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in diagnostic next-generation sequencing
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Summary
A critical challenge in genetic diagnostics is the computational assessment of candidate splice variants, specifically the interpretation of

nucleotide changes located outside of the highly conserved dinucleotide sequences at the 50 and 30 ends of introns. To address this gap,

we developed the Super Quick Information-content Random-forest Learning of Splice variants (SQUIRLS) algorithm. SQUIRLS generates

a small set of interpretable features for machine learning by calculating the information-content of wild-type and variant sequences of

canonical and cryptic splice sites, assessing changes in candidate splicing regulatory sequences, and incorporating characteristics of the

sequence such as exon length, disruptions of the AG exclusion zone, and conservation. We curated a comprehensive collection of dis-

ease-associated splice-altering variants at positions outside of the highly conserved AG/GT dinucleotides at the termini of introns.

SQUIRLS trains two random-forest classifiers for the donor and for the acceptor and combines their outputs by logistic regression to yield

a final score. We show that SQUIRLS transcends previous state-of-the-art accuracy in classifying splice variants as assessed by rank anal-

ysis in simulated exomes, and is significantly faster than competing methods. SQUIRLS provides tabular output files for incorporation

into diagnostic pipelines for exome and genome analysis, as well as visualizations that contextualize predicted effects of variants on

splicing to make it easier to interpret splice variants in diagnostic settings.
Introduction

Whole-exome sequencing (WES) and whole-genome

sequencing (WGS) are effective tools to diagnose Mende-

lian disorders. However, although the diagnostic yield of

WES/WGS has improved from between 16%–25% in early

studies1–3 to around 35%–60% currently,4,5 a substantial

proportion of diagnostic cases remains unsolved. One

reason is that the filtering and prioritization typically

used by diagnostic WES/WGS software is not able to

correctly classify some kinds of disease-causing variants.

It can be difficult to correctly classify splice-altering

variants, especially those deep within exons or introns.6

Variants that affect pre-mRNA splicing are documented

to account for at least 15% of disease-causing variants.7

However, the true number may be substantially higher

because of a historical ascertainment bias reflecting a selec-

tive focus on coding sequences in the pre-next generation

sequencing (NGS) era and a continued interpretation

bottleneck due to the difficulty of predicting the effects

of variants on splicing. For instance, in NF1 (MIM:

613113) and ATM (MIM: 607585), studies have shown

that�50% of all disease-causing variants result in defective

splicing.8,9 Recent results have shown that RNA-seq may

be able to identify the diagnosis in up to �30% of

exome-negative cases,10–13 and a massively parallel assay

suggested that up to 10% of all exonic variants, including
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missense and nonsense variants, may alter splicing.14

However, RNA samples may not always be available in

the diagnostic setting, and the relevant genes and tran-

scripts may not be expressed in tissues commonly assayed

for RNA analysis such as blood and muscle. A typical diag-

nostic exome or genome can containmore than 500 candi-

date splice-altering variants of unknown significance.15

Therefore, there is a pressing need for algorithmic ap-

proaches that can effectively prioritize splice variants in

diagnostic next-generation sequencing. Additionally, the

interpretability of predictions is important for integration

of results into medical workflows.16

For brevity, we use the term splice-altering variant (SAV)

to refer to disease-associated DNA variants that result in

splice alterations. SAVs can lead to a number of molecular

defects including exon skipping, cryptic splicing, intron

inclusion, leaky splicing, or the introduction of pseudo-

exons into the processed mRNA.17 There are no general

rules that allow one to interpret the effect of a variant

based solely on the affected sequence context, but it is

generally accepted that alterations of the canonical 51

or 52 splice sites are most likely to be pathogenic. This

is reflected in the fact that the American College of Medical

Genetics (ACMG) guidelines state that the location of a

variant in these positions can be taken as very strong evi-

dence of pathogenicity in genes where loss of function is

a known mechanism.18 However, the natural donor and
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acceptor splice sites span much longer intervals that over-

lap the exon-intron boundaries. In addition, the branch

point and polypyrimidine tract motifs as well as intronic

and exonic splicing enhancers and silencers further modu-

late the strength of any given splice site. Variants in any of

these sequences can reduce or abolish the ability of the

spliceosome to recognize the splice site, leading to exon

skipping or usage of cryptic splice sites. The sequence be-

tween the branch point and the 30 splice site is generally

devoid of AG dinucleotides and is called the AG-exclusion

zone; variants that introduce an AG in this zone tend to be

pathogenic.19 Additionally, variants in introns or exons

can activate cryptic splice sites to the extent that they are

preferentially utilized compared to wild-type splice sites.

We will use the term ‘‘canonical’’ SAV to refer to variants

at the 51 or 52 splice sites, and ‘‘non-canonical’’ SAV to

refer to any other SAV.

