 45             | -0.234          |  |  |  |
| Hunan          | Yiyang    | 59             | -0.229          |  |  |  |

**Table S4**. The regression coefficients of temperature associated the transmission rate of COVID-19

| Province name     | City name | N <sup>a</sup> | $\beta_1{}^{\mathrm{b}}$ |
|-------------------|-----------|----------------|--------------------------|
| Hainan            | Haikou    | 39             | -0.227                   |
| Henan             | Nanyang   | 155            | -0.224                   |
| Anhui             | Wuhu      | 33             | -0.223                   |
| Sichuan           | Mianyang  | 22             | -0.222                   |
| Hunan             | Loudi     | 76             | -0.221                   |
| Henan             | Zhengzhou | 157            | -0.216                   |
| Fujian            | Zhangzhou | 20             | -0.216                   |
| Guangdong         | Jiangmen  | 23             | -0.215                   |
| Guangdong         | Zhuhai    | 98             | -0.212                   |
| Fujian            | Fuzhou    | 71             | -0.212                   |
| Anhui             | Huainan   | 27             | -0.207                   |
| Sichuan           | Guang'an  | 30             | -0.206                   |
| Anhui             | Haozhou   | 108            | -0.205                   |
| Anhui             | Suzhou    | 41             | -0.205                   |
| Yunnan            | Kunming   | 53             | -0.205                   |
| Zhejiang          | Jinhua    | 55             | -0.205                   |
| Zhejiang          | Shaoxing  | 42             | -0.204                   |
| Hunan             | Changsha  | 242            | -0.204                   |
| Anhui             | Hefei     | 174            | -0.202                   |
| Jiangsu           | Nantong   | 40             | -0.198                   |
| Sichuan           | Luzhou    | 24             | -0.196                   |
| Guangxi           | Liuzhou   | 24             | -0.194                   |
| Hunan             | Xiangtan  | 35             | -0.194                   |
| Jiangsu           | Huai'an   | 66             | -0.192                   |
| Guangdong         | Shenzhen  | 416            | -0.188                   |
| Sichuan           | Dazhou    | 41             | -0.187                   |
| Sichuan           | Bazhong   | 24             | -0.183                   |
| Hunan             | Chenzhou  | 39             | -0.174                   |
| Henan             | Zhumadian | 139            | -0.174                   |
| Heilongijang      | Harbin    | 197            | -0.173                   |
| Tianosu           | Taizhou   | 37             | -0.173                   |
| Tiangsu           | Xuzhou    | 79             | -0.172                   |
| Hunan             | Zhuzhou   | 78             | -0.168                   |
| Hunan             | Yongzhou  | 43             | -0.168                   |
| Hebei             | Tangshan  | 57             | -0.166                   |
| Guizhou           | Zunvi     | 32             | -0.166                   |
| Henan             | Shangain  | 91             | -0.163                   |
| Sichuan           | Nanchong  | 38             | -0.161                   |
| Guangdong         | Zhanijang | 22             | -0.158                   |
| Guangdong         | Dongwan   | 93             | -0.157                   |
| Hunan             | Huaihua   | 40             | -0.157                   |
| Shandong          | Vantai    | 40             | -0.155                   |
| Theijong          | Ningho    | 157            | 0.155                    |
| Hunon             | Chanada   | 80             | 0.154                    |
| Guanavi           | Nanning   | 54             | -0.154                   |
|                   | Lionzana  | <u> </u>       | -0.134                   |
| Jialigsu<br>Uonon | Vinviona  | +0<br>57       | -0.155                   |
| Cuanavi           |           | 21             | -0.132                   |
| Guangxi           |           | 31             | -0.130                   |
| Snandong          | weiiang   | 44             | -0.140                   |

