The Innovation, Volume 2

Supplemental Information

Associations of particulate matter

with dementia and mild cognitive impairment in China:

A multicenter cross-sectional study

Jiping Tan, Nan Li, Xiaoxiao Wang, Gongbo Chen, Lailai Yan, Luning Wang, Yiming Zhao, Shanshan Li, and Yuming Guo

Supplementary Material

Estimating concentrations of PM_{2.5} and PM₁₀

a. Data downloading and processing

Daily concentrations of $PM_{2.5}$ and PM_{10} over China during 2005-2016 were estimated using MODIS AOD, meteorological data, land use information and other predictors. More details about the data downloading and processing were previously reported (Chen et al., 2018a; Chen et al., 2018b). Daily ground measurements of $PM_{2.5}$ and PM_{10} were obtained from 1479 stations of the China National Environmental Monitoring Center (CNEMC) from May 2014 to December 2016.

b. Model development

We used a machine learning method (random forests) for model development and prediction. This method is user-friendly, as there is no need to define the complex relationships between predictors (e.g., linear or nonlinear relationships and interactions) and the variable importance measures provided by random forests help user to identify important variables and noise variables (Hu et al., 2017). The final model is shown as following:

 $PM_{ij} = AOD_{ij} + TEMP_{ij} + RH_{ij} + BP_{ij} + WS_{ij} + NDVI + Urban_cover + doy + log(elev)$ where $PM_{2.5ij}$ is the PM_{2.5} or PM10 on day *i* at station *j*; AOD_{ij} is the combined AOD; *TEMP*, *RH*, *BP* and *WS* are mean temperature, relative humidity, barometric pressure and wind speed on day i, respectively; *NDVI* is the monthly average NDVI value; *Urban_cover* is the percentage of urban cover with a buffer radius of 10 km; *doy* is day of the year; *log(elev)* is the log transformed elevation.

c. Model validation and prediction

To evaluated the predictive ability of the final model, a 10-fold cross-validation (CV) was performed. The results are shown in Table S1.

Dollutonto	Daily	v model	Annual averages			
Fonutants	CV R ²	RMSE	CV R ²	RMSE		
PM _{2.5}	83%	$18.1 \ \mu g/m^3$	86%	$6.9 \ \mu g/m^3$		
\mathbf{PM}_{10}	78%	$31.5 \ \mu g/m^3$	81%	$14.4 \ \mu g/m^3$		

Table S1. Results of 10-fold cross-validation for PM₁, PM_{2.5}, PM₁₀ and NO₂

The final random forests models were used to predict daily concentration of air pollutants in

China. A 0.1-degree (≈ 10 km) grid (including around 96,103 grid cells) covering the entire

China was created for data integration and prediction. Daily concentrations of $PM_{2.5}$ and PM_{10}

were estimated for each grid cell during the study period. Predicted daily concentrations were

aggregated into annual averages.

References:

Chen, G., Knibbs, L.D., Zhang, W., Li, S., Cao, W., Guo, J., Ren, H., Wang, B., Wang, H., Williams, G., Hamm, N.A.S., Guo, Y., 2018a. Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information. Environmental Pollution 233, 1086-1094.

Chen, G., Li, S., Knibbs, L.D., Hamm, N.A.S., Cao, W., Li, T., Guo, J., Ren, H., Abramson, M.J., Guo, Y., 2018b. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Science of the Total Environment 636, 52-60.

Hu, X., Belle, J.H., Meng, X., Wildani, A., Waller, L., Strickland, M., Liu, Y., 2017. Estimating PM2. 5 Concentrations in the Conterminous United States Using the Random Forest Approach. Environ Sci Technol.

Supplementary Tables and Figures

(our stu	dy) and ordinary population	•		
				Observed
	Prevalence of dementia	Number of	Expected number of	number of
	of ordinary population (%)	male veterans	dementia veterans	dementia
				veterans
60-64	1.35	40	1	0
65-69	2.58	45	1	0
70-74	4.76	109	5	4
75-79	8.5	1830	156	94
80-84	14.63	3501	512	459
85-89	24.32	1246	303	295
90-94	39.03	179	70	60
>=95	60.47	20	12	9
Total	_	6970 ^a	1060	921

Table S2. The comparison about the prevalence of dementia of Chinese male veterans

^a: The age data of 70 participants were missing. Data from 6,970 male veterans were included in the analysis after these missing data were excluded.