While canonical SAVs are trivial to identify computa-

tionally, non-canonical SAVs are substantially more diffi-

cult to interpret. Numerous bioinformatics tools such as

PolyPhen20 have been developed to assess pathogenicity

of missense variants, but far fewer have been developed

for non-canonical SAVs. Suggestive evidence exists that

non-canonical SAVs might be a more common cause of

Mendelian disease than is commonly appreciated.9,19,21

Several previous approaches to prioritizing SAVs are based

on the concept of ‘‘decrease in surprisal,’’ grounded on in-

formation theory.22 Maximum entropy modeling of

splicing signals (MaxEnt) is a similar approach that addi-

tionally may include dependencies between nonadjacent

as well as adjacent positions.23

Numerous algorithms have been presented for the prior-

itization of SAVs.24–29 Recently, machine learningmethods

surpassed previous state-of-the-art results in the prediction

of pathogenic SAVs including sequence-based deep neural

networks30,31 and gradient boosting trees.15 However, it is

not straightforward to interpret the results of these

methods. For instance, SpliceAI is a deep residual neural

network that predicts whether each position in a pre-

mRNA is a splice donor, splice acceptor, or neither; differ-

ences in the scores of wild-type and variant sequences

can be used to predict pathogenicity of variants, but no in-

formation is provided by the algorithm as to what

sequence features led to the prediction.31 This makes it

challenging to use in a clinical setting, where explainabil-

ity is essential for clinical decision making. S-CAP uses a

gradient-boosting tree (GBT) classifier, with 29 features

including predictions from a number of other algorithms;

the results of the algorithm are presented as a single score

that does not allow further interpretation.15

Here we present a new algorithm, super quick informa-

tion-content random-forest learning of splice variants

(SQUIRLS). SQUIRLS first scores variants according to asso-

ciated changes in individual information content, changes

in splicing regulatory elements (SREs), and several other

features, followed by random forest classification.

SQUIRLS was trained on a comprehensive dataset of
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1,623 non-canonical SAVs. SQUIRLS prioritized more cor-

rect variants in the top five ranks, with substantially higher

speed and interpretability than the previously proposed

best performing methods.15,31 The results can be output

with visualizations and assessments of each feature, allow-

ing users to quickly identify the major abnormalities that

led to the prioritization. SQUIRLS is an interpretable and

fast machine-learning algorithm that assesses variants for

potential effects on splicing. SQUIRLS was designed to

perform well on difficult-to-classify non-canonical splice

variants located outside of the nearly perfectly conserved

AG/GT dinucleotides at the termini of introns. We believe

that SQUIRLS will support improved and scalable diag-

nostic capability for clinical interpretation of splice vari-

ants identified by WES/WGS.
Material and methods

Dataset of splice variants
We performed an extensive review of the scientific literature to

curate a collection of 8,314 splice variants associated with Mende-

lian diseases. Candidates were derived from a review of ClinVar

pathogenic mutations32 and a manual review of the medical

literature. We included case reports, mutation updates, and review

articles describing variants whose splicing deleteriousness was

supported by experimental evidence, such as minigene assay,

site-directed mutagenesis, or patient-derived RNA sample analysis.

We also included cases where the proband’s phenotype corre-

sponded to the phenotype of the Mendelian disease associated

with the affected gene. Our review of ClinVar database focused

on synonymous pathogenic mutations as well as on non-canoni-

cal SAVs that overlap with canonical splice site regions. The vari-

ants are listed in Table S1. The curated variants were located on

chromosomes 1–22 and chromosome X (minimum count per

chromosome: 77 for chr21; maximum: 1,339 for chrX) and were

derived from a total of 4,522 articles with PubMed IDs. 4,753

were assigned to the donor site, 3,388 to the acceptor site, and

173 were not assigned to a specific site. Variants from 1,080 genes

were included, with 370 genes with just one SAV, 401 genes with

2–5 SAVs each, 233 genes with 6–20 SAVs, 50 genes with 21–50

SAVs, and 26 genes with more than 50 SAVs.
Dataset of non-deleterious variants
We prepared a collection of 73,203 presumed non-deleterious var-

iants from the ClinVar database.32 After downloading the VCF file

released on Nov 11, 2019 from the ClinVar FTP site, we selected

variants where both the wt and alt alleles were shorter than

50 bp, whose clinical significance was classified as either benign

or likely benign, and that were located in coding region of a gene

or distance from the closest exon was less than 100 bp. Each

non-deleterious variant was assigned to a donor and/or acceptor

site, depending on distance to the site.
Engineering of the splicing features
We developed a set of numeric features to discriminate splicing

pathogenic variants from the neutral variants. The features can

be separated into three groups: (1) information content features,

(2) features representing the sequence context, and (3) variant

site features.
nal of Human Genetics 108, 1564–1577, September 2, 2021 1565



The first group of features is related to the individual information

content of the affected sequences.22 We compute the individual in-

formation content of the closest canonical splice sites and the

maximum information content of the surrounding wt sequence to

model the inherent potential of the wt sequence for abnormal

splicing. Then, the differential information content-based feature

is related to changes of free energy of binding of spliceosome com-

ponents of pre-mRNA induced by the alt allele, according to the

Schneider’s derivation from the Second Law of Thermodynamics

that shows that a minimum of energy must be dissipated by any

molecular machine to gain 1 bit of information.33

The sequence context features include length of the closest exon

and the offset (distance in nucleotides) to the closest canonical

splice sites to capture potential positional dependencies, The

two remaining features of this group identify variants that intro-

duce an AG dinucleotide into the AG exclusion zone (the

sequence between the branch point and the 30 splice site that is

devoid of AGs, AGEZ). In our implementation, the AGEZ is defined

to be positions �50 to �3, although biologically, the branchpoint

is located between �18 and �40 (and not reliably identifiable

computationally).

