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Supplementary Note 1. Forecasting Verification 
For the Lorenz63 system, we use two methods for verifying that the forecasted attractor is an 

accurate representation of the true attractor.  The first relies on comparing the unstable steady 
states of the predicted and true attractors and the second is a qualitative comparison to the return 
map associated with the strange attractor.  For the double-scroll system, we only compare the 
true and predicted unstable steady states. 
Lorenz63 Unstable Steady States 

The unstable steady states (USSs) of the true Lorenz63 system are determined by setting the 
derivatives in Eq. (7) to zero and solving for the values of the three variables.  There are three 
solutions given by 
 

Xuss = [0,0,0]T, [ ± ඥ(8/3)(28 − 1),±ඥ(8/3)(28 − 1), (28 − 1)]்.   (1) 
 

We calculate the L2 (Euclidean) distance from the predicted USSs to their corresponding true 
value. To allow easy comparison of the accuracy of these USSs, we calculate these distances in a 
uniformly scaled space where Lorenz63 has unit variance. For the model predictions used to 
generate the attractor shown in Fig. 2, the L2 distance from the zero USS, calculated in a 
uniformly scaled space where the Lorenz63 system has unit variance, is 1.2±1.4×10-3, and the 
distance between the predicted and true positive (negative) USS is 12.1±3.1×10-4 (7.6±1.5×10-4). 
Double-Scroll Unstable Steady States 

We find the USS by setting the derivatives in Eq. (8) to zero and solving for the state 
variables. This reduces to solving the transcendental equation 

 
 0 = 𝑉ଵ 𝑅ଶ⁄ (𝑅ଵ − 𝑅ସ − 𝑅ଶ) + 2𝑅ଵ𝐼sinh(𝛽(1 − 𝑅ସ 𝑅ଵ⁄ )𝑉ଵ).    (2) 
 



For the parameters we use, this yields three solutions, and therefore three USSs given by 
 

Xuss = [0, 0, 0]T, [𝑉ଵ, ±𝑉ଵ 𝑅ସ 𝑅ଵ⁄ ,±𝑉ଵ 𝑅ଵ⁄ ]்.      (3) 
 

Because the NG-RC for this task has only odd polynomial powers and no constant term, it is 
symmetric about the origin and predicts the zero USS exactly. The L2 distance from the true non-
zero positive USS, calculated in a uniformly scaled space where the double-scroll system has 
unit variance, is 2.1±0.2×10-3. 
Return map 

The 𝑧 variable of the Lorenz63 system has a functional relation between successive local 
maxima. This is demonstrated visually by finding the successive local maxima 𝑀 of 𝑧, and then 
plotting 𝑀 with respect to 𝑀ାଵ. This return map neatly summarizes the long-term behavior of 
the 𝑧 variable and comparing two such maps provide a quick way to qualitatively compare two 
systems and has been used previously to verify that a trained RC can replicate the Lorenz63 
climate. 

To evaluate whether an NG-RC can replicate this long-term behavior, we perform the same 
procedure on a free-running forecast produced by an NG-RC previously trained on the Lorenz63 
system. For both the NG-RC and Lorenz63, we look for maxima in window of 1,000 time units. 

The values of the maxima in the discrete-time solutions for both the NG-RC and Lorenz63 
depend on the time step 𝑑𝑡 used for integration, as the true maximum may be achieved in 
between the discrete time steps. To better reproduce the true Lorenz63 return map and to reduce 
the effect 𝑑𝑡 has on the NG-RC return map, we interpolate the 𝑧 solutions by using a degree-4 
spline. The local maxima are then found on this interpolated spline. 
 Supplementary Figure 1 shows both return maps. Qualitatively, there is good agreement 
between the two return maps. The NG-RC return map almost completely obscures the true 
Lorenz63 return map at this scale. Upon close inspection, we see that the NG-RC return map 
does not line up precisely with the true Lorenz63 return map. This can be improved by extending 
the training time of the NG-RC, but difference between the two return maps is already small 
even when the NG-RC is trained for only 10 time units (400 total data points). 
 