| Province name | City name    | $N^{\mathrm{a}}$ | $\beta_1^{b}$ |
|---------------|--------------|------------------|---------------|
| Anhui         | Bengbu       | 160              | -0.133        |
| Henan         | Zhoukou      | 76               | -0.128        |
| Shandong      | Linyi        | 49               | -0.124        |
| Ningxia       | Yinchuan     | 33               | -0.123        |
| Shandong      | Liaocheng    | 38               | -0.123        |
| Henan         | Kaifeng      | 26               | -0.122        |
| Hebei         | Handan       | 31               | -0.109        |
| Shandong      | Qingdao      | 59               | -0.106        |
| Guangdong     | Huizhou      | 62               | -0.104        |
| Heilongjiang  | Suihua       | 47               | -0.104        |
| Shandong      | Dezhou       | 37               | -0.101        |
| Hunan         | Hengyang     | 48               | -0.099        |
| Hebei         | Xingtai      | 23               | -0.099        |
| Hebei         | Baoding      | 32               | -0.098        |
| Shandong      | Jinan        | 47               | -0.093        |
| Hebei         | Langfang     | 30               | -0.093        |
| Guangdong     | Foshan       | 84               | -0.092        |
| Hebei         | Shijiazhuang | 28               | -0.091        |
| Shaanxi       | Xi'an        | 120              | -0.088        |
| Henan         | Luoyang      | 31               | -0.084        |
| Gansu         | Lanzhou      | 36               | -0.082        |
| Jiangxi       | Ganzhou      | 76               | -0.080        |
| Henan         | Xinyang      | 270              | -0.063        |
| Shanxi        | Taiyuan      | 20               | -0.061        |
| Jilin         | Changchun    | 45               | -0.058        |
| Liaoning      | Shenyang     | 28               | -0.038        |
| Fujian        | Quanzhou     | 46               | -0.037        |
| Zhejiang      | Hangzhou     | 169              | -0.016        |
| Jiangxi       | Nanchang     | 229              | -0.004        |
| Guangdong     | Guangzhou    | 339              | 0.004         |
| Zhejiang      | Wenzhou      | 504              | 0.665         |

<sup>a</sup> Number of subjects;

<sup>b</sup> The regression coefficient ( $\beta_1$ ) was obtain using a linear mixed effect model as the follows:  $R_{[t, s]} = \beta_1 T_t + \beta_2 R H_t + \beta_3 W S + \beta_4 P R_t + \beta_5 M I_t + \beta_6 M O I_t + \beta_7 P D_t + (T_t | \gamma(L))$ . This incorporated seven fixed terms ( $\beta_{1-7}$ ) to model the effects of temperature (*T*), relative humility (*RH*), wind speed (*WS*), precipitation (*PR*), population mobility indexes of moving-in (*MII*) and moving-out index (*MOI*), population density (*PD*), a random slope of temperature (*T*), and a random intercept ( $\gamma$ ) to control for the location (*L*)-specific effects. A total 27 provinces and 99 cities were included when the lag time = 8 days.

| Lag time (Day) | $\Delta N_{\rm M}$ <sup>a</sup> (95% Confidence Interval) |
|----------------|-----------------------------------------------------------|
| 1              | -38.2 (-193.2, 116.8)                                     |
| 2              | -21.6 (-142.2, 99.1)                                      |
| 3              | -121.2 (-387.7, 145.3)                                    |
| 4              | -306.4 (-820.8, 208.1)                                    |
| 5              | -840.1 (-1605.4, -74.8)                                   |
| 6              | -2216.3 (-3367.0, -1065.6)                                |
| 7              | -4177.7 (-5589.5, -2765.9)                                |
| 8              | -4066.6 (-5553.8, -2579.3)                                |
| 9              | -3181.5 (-4798.6, -1564.3)                                |
| 10             | -1882.2 (-3192.5, -571.9)                                 |
| 11             | -1010.3 (-1933.2, -87.4)                                  |
| 12             | -619.3 (-1459.5, 221.0)                                   |
| 13             | -530.4 (-1206.9, 146.1)                                   |
| 14             | -569.3 (-1126.9, -11.7)                                   |

**Table S5**. The accumulated number of COVID-19 cases associated with the increase of ambient temperature during the *D* days at different lag time.