The variant site features are calculated for the nucleotides that

are altered by the variant. We use ESRSeq34 and SMS35 to assess

changes to splicing regulatory element sequences that are associ-

ated with exon skipping and inclusion andmay be related to func-

tional elements such as exonic splicing enhancers for which

currently no sensitive and specific sequence motifs are available.

phyloP evolutionary conservation scoring36 reflects whether the

nucleotide or nucleotides altered by the variant are under natural

selection against a background of neutral evolution.

In the next section we describe more in detail the construction

of the features based on the information content of the sequences.

Table 1 provides an overview of features, and the following sec-

tions provide additional details.

Features based on the information content of the

sequences
The core features used to train the splice donor and acceptor site

models are based on information theory applied to the analysis

of splice sites.22 First, to construct a matrix with frequencies of nu-

cleotides occurring at different positions of the splice sites, we

aligned wild-type sequences of exon/intron junctions of GEN-

CODE basic gene annotation transcripts v32 (accessed on Oct

2019). We selected 49,821 protein coding transcripts with gene

annotation source Havana and GENCODE confidence level %2,

corresponding to transcripts supported by the highest amount of

the experimental evidence.

Then, we grouped the transcripts by gene and identified

genomic coordinates of unique exon/intron junctions, producing

sets with 200,459 donor and 197,874 acceptor site coordinates.

Next, we extracted 580 bp of the nucleotide sequence surround-

ing the sites and we subsequently aligned the sequences by exon/

intron junction coordinate. After alignment, we calculated a ma-

trix, F4xm where 4 refers to the number of different types of nucle-

otides and m to the length of the sequences. Each element f(b,l) of

the matrix F represents frequencies and estimates a probability of

observing base b˛{A,C,G,T} at position l within the aligned se-

quences (Figure S1). Finally, we created an informationweightma-

trix Riw grounded in the concept of decrease in surprisal38 tomodel

a splice junction by the equation

Riwðb; lÞ ¼2þ log2ðf ðb; lÞÞ � e
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where e is a sample size correction factor for the n sequences at po-

sition l.39 The Riw matrix represents the sequence conservation of

each nucleotide within the binding site, measured in bits of infor-

mation. After checking for background noise, we determined the

lengths of the donor and acceptor sites to be ldon ¼ 9 bp and lacc
¼ 27 bp (see Figure S1 for more details).

The Riw matrix can be used to calculate the individual informa-

tion content Ri of any nucleotide sequence j with length m as:

RiðjÞ¼
Xm

l¼1

X

b˛N

Riwðb; lÞAðb; l; jÞ

where N ¼ {A,C,G,T} is the set of nucleotides, and A is a 4 x m bi-

nary matrix that represents a one-hot encoding of the sequence j:

the Amatrix has only a single 1 for each columnwhile the remain-

ing elements of the column are set to 0. In effect, each base of the

sequence ‘‘picks out’’ a specific entry of the matrix Riw and these

entries are finally added to compute the information content of

the sequence. In our setting, Riw is a weight matrix representing

the splice junction, and the mean values of the Ri distribution

for the donor and acceptor sites, that represent the mean informa-

tion of the sequences used to construct Riw, were 7.87 (donor) and

9.50 (acceptor) bits. The resulting Ri(j) is related to thermodynamic

entropy and the free energy of binding and can be used to

compare sites with one another.39

Training and test variant sets
We pooled the SAV and neutral variants and then we annotated

each variant with splicing features (Table 1) and additional

metadata, including label (deleterious or neutral), gene symbol,

transcript accession ID, and cytoband. Next, we split the vari-

ants into train and test sets by applying a ‘‘cytoband-aware’’

hold-out scheme: we randomly chose 10% (67) of the total

number of 676 cytobands, and we put the variants contained

in these cytobands into the test set. The variants located in

the remaining 90% (609) cytobands were used for training

(Figure S2). The cytoband-based scheme was designed to mini-

mize bias resulting from distinct variants located in the same

gene being used for both training and testing. Then, we parti-

tioned the training variants into two subsets consisting of either

donor or acceptor-affecting variants, based on curation meta-

data or vicinity to one or the other splice site. We removed

6,008 canonical SAV variants from the training set, since we

aimed to optimize the classifier for non-canonical SAVs. We

tested SQUIRLS using both the subset of non-canonical SAVs

as well as the entire set.

Training of the SQUIRLS model
SQUIRLS is a ‘‘paired ensemble’’ model that predicts the potential

of a variant to alter the splicing pattern of an overlapping tran-

script. The model consists of two random forest classifiers40

trained individually on either the donor or the acceptor variant

subset. If features are missing for a data point, they are replaced

by the median value prior to random forest analysis.