  

 
Supplementary Figure 1.  a) The 𝑧 return map of Lorenz63 (blue +) overlaid with the 𝑧 return map of the NG-
RC forecast (red x). The NG-RC reproduces the long-term dynamics of the 𝑧 variable accurately enough at this 
scale that it is difficult to see the true return map underneath. b) Detail of the region marked in a). 



Supplementary Note 2. Elements of 𝐖௨௧ for the two tasks 
Forecasting task 

Supplementary Figure 2 shows the x, y, and z components of 𝐖௨௧ for the forecasting task 
presented in Fig. 2 of the main text and Supplementary Figure 3 shows a zoom-in of the 
components. These components vary smoothly with the regularization parameter 𝛼 over the 
range we consider in this work. In comparison to the vector field of Eq. 7, there are many 
substantial components that do not appear directly in the vector field that result from stepping the 
vector field forward in time, which defines the flow. 

  

 
Supplementary Figure 2.  Elements of the training output weight matrix for the forecasting task.  The red 
(blue) bars indicate terms that are found (not found) directly in the vector field. 



 
 
 
  

 
Supplementary Figure 3.  Zoom in of the elements of the training output weight matrix for the forecasting task.  
The red (blue) bars indicate terms that are found (not found) directly in the vector field. 



Inference Task 
Supplementary Figure 4 shows the components of the output weight matrix for the inference task 
presented in Fig. 4, where the z is inferred given x and y. The largest component of 𝐖௨௧ is the 
constant term c. It can be explained by the fact that z has a considerable offset as shown in the 
time series of Fig. 2 of the main text, although all the other 𝐖௨௧ components are non-zero and 
contribute for the final output to some extent. 

Supplementary Figure 4.  (left) Elements and (right) a zoom in of the elements of the training output weight 
matrix for the inference task.   



Supplementary Note 3. Comparing the computational complexity of the NG-RC with a 
typical traditional RC 
Here, we provide an indication of computational speed up for the NG-RC compared to a 
traditional RC for the Lorenz633,12,14 (quartic nonlinear output layer for the NG-RC) and double-
scroll12 (cubic nonlinear output layer for the NG-RC) forecasting tasks by estimating the number 
of multiplications and special function evaluations for each.  Our assumptions and notation are as 
follows, where we only track parameters that contribute the most to the computational 
complexity. 
 
NG-RC and traditional RC parameters: 

Warm-up steps: Mwarmup 
Training steps: Mtrain 

 
NG-RC-specific parameters: 

Dimension of the linear part of the feature vector: Nlinear  
Multiplications need to form feature vector: Nnonlinear  

Total components in the feature vector: Ntotal 
 
Traditional RC-specific parameters: 

Number of reservoir nodes: N 
Sparsity of the internal reservoir connections: σr 

Number of special function evaluations (typically tanh): Nspecial 
 

Supplementary Tables 1 and 2 give our estimates of the computational complexity of these 
examples. For the traditional RC, we assume sparse connectivity and that there is no additional 
overhead for using sparse matrix multiplication routines.  Special function evaluations can be 
computationally expensive or not depending on built-in mathematical co-processors.  We give 
the number of these evaluations but do not use it in comparing the computational complexity. 

The dominant contribution to the computational complexity for the NG-RC is performing the 
ridge regression, which is O((Mtrain(Ntotal)2) over the training time.  The dominant contribution 
for the traditional RC is multiplying the reservoir state with the adjacency matrix, which is O(σr 
(Mwarmup+Mtrain) (Ntotal)2) over the warmup and training time, and performing the ridge 
regression, which is O(Mtrain(Ntotal)2) over the training time assuming all nodes contribute to the 
prediction.  Also, we have Nspecial = N, but we do not consider this computational cost. 

We estimate the speed up by summing the dominant contributions for the traditional RC and 
divide by the sum for the NG-RC.  The traditional RC used in Ref. 12 is meant to be efficient 
(fast simulation time) at the expense of some accuracy, the one used in Ref. 14 is meant to have 
high accuracy at the expense of longer simulation time, while the one used in Ref. 3 is 
intermediary.  Clearly, our analysis indicates a substantial speed up even with our conservative 
analysis, while the NG-RC simultaneously obtains high accuracy. 
  



