

Supplemental Figure Legends

Figure S1.

Posterior distribution for $\tilde{\eta}$ as θ is varied, and average ρ_R value from previous estimate (Table 2). The lighter color violin plots correspond to the value used in the estimates reported in Figure 3C ($\theta = 0.03 \ 1/day$). The intermediate and darker colored violin plots are obtained with $\theta = 0.165 \ 1/day$ and $\theta = 0.3 \ 1/day$, respectively.

Figure S2.

Posterior distribution for K as ρ_s is varied within the range of estimates obtained with fit to *in vitro* data of corresponding cell line. The lighter (darker) colored violin plots are obtained with ρ_s value corresponding to the lower (upper) bound of the range reported in Table 2. The intermediate color violin plots correspond to the average ρ_s value, and correspond to those reported in Figure 3B.

Figure S3.

Posterior distribution for $\tilde{\eta}$ as ρ_R is varied within the range of estimates obtained with fit to *in vitro* data of corresponding cell line. The lighter (darker) colored violin plots are obtained with ρ_R value corresponding to the lower (upper) bound of the range reported in Table 2. The intermediate color violin plots correspond to the average ρ_R value, and correspond to those reported in Figure 3C.

Figure S4.

Posterior distribution for $\tilde{\eta}$ as *K* is varied (purple) and *K* as $\tilde{\eta}$ is varied (yellow). Mouse VII, cell line 4434, treated with BRAFi. Purple violin plots show probability density functions (x axis) of $\tilde{\eta}$ estimates (y axis) for a given value of *K*. Yellow violin plots show probability density functions (y axis) of *K* estimates (x axis) for a given value of $\tilde{\eta}$. The intensity of the color of each violin plot is proportional to the goodness of the fit (norm-2 distance between data and fit). $\theta = 0.03 \ 1/day$. ρ_R from previous estimates (Table 2).

Figure S5.

In vivo data and fit for 5555 mice XIII through XXII, treated with PLX4720 (BRAFi) and PF562271 (FAKi). Note different y axis scales. Data from [13].

Figure S6.

Example of case 1. Model parameterized on mouse IX of cell line 5555. $\rho_S = 0.66325 \ 1/day$, $\rho_R = 0.49543 \ 1/day$, $K = 4818.62 \ mm^3$, $\tilde{\eta} = 26.876 \ 1/day$, $\tilde{\alpha} = 14.4 \ 1/day$, $\theta = 0.03 \ 1/day$, $S_0 = 48 \ mm^3$, $R_0 = 12 \ mm^3$, $F_0 = 60 \ mm^3$, $A_0 = 0 \ mm^3$. The tumour burden (brown) is monotonically increasing under treatment combination of BRAFi and FAKi.

Figure S7.

Example of case 2. Model parameterized on mouse VII of cell line 5555. $\rho_S = 0.66325 \ 1/day$, $\rho_R = 0.49543 \ 1/day$, $K = 4818.62 \ mm^3$, $\tilde{\eta} = 0.1257 \ 1/day$, $\tilde{\alpha} = 14.4 \ 1/day$, $\theta = 0.03 \ 1/day$, $S_0 = 48 \ mm^3$, $R_0 = 12 \ mm^3$, $F_0 = 60 \ mm^3$, $A_0 = 0 \ mm^3$. Under treatment combination of BRAFi and FAKi, the tumor burden (brown) is monotonically decreasing after time $t^* = 1.1771 \ day$.