To train the classifiers and perform model selection, we ran 50

iterations of randomized search cross-validation. In each iteration

we randomly sampled hyperparameter values from pre-defined

parameter distributions and performed 10-fold cross-validation

on the training set. Each cross-validation step included calculation

of the following performance metrics: balanced accuracy, preci-

sion, recall, and F1 scores. We selected the hyperparameters that

produced the model with the highest sensitivity (recall) and we
tember 2, 2021



Table 1. Features used to discriminate deleterious splice variants from splicing-neutral variants in SQUIRLS

Splicing feature name Description

Donor

Donor offset Distance to the exon/intron border of the closest donor site. The number is
negative if the variant is located upstream of the border.

Ri can ref Information content (Ri) of the closest canonical donor site.

max Ri cryptic donor window Maximum Ri of sliding window of all 9 bp sequences that contain the alt allele.

DRican Difference between Ri of ref and alt alleles of the closest donor site (0 if the
variant does not affect the site).

DRicrypt Difference between max Ri of sliding window of all 9 bp long sequences
that contain the alt allele and Ri of alt allele of the closest donor site.

DRinext Difference between Ri of the closest donor and the downstream (30) donor
site (0 if this is the donor site of the last intron).

phyloP Mean phyloP score of the reference nucleotides altered by the variant, where
phyloP denotes conservation scoring calculated by PHAST package for multiple
alignments of 99 vertebrate genomes to the human genome.36

Acceptor

Acceptor offset Distance to the exon/intron border of the closest acceptor site. The number
is negative if the variant is located upstream of the border.

DRican Difference between Ri of ref and alt alleles of the closest acceptor site (0 if
the variant does not affect the site).

DRicrypt Difference between max Ri of sliding window applied to alt allele
neighboring sequence and Ri of alt allele of the closest acceptor site.

Exon length Number of nucleotides spanned by the exon in which the variant is located (�1 for
non-coding variants that do not affect the canonical donor/acceptor regions).

Creates ‘AG’ in AGEZ 1 (true) if the variant creates a novel ‘AG’ dinucleotide in AGEZ, 0 (false) otherwise.

Creates ‘YAG’ in AGEZ 1 (true) if the variant creates a novel ‘YAG’ trinucleotide in AGEZ where ‘Y’ stands
for pyrimidine derivatives (cytosine or thymine), 0 (false) otherwise.

ESRSeq Estimate of impact of random hexamer sequences on splicing efficiency when
inserted into five distinct positions of two different minigene exons obtained
by in vitro screening.34,37

SMS Estimated splicing efficiency for 7-mer sequences obtained by saturating a
model exon with single and double base substitutions (saturation mutagenesis
derived splicing score).35

phyloP See above.

We used 7 features to train site specific random forest classifiers for donor variants, and 9 features to train the classifier for acceptor variants. Note that phyloP is
used by both splice donor and acceptor classifiers. Ri - information content of a nucleotide sequence in bits.
subsequently retrained the donor and acceptor classifiers on the

entire variant subset.

Most of the machine learning methods used to identify po-

tential pathogenic variants report predicted deleteriousness/

pathogenicity estimates as a number in the range [0,1], where

higher scoring variants are more likely to be deleterious.41–43

In addition, thresholds for assigning variants into discrete clas-

ses (e.g., neutral and deleterious) while obtaining the desired

specificity or sensitivity are available for most of the methods.

In a random forest, probability estimates for a class can be calcu-

lated as the proportion of the forest’s decision trees that voted

for the class. To find the class probability threshold that attains

the best separation of splice and neutral variants, we used the

value that maximized the informedness criterion (Youden’s J

statistic).

To generate the final SQUIRLS score, we trained a logistic

regression model from the raw scores computed by the two

random forests, to automatically learn how to better combine

their output.
The American Jour
Formodel training and evaluation, we used random forest, logis-

tic regression, and imputer implementations provided within the

Scikit-learn framework.44 For the SQUIRLS application and library,

we wrote a custom implementation of the imputer, random forest,

and logistic regression. The implementation is available in the

SQUIRLS source code repository (web resources).
Model testing, validation, and comparison with other

splicing pathogenicity algorithms
To obtain the unbiased performance estimate for SQUIRLS scores,

we computed pathogenicity estimates for the test set variants and

then we performed ROC and precision-recall analysis. We used the

thresholds and evaluated classification accuracy.