		0	<i>v</i> 1						
Pollutants	Participants	n	Mean	Min	250/	500/	750/	Max	SMD ^a
					25%	50%	15%		
PM _{2.5}									
	Included	7040	56.92	30.46	48.15	55.21	71.46	84.23	0.036
	Excluded	2636	56.44	30.46	47.04	54.89	66.13	84.23	
PM_{10}									
	Included	7040	102.71	53.38	83.68	100.16	128.34	143.14	0.094
	Excluded	2636	100.43	53.38	83.05	100.15	122.31	143.14	

Table S3. A summary of included and excluded participants' exposure to $PM_{2.5}$ and PM_{10} (µg/m³) during the three years prior to the survey.

a: standardised mean difference between included and excluded participants.

Table S4 (single-pollutant model). The ORs (and 95%CIs) of MCI and dementia associated with per 10 μ g/m³ increase in PM.

	MCI	Dementia
$PM_{2.5}^{a}$	1.52 (1.39, 1.67)	1.27 (1.11, 1.46)
$\mathbf{PM}_{10}^{\mathbf{a}}$	1.04 (1.00, 1.08)	1.13 (1.05, 1.21)
$PM_{10-2.5}^{a}$	0.88 (0.84, 0.93)	1.12 (1.01, 1.23)

^a: Adjusted for age, education years, smoking, drinking, family history of dementia, and history of NCDs. And city was modeled as random effect.

Table S5 (two-pollutant model). The ORs (and 95%CIs) of MCI and dementia associated with per 10 μ g/m³ increase in PM and per 1 % increase in PM_{2.5}/PM₁₀ ratio.

	MCI	Dementia
PM_{10}	1.19 (1.13, 1.25)	1.16 (1.07, 1.25)
$PM_{2.5}/PM_{10}$	2.13 (1.86, 2.44)	1.15 (0.96, 1.39)

Adjusted for age, education years, smoking, drinking, family history of dementia, and history of NCDs. And city was modeled as random effect.

Cities	Male veterans screened	Included in this study						
Beijing	1234	1008						
Shijiazhuang	1011	837						
Dalian	881	567						
Lanzhou	447	394						
Yantai	457	341						
Qingdao	589	492						
Fuzhou	488	457						
Chengdu	493	405						
Guangzhou	530	423						
Wuhan	147	111						

	Table S6. Male vet	erans participat	ing in the (CVCR Platform
--	--------------------	------------------	--------------	----------------------

Shanghai	720	416
Xi 'an	677	537
Tianjin	385	218
Baoding	201	155
Hohhot	189	175
Taiyuan	254	197
Guiyang	216	165
Harbin	177	142
Total	9096	7040

Table S7. The ORs (and 95%CIs) of MCI and dementia associated with personal hobbies

Dersonal habbies	MCI		Dementia		
reisonal noboles	OR (95%CI)	Р	OR (95%CI)	Р	
Calligraphy	0.87 (0.74,1.03)	0.105	0.89 (0.66,1.20)	0.442	
Painting	1.24 (0.98,1.56)	0.077	1.16 (0.75,1.81)	0.510	
Photography	0.81 (0.65,1.02)	0.067	0.78 (0.50,1.24)	0.296	
Collecting	0.79 (0.63,1.00)	0.045	0.65 (0.40,1.05)	0.077	
Gardening	1.10 (0.96,1.25)	0.174	0.71 (0.57,0.90)	0.005	
Pet keeping	1.17 (0.99,1.38)	0.069	1.14 (0.83,1.55)	0.420	
Handicraft	0.66 (0.47,0.92)	0.015	0.61 (0.32,1.15)	0.125	
Reading	0.71 (0.54,0.94)	0.017	0.41 (0.29,0.58)	<0.001	
Keeping a diary	1.14 (0.94,1.38)	0.176	0.53 (0.34,0.82)	0.005	
Writing articles	1.02 (0.87,1.20)	0.816	0.78 (0.57,1.07)	0.120	
TV watching or listening to radio	1.24 (0.88,1.74)	0.213	0.79 (0.52,1.21)	0.279	
Playing cards or mahjong	1.05 (0.92,1.20)	0.479	0.82 (0.65,1.04)	0.099	

controlling for age, education years, smoking, drinking, family history of dementia, and history of NCDs.

Table S8. 7	The ORs (and 9	95%CIs)	of MCI	and	dementia	associated	with	per	10	μg/m ³
increase in	PM _{2.5} or H	PM ₁₀ .									

