A Split-Cre system designed to detect simultaneous expression of two genes based on SpyTag/SpyCatcher conjugation and Split-GFP dimerization

Xundong Wei<sup>1,2,#</sup>, Jianhua Zhang<sup>2,3,#</sup>, Jian Cui<sup>4</sup>, Wei Xu<sup>2,3</sup>, Xuyu Zhou<sup>2,3,\*</sup>, Jie Ma<sup>1,2,\*</sup>

List of Supporting Material Figure S1-S3 Α

|   | Report vector     | pEGFP-N1 |
|---|-------------------|----------|
| 1 | CAG-LSL-TdTomato  | Cre      |
| 2 | pMSCV-IRES-Thy1.1 | ∆N17Cre  |



## Figure S1. Analysis of the recombinase activity of $\triangle$ N17Cre

**A**, Analysis of recombinase activities by transient transfection. HEK293T cells were transiently transfected with the Cre or N17Cre constructs, CAG-loxp-STOP-loxp-TdTomato, and MSCV-Thy1.1. The expression of Thy1.1 on the cell surface was used as an indicator of intracellular expression of transfected genes. The

cells were harvested 20 h after transfection, and cells with different Cre expression levels as indicated by the Thy1.1 expression level were analyzed by flow cytometry.

**B**, The average frequencies of TdTomato<sup>+</sup> cells among cells with different Cre expression levels (Thy1.1 low, medium, high) in **A** are shown.

# Reporter Vector: CAG-LSL-TdTomato/Luciferase



### Figure S2. Cre recombinase-dependent expression of TdTomato or Luciferase

The genes encoding TdTomato or luciferase were cloned into the *Eco*R I/*Not* I sites of pCALNL-GFP (Addgene: #13770) after deletion of the GFP gene. TdTomato or Luciferase is only expressed in the presence of Cre due to the transcriptional stop between the *loxP* sites.

Α

|   | Report vector        | pMSCV-IRES-Thy1.1 | pMSCV-IRES-Thy1.1 |          |
|---|----------------------|-------------------|-------------------|----------|
| 1 | CAG-LSL-<br>TdTomato | NGFP-NCre         | CGFP-CCre         | GFP-Cre  |
| 2 |                      | Spy-NCre          | Spy-CCre          | Spy-Cre  |
| 3 | ratomato             | Spy-GNCre         | Spy-GCCre         | Spy-GCre |

#### В Spy-NCre (NCre<sub>aa19-59</sub>-SpyTag) aa19-59 Flag NLS SpyTag ر Myc <u>70aa</u> Spy-CCre (SpyCatcher-CCre<sub>aa60-343</sub>) SpyCatcher aa 60-343 С Frequency of TdTomato (TdTomato+ % of gated) Thy1.1 Gated 100 90 10 80 104 70 10<sup>3</sup> Count 10<sup>2</sup> GFP SP SPY CUE 10<sup>5</sup> 10<sup>3</sup> 10<sup>4</sup> 0 10<sup>2</sup> 0 10<sup>2</sup> 10<sup>3</sup> 104 105 Thy1.1 -TdTomato D low med high Thy1.1 Gated



#### Figure S3. SpyTag/SpyCatcher-assisted complementation of NCre/CCre

A, List of plasmids used in this experiment.

**B**, Schematic representation of the structures of the Spy-NCre (NCre<sub>aa19-59</sub>-SpyTag) and Spy-CCre (SpyCatcher-CCre<sub>aa60-343</sub>) fusion proteins in this study. All genes were inserted into the MSCV-Thy1.1 expression reporter vector.

**C**, Comparison of the level of Cre recombinase activity following the transient transfection of different complementary pairs of Cre fragments. HEK293T cells were transiently transfected with the components of the Split-GFP-Cre, Split-Spy-Cre, or Split-Spy-GCre system. All constructs were first inserted into the MSCV-Thy1.1 expression reporter vector. The CAG-loxp-STOP-loxp-TdTomato reporter was used to visualize Cre reconstitution efficiency. The cells were harvested 20 h after transfection and analyzed by flow cytometry according to Thy1.1 expression. The average frequencies of TdTomato<sup>+</sup> cells among Thy1.1<sup>+</sup> cells are shown.

**D**, Cells with different Cre expression levels as indicated by the Thy1.1. expression level were analyzed by flow cytometry. The average frequencies of TdTomato<sup>+</sup> cells among cells with different Cre expression levels (Thy1.1 low, medium, high) are shown.

The data shown are typical results from 2 experiments. The small horizontal bars indicate the mean  $\pm$  SEM. ns, not significant, \*\*p < 0.01, and \*\*\*p < 0.001 (ANOVA with Bonferroni post-test)