We compared the SQUIRLS scores with other algorithms that are

used for prioritization of splice variants. We chose two algorithms

designed to assess splice variants that performed well in recently

published analyses (SpliceAI31 and S-CAP15), an older well-estab-

lishedmethod (MaxEntScan23), and an algorithm that is commonly
nal of Human Genetics 108, 1564–1577, September 2, 2021 1567



used for variant prioritization in WES/WGS experiments even

though it was not specifically designed for analysis of splice variants

(CADD45). To evaluate the ability of all algorithms to discriminate

between the neutral and the splice variants, we calculated predic-

tions for variants and constructed ROC and PR curves. We ran the

comparison of runtime performance of SQUIRLS and SpliceAI on

a consumer laptop with the following specifications: Intel Core

i7-8650U CPU @ 1.90GHz, 8 cores, 32GB DDR4 RAM, M.2 256GB

SSD HDD (no GPUs).
SpliceAI
SpliceAI provides four delta scores for each variant where the

maximum score denotes a probability of the variant being splice-

altering.31 In order to evaluate SpliceAI performance, we precalcu-

lated the delta scores for variants in our dataset. We used version

1.3.1 (accessed on April 25, 2020; see web resources) with the ‘-M

True’ option tomask scores representing annotated acceptor/donor

gain and unannotated acceptor/donor loss. We chose the

maximum value to perform ROC and PR evaluation. We bench-

marked SpliceAI runtime performance using the Python package

spliceai v.1.3.1 available at PyPi. The runtime of spliceai for a single

VCF file with �100,000 variants is roughly one day, so we bench-

marked spliceai on VCF files subsampled to 5,000 variants only.
S-CAP
The S-CAP algorithm provides splicing-specific pathogenicity

scores calculated using the gradient-boosting tree (GBT) algo-

rithm.15 The algorithm consists of six GBT predictors, one predictor

for each of six author-defined regions relative to the splice site. The

authors provide a VCF file with precomputed scores for all possible

single nucleotide variants in the splicing region. There are two score

types: raw score is the output of the corresponding GBT, and sensi-

tivity score which is a transformed raw score to make it directly

comparable with scores of the other regional predictors. We used

both raw and sensitivity scores for the ROC and PR evaluation.
MaxEntScan
MaxEntScan is a framework that employs the maximum entropy

principle for building a model m that represents a particular

sequence motif, including mRNA splice sites.23 During the build-

ing phase, a collection of aligned sequences is used to estimate

the maximum entropy distribution and a set of constraints. Using

this approach, the authors built and evaluatedmultiple maximum

entropy models. For our comparison, we chose the models that

yielded the highest AUCs (mme2x5 for the donor and mme2x3 for

the acceptor site), as described in the MaxEntScan manuscript.23

In order to allowMaxEntScan to be comparedwith SQUIRLS, we

created a set of rules for constructing nucleotide snippets jwt and

jalt to be scored by the appropriate MaxEntScan model m. For

each variant, we considered four situations: (1) the variant disrupts

the canonical donor site, (2) the variant activates a cryptic donor

site, (3) the variant disrupts the canonical acceptor site, and (4)

the variant activates a cryptic acceptor site.

For situations (1) and (3), we prepared sequence snippets jwt and

jalt for the canonical sites and we calculated the final score DMES as

DMES ¼ m(jwt) - m(jalt). For situations (2) and (4), we calculated a

score vector s for the sliding window of all n-bp sequences jwt or

jalt that contain the wt or alt alleles. Then, the final score was

computed as DMES ¼ max(salt) - max(swt). After calculating DMES

for all four situations, we used the maximum value as the final

pathogenicity estimate for ROC and PR analysis.
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Combined Annotation Dependent Depletion
Combined Annotation Dependent Depletion (CADD) estimates

the deleteriousness of variants by integrating multiple annotations

into a single score.45 The score is applicable across diverse variant

functional categories, including variants affecting mRNA splicing.

For comparing CADD with SQUIRLS, we downloaded TSV files

with PHRED-scaled pathogenicity scores precalculated for all

possible SNVs and INDELs built by the model v.1.4 (accessed on

November 20, 2019). For each variant, we transformed the PHRED

score x into [0,1] by applying f ðxÞ ¼ 1� 10�
x
10. If the score was not

available, we considered the variant to be benign (pathogenicity ¼
0.0). The transformed scores were used for ROC and PR analysis.

Implementation
We designedmultiple optimizations to achieve fast runtime perfor-

mance. SQUIRLS fetches all data required to evaluate a variant’s ef-

fect on the overlapping transcripts in a single I/O lookup and all

the subsequent operations are performed inmemory. An additional

performance increase is achieved by limiting the number of splicing

features andby exploiting inherentparallelismof the randomforest,

which canbe distributed acrossmultipleCPUcores. The source code

of SQUIRLS and a standalone ‘‘executable JAR’’ file are available for

download from the GitHub repository (web resources).
Results

SQUIRLS is designed to predict variants associated with

splice defects from exome- or genome-sequencing data.

All variants that overlap transcripts are evaluated for poten-

tial effects on splicing including both variants at the canon-

ical donor and acceptor sequences as well as other exonic

and intronic variants that could generate cryptic splice sites

or otherwise alter normal splicing. SQUIRLS evaluates the

effect of variants with respect to all transcripts that overlap

the variant. The output visualizations and tabular assess-

ments are designed for human consumption and can also

be used to output a VCF file with annotations of the predic-

tions of relevant splice variants for use in larger bio-

informatic pipelines for diagnostic genomics.

Overview of the algorithm

SQUIRLS first calculates a set of numerical features for each

variant/transcript pair. The features include changes in in-

formation content between reference and alternate alleles

(Figure 1), changes in SREs, distances from the canonical

splice sites, and a measure of evolutionary conservation.