Supplementary Table 1: 
Estimated speed up of the NG-RC for the Lorenz63 forecasting task 

 
 Mwarmup Mtrain Nnonlinear Ntotal N σr speed up 
NG-RC 2 400 21 28 - - -
Ref. 12 1,000 1,000 - 100 100 0.01-0.05 33-163
Ref. 3 ? (set to 0) 5,000 - 300 300 0.02 1.5×103

Ref. 14 105 6×104 4,000 2,000 0.02 3.2×106

 
 

Supplementary Table 2: 
Estimated speed up of the NG-RC for the double-scroll forecasting task 

 
 Mwarmup Mtrain Nnonlinear Ntotal N σr speed up 
NG-RC 2 400 56 62 - - -
Ref. 12 1,000 1,000 - - 100 0.01-0.05 8-41

 
 
Supplementary Note 4. NG-RC performance with training data set size 
We do not yet have an analytic expression for predicting the required training data set size for an 
RC.  We hypothesize that a lower bound on the training data set size is about the number of 
unknown fit parameters, equal to the number 
of features times the dimension of the 
forecasted system (3 in our examples).  For 
the NG-RC and the Lorenz63 task, this is 84 
(see Supplementary Table 1), whereas it is 
12,000 for Ref. 14.   This is approximately 
the minimum number of data points needed 
so that the model passes exactly through the 
training data points.  To generalize the 
model to unseen data, as required for 
forecasting, requires some additional data 
overhead.   

Supplementary Figure 5 shows the 
training data set size dependence of the 
testing NRMSE, averaged over 20 different 
temporal segments, for α=2.5×10-6 for all cases.  For low training data, there are large 
fluctuations in the error and there is greater sensitivity to changes in α.  Around 250 training data 
points, the error saturates, indicating that no more data is needed for good, generalized 
performance.   The NRMSE is only one measure of performance; we find that the return map, 
discussed above in Supplementary Note 1, is more sensitive to the training data set size and we 
find small, improved performance beyond the 400-point set used in the main text. 

We stress that the training data set size required for good performance also depends on the 
sampling step size dt.  If dt is too small, only a small region of the attractor is visited for a small 
number of data points.  If dt is too large, higher-order nonlinear features might be needed.  Our 

 
Supplementary Figure 5.  NG-RC performance with 
training data set size for the Lorenz63 forecasting task 
corresponding to Fig. 2. 



choice of dt, which gives about 40 points per Lyapunov time, balances these two constraints and 
leading to a small, required data set.  
 
Supplementary Note 5. NG-RC performance for the Lorenz63 system driven by noise 
Here, we explore the ability of the NG-RC when a dynamical system is driven by large noise.  
Here, we augment the differential equations for the Lorenz63 system by adding Gaussian random 
noise to the right-hand-side of the differential equations for each variable with a root-mean-
square value of 1.  This noise level is about 12% of the typical root-mean-square values of each 
variable, which are equal to 7.9, 9.0, and 8.6 for x, y, and z, respectively. 

To obtain good generalization, we find that we need to increase the ridge parameter to α = 
1.4×10-2.  The Lorenz63 dynamics and NG-RC fit are shown in Supplementary Figures 6a)-d). 

After the model is trained, we use the NG-RC to forecast the Lorenz63 dynamics initialized 
by the last point in the training data set.  We then compare the predicted behavior to the noise-
free Lorenz63 dynamics as shown in Supplementary Figures 6e)-h) and find that the RMSE = 
1.34×10-2.  This low error indicates that the NG-RC learns the underlying deterministic system 
even when it is perturbed by substantial noise.   

Supplementary Figure 6.  Robustness of the NG-RC to noise. a) – d) Noisy training data.  e)-h) NG-RC 
prediction compared to the noise-free ground-truth behavior. 