<sup>a</sup>  $\Delta N_{\text{M}}$ : The accumulated number of COVID-19 cases associated with the increase of ambient temperature during the D days. Negative values represent decreased number of associated cases were estimated.

| -                      |                         |                |       |           |       |       |       |       |
|------------------------|-------------------------|----------------|-------|-----------|-------|-------|-------|-------|
|                        | Experimental conditions |                |       |           |       |       |       |       |
| Incubation time/ hours | 4°C                     |                | 20°C  | 20°C 28°C |       | 37°C  |       |       |
|                        | L                       | Н              | L     | Н         | L     | Н     | L     | Н     |
|                        | Mean va                 | lue            |       |           |       |       |       |       |
| 0                      | 37000                   | 37000          | 37000 | 37000     | 37000 | 37000 | 37000 | 37000 |
| 1                      | 18000                   | 33000          | 28000 | 18500     | 38500 | 17000 | 2310  | 7750  |
| 4                      | 8000                    | 18500          | 18500 | 3450      | 1120  | 725   | 755   | 200   |
| 8                      | 12000                   | 13500          | 12000 | 15000     | 4450  | 4100  | 25    | 40    |
| 24                     | 5900                    | 22500          | 2900  | 3000      | 105   | /     | /     | /     |
| 48                     | 12000                   | 11500          | 225   | /         | /     | /     | /     | /     |
| 72                     | 3250                    | 20000          | /     | /         | /     | /     | /     | /     |
|                        | Standard                | deviation      |       |           |       |       |       |       |
| 0                      | 8485                    | 8485           | 8485  | 8485      | 8485  | 8485  | 8485  | 8485  |
| 1                      | 8485                    | 9899           | 5657  | 3536      | 10607 | 2828  | 1824  | 71    |
| 4                      | 1414                    | 4950           | 707   | 636       | 1386  | 672   | 21    | 283   |
| 8                      | 2828                    | 2121           | 0     | 2828      | 71    | 141   | 21    | 14    |
| 24                     | 566                     | 7778           | 283   | 1414      | 35    | /     | /     | /     |
| 48                     | 2828                    | 4950           | 106   | /         | /     | /     | /     | /     |
| 72                     | 1485                    | 5657           | /     | /         | /     | /     | /     | /     |
|                        | Half time               | e <sup>a</sup> |       |           |       |       |       |       |
| Estimated              | 1.97                    | 3.89           | 4.28  | 1.19      | 0.61  | 0.65  | 0.85  | 0.36  |
| 95%CI_L                | 1.18                    | 2.06           | 2.54  | 0.98      | 0.36  | 0.47  | 0.43  | 0.21  |
| 95%CI U                | 6.06                    | 33.00          | 13.52 | 1.50      | 1.86  | 1.03  | 28.72 | 1.44  |

**Table S6**. Stability of SARS-CoV-2 at different environmental conditions and their half times of decay

<sup>a</sup> The half time of decay was estimated by assuming the first-order decay trend using the first 4-hour residual titers. 95%CI\_L and 95%CI\_U stand for the low and upper limits of the 95% confidence interval.

**Table S2:** The increasing trend of the confirmed COVID-19 cases during Jan. 23–Feb. 21, 2020 and their fitting parameters using a Logistic model for the selected 27 provinces and 99 cities.

**Data S1.** The data of daily increased COVID-19 cases with and without corrections from the NHC website report

**Data S2.** Human mobility index used to indicate of the individual movement among the concerned provinces or cities in our study. Sourced from the Baidu Co. service (see the website: <u>http://qianxi.baidu.com/)</u>

**Data S3.** The information of the temperature and relative humidity of the concerned area during the study period.

## Reference

1. Guan, W. J.; Ni, Z. Y.; Hu, Y., et al., Clinical Characteristics of Coronavirus Disease 2019 in China. *N Engl J Med* **2020**, *382*, (18), 1708-1720, https://www.nejm.org/doi/10.1056/NEJMoa2002032.

2. Lauer, S. A.; Grantz, K. H.; Bi, Q., et al., The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. *Ann Intern Med* **2020**, *172*, (9), 577-582, <u>https://doi.org/10.7326/M20-0504</u>.

3. Wu, W. S.; Li, Y. G.; Wei, Z. F., et al., [Investigation and analysis on characteristics of a cluster of COVID-19 associated with exposure in a department store in Tianjin]. *Chin J of Epi* **2020**, *41*, (4), 489-493, <u>https://pubmed.ncbi.nlm.nih.gov/32133830</u>.