The features were chosen to be interpretable by humans (Ta-

ble 1, Figures 2 and3). The features areusedas input for apair

of random forest classifiers specialized in computing site-

specific splice scores for donor and acceptor sites. The algo-

rithm then uses logistic regression to transform the scores

into the final SQUIRLS score that estimates the probability

of the variant in question being a splice variant.

A dataset of non-canonical splice variants

We performed a comprehensive review of scientific litera-

ture to curate a dataset of splice variants associated with

Mendelian diseases. In total, we collected 8,314 splice
tember 2, 2021
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Figure 1. mRNA splicing and sequence logos/walkers
(A) The figure shows an intron and the corresponding canonical splice donor and acceptor sites, which are represented as logos, where
the letters representing the sequence are stacked on top of each other for each position in the splice site. The height of the character stack
at each position represents the sequence information gained, Rsequence(l), by aligning wild-type sequences of exon/intron junctions of
GENCODE transcripts (material and methods). The heights of the characters within a stack represent contributions of the individual
bases to the position.
(B) Individual sequence information (Ri) for a wild-type splice donor sequence of CHRNE (MIM: 100725) and for the corresponding
sequence with the variant GenBank: NM_000080.3; c.917G>T (p.Arg306Met). c.917G>T is located at the last (30 most) position of
an exon and although it is predicted to lead to a missense change, it reduces the strength of the donor sequence and leads to skipping
of the affected exon.46 The sequence walker representations as introduced by Schneider38 are shown for the wild-type and variant se-
quences. Sequence walkers display nucleotides that represent favorable contacts to the spliceosome and a test sequence by letters
that extend upward and positions that are predicted to make unfavorable contacts are shown by inverted letters.
(C) SQUIRLS introduces a new graphical representation in which a bar chart is used to show the degree to which a sequence ‘‘matches’’
the donor or acceptor model. The height of the bars is calculated in the same way as for the height of the letters in the sequence walker.
Positions that are changed by a variant are displayed such that the original nucleotide is shown as an outline (the ‘‘g’’ in this example)
and the variant (alternate) base is shown filled.
(D) The variant reduces the Ri from 7.6 to 4.0 bits. Changes in Ri are referred to as DRi. SQUIRLS calculatesDRi in several contexts (Figures
2 and 3).
variants as well as 73,203 variants classified as benign or

likely-benign variants from ClinVar (Tables 2 and S1).32

The distribution of the variants with respect to the donor

and acceptor splice site is shown in Figure 4.

In order to prepare the variant dataset for training of ma-

chine learning models, we split the dataset into training

and test sets. We used a ‘‘cytogenetic band-aware’’ method

that ensures that variants affecting the same gene are used

for either training or testing, but not both, since nearby

variants may share similar features which might bias the

results. This way we randomly partitioned the splice and

non-deleterious variants into training (609 cytobands,

�90%) and test (67 cytobands, �10%) sets, consisting of

70,617 and 10,901 variants (Figure S2).
The American Jour
Then, we assigned the training set variants to either

donor or acceptor sites, based on the curation metadata

or distance to the closest splice site. The training set was

further narrowed down by removing 6,008 canonical

SAVs, yielding the final training set consisting of 1,623

deleterious noncanonical SAVs and 62,986 non-delete-

rious variants. We chose to train SQUIRLS on non-canoni-

cal SAVs, but note that SQUIRLS also displays state of the

art performance in the (relatively simple) classification

task of predicting deleteriousness of canonical SAVs.

Selection of interpretable features for machine learning

We trained two site-specific random forest classifiers to

separate splice variants from neutral variants, one for the
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Figure 2. Calculation of features for the donor site
(A) SQUIRLS calculates seven features to evaluate variant impact on the donor site. The individual information content ðRiÞ of the refer-
ence and alternate canonical splice site and of the donor site in the following exon (Exon kþ 1) are calculated and used to determine the
difference in information content between the reference and alternate canonical splice site DRi canð Þ, the difference between the best
candidate cryptic splice site and the alternate sequence of the canonical splice site DRi crypt

