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Figure S1. Defining computational models of donor and acceptor sites. We aligned 
sequences neighboring splice junctions (±80bp) and we determined probabilities of observing 
a base b at l-th position of the A) splice donor and acceptor B) sites. Probabilities are depicted 

as sequence logos where height of a character representing a base b corresponds to probability 

of observing b at l-th position of the splice junction. 

After computing Riw (methods), we summed the elements by columns to get the uncertainty 
decrease at l-th position of the splice donor C) and acceptor D) sites. We chose a heuristic 

threshold t=0.05 bits (red line) to correct for the background noise and we determined the size 

of splice donor and acceptor sites to be 9bp and 27bp, respectively. The splice site regions are 
denoted by the dashed vertical lines. 
 

 

  



 

 

Figure S2. Cytoband-aware splitting of variants into training and test set. Each vertical 
line represents a cytoband, the line height represents the number of variants present within the 
cytoband. 

  



 
Figure S3. Relative feature importances in the donor/acceptor random forest classifiers. If 

the feature is used at the top of a decision tree, then it contributes to the prediction of a larger 

proportion of variants.  



 

 
Figure S4. Density estimate for donor and acceptor scores calculated for  all non-canonical 

training set variants (ndonor = 1,139, nacceptor = 484, nneutral = 62,986). A) SQUIRLS assigns low 

donor, acceptor, as well as the final SQUIRLS score to 62,986 splicing neutral variants. B)  

Unscaled scores for donor variants (generated by the donor-specific random forest classifier). C)  

Unscaled acceptor scores for acceptor variants  (generated by the acceptor-specific random 

forest classifier). The models show site-specificity (e.g., donor variants are not assigned  high 

acceptor scores and acceptor variants are not assigned high donor scores). The raw scores from 

the donor and acceptor random forest classifiers do not span the entire range of [0,1]. SQUIRLS 

uses logistic regression to generate the final SQUIRLS score.  



 
Figure S5. Performance of SQUIRLS, SpliceAI, S-CAP, CADD, and MaxEnt on all variants 

in the test set, including 6,008 canonical SAVs. A) Receiver operating characteristic curves 

indicate that SQUIRLS and SpliceAI achieve comparable performance. B) Precision-recall curves 

show that SQUIRLS and SpliceAI are able to find the most of the true splice variants, while 

maintaining high precision. 

  



 

 
Figure S6. Comparison of SQUIRLS and SpliceAI predictions for the test set of non-

canonical SAVs (213 splice variants and 10,068 neutral variants). The predictions are plotted 

with respect to distance to the canonical splice site. Each variant is represented by two circles, 

one for SQUIRLS and the other for SpliceAI. The dashed line represents a threshold value used 

by SQUIRLS to label a variant either as a splice variant (above the line) or as neutral variant. 

SpliceAI uses one of three thresholds to classify splice variants with high precision (0.8), 

recommended (0.5), or with high recall (0.2).  

 



 

Figure S7. Rank analysis simulation results. 243 cases were analyzed with SQUIRLS, 
whereby a disease-associated SAV was spiked into a VCF file. The figure displays the same 
results as panels B and C of Fig. 5 of the main manuscript. 

 