Models	PM _{2.5} (ORs	and 95%CIs)	PM_{10} (ORs and 95%CIs)			
	MCI	Dementia	MCI	Dementia		
Model 1 ^a	1.33 (1.23, 1.44)	1.10 (0.99, 1.22)	0.99 (0.97, 1.02)	1.03 (0.98, 1.09)		
Model 2 ^b	1.42 (1.31, 1.54)	1.20 (1.07, 1.34)	1.00 (0.97, 1.04)	1.08 (1.02, 1.15)		
Model 3 ^c	1.52 (1.39, 1.67)	1.27 (1.11, 1.46)	1.04 (1.00, 1.08)	1.13 (1.05, 1.21)		
Model 4 ^d	1.55 (1.42, 1.70)	1.28 (1.11, 1.47)	1.04 (1.00, 1.09)	1.11 (1.03, 1.19)		

^a: Model 1, a crude model including only one air pollutant; ^b:Model 2, an adjusted model controlling age, education years, smoking and drinking; ^c: Model 3, an adjusted model controlling age, education years, smoking, drinking, family history of dementia, and history of NCDs. ^d: an adjusted model controlling age, education years, smoking, drinking, family history of dementia, history of NCDs, and personal hobbies. In all models, city was modeled as random effect.

		PM _{2.5} ^{ab}						PM ₁₀ (ORs and 95%CIs) ^{ab}				
Factors	M	CI		Dem	entia		M	CI		Dem	entia	
	OR (95%CI)	Z	р	OR (95%CI)	Z	р	OR (95%CI)	Z	р	OR (95%CI)	Z	р
Age (years)												
< 80	1.57 (1.29, 1.90)	0.356	0.722	1.02 (0.69, 1.49)	-1.109	0.267	0.97 (0.92, 1.02)	-2.674	0.008	1.02 (0.84, 1.24)	-0.919	0.358
≥ 80	1.51 (1.36, 1.67)			1.28 (1.11, 1.47)			1.07 (1.01, 1.12)			1.13 (1.05, 1.22)		
Years of												
education												
≤9	1.62 (1.45, 1.81)	-2.105	0.035	1.34 (1.14, 1.57)	-1.537	0.124	1.03 (0.98, 1.08)	0.137	0.891	1.12 (1.04, 1.22)	-0.083	0.934
>9	1.33 (1.15, 1.54)			1.06 (0.83, 1.37)			1.04 (0.96, 1.12)			1.12 (0.97, 1.28)		
Physical activities												
Yes	1.54 (1.40, 1.69)	0.509	0.611	1.37 (1.17, 1.61)	2.636	0.008	1.04 (0.99, 1.08)	-0.070	0.945	1.15 (1.06, 1.25)	1.089	0.276
No	1.42 (1.08, 1.87)			0.91 (0.70, 1.18)			1.04 (0.93, 1.17)			1.04 (0.90, 1.21)		
Social activities												
Yes	1.40 (1.22, 1.60)	-1.634	0.102	1.09 (0.85, 1.40)	-1.405	0.160	1.08 (1.01, 1.16)	1.837	0.066	1.13 (0.99, 1.29)	0.111	0.911
No	1.63 (1.45, 1.84)			1.35 (1.15, 1.58)			1.01 (0.97, 1.04)			1.12 (1.03, 1.22)		
Smoking												
Current ^c	1.47 (1.30, 1.66)	-0.041	0.968	1.07 (0.9, 1.28)	1.577	0.115	1.02 (0.97, 1.07)	-1.174	0.241	1.06 (0.97, 1.16)	1.004	0.316
Former ^c	1.61 (1.39, 1.86)	0.922	0.356	1.50 (1.20, 1.87)	2.290	0.022	1.08 (1.01, 1.16)	1.375	0.169	1.19 (1.07, 1.34)	1.592	0.111
Never	1.46 (1.07, 1.98)	-	-	1.73 (0.98, 3.04)	-	-	0.96 (0.87, 1.05)	-	-	1.23 (0.93, 1.62)	-	-
Drinking												
Current ^d	1.62 (1.19, 2.19)	0.144	0.885	1.66 (0.97, 2.86)	1.413	0.158	1.09 (0.95, 1.26)	1.118	0.264	1.31 (1.00, 1.71)	1.796	0.072
Former ^d	1.50 (1.26, 1.79)	-0.461	0.645	1.61 (1.18, 2.21)	2.051	0.040	1.08 (0.99, 1.18)	1.531	0.126	1.53 (1.28, 1.84)	4.019	0.000
Seldom ^d	1.41 (1.14, 1.74)	-0.909	0.364	1.19 (0.88, 1.60)	0.429	0.668	1.08 (0.97, 1.20)	1.210	0.226	1.05 (0.90, 1.24)	0.485	0.628
Never	1.58 (1.39, 1.80)	-	-	1.10 (0.91, 1.32)	-	-	1.00 (0.97, 1.04)	-	-	1.01 (0.92, 1.10)	-	-
Diabetes mellitus												
Yes	1.58 (1.34, 1.88)	0.447	0.655	1.27 (0.99, 1.62)	0.071	0.944	1.10 (1.02, 1.20)	1.742	0.081	1.07 (0.94, 1.21)	-0.985	0.325