� �
, and the difference between the donor

site at exon k and kþ1 DRi nextð Þ, because differences in splice site strength can be predictive of exon skipping.14 See Table 1 for informa-
tion about other features.
(B) In this example, a variant in intron k creates a cryptic splice site with 8 bits, which is greater than the individual information of
the canonical splice site (4.5 bits), so DRi crypt ¼ 3.5 bits. The variant does not change the sequence of the canonical splice site, so
DRi can ¼ 0. The individual information of the donor site of the next exon has 0.5 bits more than that of exon k, so DRi next ¼ �0.5
bits.
(C) In this example, a variant in the canonical splice site (e.g., the þ5 position) reduces the strength of the canonical splice site from 7.5
to 3.0 bits and simultaneously creates a novel cryptic site with an individual information content of 8.3 bits. An example of this is the
variant GenBank: NM_000314.7; c.253þ2T>C (PTEN [MIM: 601728]), which alters the canonical splice site and simultaneously changes
the sequence of a cryptic splice site located 3 nucleotides downstream, resulting in the inclusion of 4 intronic nucleotides in the variant
mRNA.47
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Figure 3. Calculation of features for the splice acceptor site
(A) SQUIRLS calculatesDRi can as the difference in the Ri between the reference and alternate sequence of the canonical acceptor sequence
(Figure 1A). If the variant is located outside of this sequence, DRi can ¼ 0. SQUIRLS evaluates the potential of variants to create cryptic
splice sites using a sliding window approach (material and methods). DRi crypt is calculated by subtracting Ri of the alternate sequence
of the canonical acceptor site from the Ri of the best candidate cryptic splice site. The random forest for acceptor variants does not
use DRi next as our initial analysis showed that it did not boost classification performance. See Table 1 for information about other
features.
(B) In this example, a coding variant activates a cryptic acceptor site with 15 bits which is greater than the canonical acceptor site by 7
bits (DRi crypt ).
(C) A situationwhere a variant located in a splice acceptor site introduces novelAG dinucleotide into the AGEZ leading to cryptic splicing
or exon skipping.
donor variants and the other for the acceptor variants.

During training, we used random search hyperparameter

optimization48 and 10-fold cross-validation to evaluate

different combinations of 21 splicing features and learning

parameters, to select the combination that provides classi-

fiers with the highest area under receiver operating charac-

teristic curve (AUROC) and precision-recall scores. The

final set of 15 features included features based on informa-

tion content, changes in candidate 6/7-mer SRE motifs,

evolutionary conservation of the variant position, and dis-
The American Jour
tance from the closest splice sites (Table 1, Figures 2, 3, and

S3). After selecting the best-performing features and

learning parameters, we trained the final site-specific clas-

sifiers using the entire training set.

The donor and acceptor scores are calculated for all var-

iants. The ranges and thresholds of the acceptor and donor

scores are, however, different (Figure S4), which precludes

direct integration of the site-specific estimators into

variant prioritization frameworks. To combine the donor

and acceptor estimators into a single measure, we used
nal of Human Genetics 108, 1564–1577, September 2, 2021 1571



Table 2. Summary of the variant dataset

Outcome

Donor Acceptor

TotalNon-canonical Canonical Non-canonical Canonical

Cryptic site creation 143 7 191 13 354

Canonical site disrupted 1,125 3,576 360 2,882 7,943

Other 7 0 10 0 17

Totals 1,275 3,583 561 2,895 8,314

We created a collection of splice variants by curating literature. During curation, we recorded metadata regarding the variant pathomechanism and the observed
outcome. Based on the outcome, we categorized the variants into two major groups: (1) variants disrupting canonical splice sites and leading to activation of a
cryptic splice site, or to exon skipping, and (2) variants that activate cryptic splice. 73,203 neutral variants were used as negative training examples. There were
4,858 donor variants and 3,456 acceptor variants. Of these, 1,836 were non-canonical and 6,478 were canonical (i.e., located at the 51 or 52 positions).
logistic regression as the last step of our algorithm. We

calculated site-specific deleteriousness estimations for all

training variants and we subsequently used the site-spe-

cific estimates to obtain logistic regression parameters

that provide the best predictions (splice deleterious ¼ 1,

neutral ¼ 0). The final SQUIRLS score is the output of the

logistic function, integrating the raw scores into a single

measure with range [0,1].

Performance evaluation and comparison with other

methods

We evaluated SQUIRLS using a test set consisting of 808

splice variants (213 non-canonical SAVs) and 10,092

neutral variants (10,068 non-canonical SAVs) that were

not used for training. After calculating SQUIRLS scores

for all variants, we assessed diagnostic utility by creating

receiver operating characteristic (ROC) and precision-recall

(PR) curves, as well as calculating the area under the ROC

(AUROC) and the average precision (AP).

SQUIRLS achieved an AUROC of 0.91 and an AP of 0.62

on a test set consisting only of non-canonical SAVs

(Figure 5). Although SQUIRLS does not use canonical

(51 or 2) SAVs for training, it achieved an AUROC of

0.97 and an AP of 0.88 on a dataset that included both ca-

nonical SAVs and non-canonical SAVs (Figure S5). These re-

sults show that SQUIRLS can accurately identify both easy

(canonical) and difficult to assess (non-canonical) SAVs.

We then compared SQUIRLS to four state-of-the-art

methods for assessing the pathogenicity of candidate
1572 The American Journal of Human Genetics 108, 1564–1577, Sep
splice variants: SpliceAI,31 a deep residual neural network

that predicts whether each position in a pre-mRNA tran-

script is a splice donor, acceptor, or neither, and S-CAP,15

a gradient-boosting tree approach that provides splicing-

specific pathogenicity scores. Moreover, we compared

SQUIRLS toMaxEntScan,23 a well-established tool employ-

ing maximum entropy principle to model splicing motifs,

and to CADD,45 a framework that integrates diverse

genome annotations into a single quantitative score to es-

timate deleterious effect of arbitrary variants and hence

not specific for splice variants.