Table S9. Analysis of modification effects of several factors on the association between PM and MCI or dementia

	No	1.51 (1.36, 1.68)			1.26 (1.07, 1.48)			1.01 (0.97, 1.06)			1.15 (1.06, 1.25)		
Hypertension													
	Yes	1.48 (1.33, 1.65)	-0.738	0.460	1.26 (1.08, 1.48)	0.018	0.986	1.08 (1.02, 1.14)	2.265	0.024	1.16 (1.07, 1.26)	1.368	0.171
	No	1.60 (1.35, 1.89)			1.26 (0.97, 1.63)			0.99 (0.95, 1.04)			1.05 (0.92, 1.19)		
Hyperlipidemia													
	Yes	1.50 (1.31, 1.71)	-0.211	0.833	1.42 (1.14, 1.76)	1.491	0.136	1.19 (1.11, 1.28)	5.217	0.000	1.24 (1.10, 1.40)	2.271	0.023
	No	1.53 (1.35, 1.72)			1.15 (0.97, 1.37)			0.97 (0.94, 1.00)			1.05 (0.96, 1.14)		
Cerebral													
infarction													
	Yes	1.16 (1.01, 1.33)	-3.805	0.000	1.11 (0.90, 1.38)	-1.346	0.178	1.02 (0.96, 1.08)	-0.883	0.377	1.02 (0.92, 1.14)	-1.878	0.060
	No	1.61 (1.46, 1.79)			1.34 (1.13, 1.58)			1.06 (1.01, 1.11)			1.16 (1.07, 1.27)		

^a fully adjusted models controlling age, education years, smoking, drinking, family history of dementia, and history of NCDs. In all models, city was set as random effect factor. ORs and 95% CIs were associated with per 10 μ g/m³ increase in each pollutant. ^b the significance of difference in effect estimates between different subgroups was examined using a two-sample test. For smoking and drinking, the never smoke and never drink groups were set as the reference groups. * p<0.05 in the two-sample test.

Figure S1. Flow chart of research object selection

Figure S2. The non-linear associations between PM and MCI/dementia using natural cubic splines with three degrees of freedom on PM

Air pollutant	Annual averages	Outcome		OR (95% CI)
PM2.5	2010	MCI		1.54(1.42,1.66)
	2009	MCI		1.42(1.30,1.54)
	2008	MCI		1.17(1.03,1.33) 1.33(1.22,1.45)
	2007	Dementia MCI		1.21(1.06,1.39) 1.16(1.07,1.24)
	2006	Dementia MCI		1.19(1.07,1.32) 1.14(1.07,1.21)
	2005	Dementia MCI		1.16(1.06,1.28) 1.29(1.19,1.41)
	2010-2008	Dementia MCI	······	1.19(1.05,1.36) 1.52(1.39,1.67)
	2009-2007	Dementia MCI		1.27(1.11,1.46) 1.30(1.20,1.42)
	2008-2006	Dementia MCI		1.20(1.06,1.35) 1.20(1.11,1.29)
	2007-2005	MCI	()	1.21(1.12,1.30)
	2010-2006	MCI		1.20(1.07,1.34) 1.36(1.25,1.47)
	2009-2005	Dementia MCI Dementia		1.24(1.09,1.40) 1.27(1.17,1.38) 1.20(1.06,1.35)
PM10	2010	MCI		1 07(1 03 1 12)
	2009	Dementia MCI		1.14(1.07,1.22) 1.02(0.98,1.06)
	2008	Dementia MCI		1.09(1.02,1.17) 1.00(0.96,1.04)
	2007	Dementia MCI	-	1.12(1.04,1.20) 0.96(0.94,0.98)
	2006	Dementia MCI		1.08(1.02,1.14) 0.98(0.95,1.01)
	2005	Dementia MCI		1.10(1.04,1.16) 0.99(0.95,1.02)
	2010-2008	Dementia MCI		1.10(1.03,1.18) 1.04(1.00,1.08)
	2009-2007	Dementia MCI		1.13(1.05,1.21) 0.99(0.95,1.02)
	2008-2006	Dementia MCI		1.10(1.03,1.17) 0.97(0.95,1.00)
	2007-2005	Dementia MCI		1.10(1.03,1.17) 0.97(0.95,0.99)
	2010-2006	Dementia MCI		1.09(1.03,1.16)
	2009-2005	Dementia MCI Dementia		1.11(1.04,1.18) 0.98(0.95,1.02) 1.10(1.03,1.17)
		Demonut	0.70 1.0 1.7	

Figure S3. The sub-analyses for the evaluation of time scales for PM exposures