We obtained predictions for variants in the test dataset

and constructed ROC curves and PR curves. SQUIRLS and

SpliceAI achieved the best AUROC and AP on our test

set, largely outperforming the other methods (Figures 5

and S5). We compared the performance of SQUIRLS and

SpliceAI according to the variant’s distance from the ca-

nonical splice site. Both methods were the most confident

in finding splice variants located in canonical splice sites,

while assigning lower scores to coding or noncoding vari-

ants located outside of the canonical sites (Figure S6).

To further evaluate the expected performance of

SQUIRLS in real-life scenarios, we developed a simulation

strategy based on 13 VCF files generated by exome

sequencing of individuals unaffected by a Mendelian dis-

ease. In the simulation, we added a single splice variant

to each of the 13 VCF files, then we predicted pathoge-

nicity for all variants, and subsequently ranked the vari-

ants according to predicted pathogenicity. Finally, we
Figure 4. Distribution of deleterious SAVs
and non-deleterious variants used to
develop SQUIRLS
The figure shows the distribution of variants
used for developing SQUIRLS on a logarith-
mic scale. The position with respect to the
nearest acceptor or donor intron/exon
boundary is shown.
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Figure 5. Performance of SQUIRLS, Spli-
ceAI, S-CAP, CADD, andMaxEnt on non-ca-
nonical SAVs
(A) Receiver operating characteristic curves
indicate that SQUIRLS and SpliceAI achieve
comparable performance.
(B) Precision-recall curves show that
SQUIRLS and SpliceAI are able to find the
most of the true splice variants, while main-
taining high precision.
(C) Mean ranks of splice variants among
background variants in simulated exome
sequencing runs. Each dot represents the
mean rank of one of the splice variants in
13 WES simulations. The boxes represent
distributions of the mean ranks. The hori-
zontal line of each box indicates themedian
mean rank, box borders indicate positions
of the 1st and the 3rd quartile, and the whis-
kers indicate 1.53 the interquartile range.
(D) Comparison of algorithm runtimes for
SQUIRLS and SpliceAI. We recorded the
time required for analysis of 13 VCF files
containing 87,000–107,000 variants. The
figure shows the annotation speed that
was achieved on a consumer laptop. We
could not compare the performance of S-
CAP and CADD, since they provide precom-
puted predictions as tabular files. Therefore,
the annotation speed is only dependent on
a package used to query the tabular file (e.g.,
tabix).
calculated the rank of the added splice variant averaged

over the 13 VCF files.

In order for a prioritization method to be useful, it needs

to place causal variants near the top of the list (‘‘on the first

page’’) such that the causal variant is discoverable during

the clinical interpretation. SQUIRLS achieved the best per-

formance, placing 35% of splice variants within the top 5

positions, 50% of splice variants at rank 14 or below (me-

dian rank). The second-best method, SpliceAI, achieved a

median rank of 25, and the third best method, S-CAP,

achieved a median rank of 114 (Figures 5C and S7).

SQUIRLS enables rapid prioritization of arbitrary

variants

With an ever-increasing availability of sequencing data,

computationally expensive algorithms may quickly

become a bottleneck in the sequence data analysis. Precal-

culating pathogenicity scores for each genome position

and storing the predictions in sorted and compressed

tabular file or also using parallel hardware devices (e.g.,

graphics processing unit, GPU) are workarounds

commonly used for computationally expensive algo-

rithms. In contrast to single-nucleotide variants (SNVs),

this approach does not work well for multi-nucleotide var-

iants or indels, as the number of possible ref/alt allele com-

binations grows exponentially with increasing variant

length. Then, storing pathogenicity prediction for each
The American Jour
combination quickly becomes infeasible. Additionally,

pre-calculated scores are not always available with respect

to a particular transcript. To support pathogenicity predic-

tion for an arbitrary genome variant at scale, the algorithm

must be both efficient and easily portable to different

computational platforms. SQUIRLS was designed to satisfy

these requirements.

Apart from SpliceAI, SQUIRLS is the only tool in our

comparison that directly annotates variants in a VCF file.

S-CAP does not provide software that can analyze arbitrary

variants, and a downloaded file with score mainly for SNVs

was used for the comparison. SQUIRLS annotates a VCF file

containing 100,000 exome variants in roughly 1 min on a

consumer laptop, which is over 1,000 times faster than

SpliceAI (Figure 5D). SpliceAI provides both a download-

able file with predictions for SNVs as well as an executable

program that can analyze arbitrary variants. SQUIRLS was

faster than all competitors except for the lookup of S-CAP

predictions (material and methods).

SQUIRLS is written in Java 11 and can be used both as a li-

brary as well as a standalone command-line application (see

tutorial in online manual in web resources). The command

line application is intended to be used with a Variant Call

Format (VCF) file from exome or genome sequencing. The

application generates output inmultiple formats, including

HTML report with figures and supporting information (see

next section), a tabular file with predictions, and an
nal of Human Genetics 108, 1564–1577, September 2, 2021 1573



Figure 6. Screenshot of SQUIRLS HTML output
The variant GenBank: NM_000249.3; c.86C>G generates a cryptic splice site in MLH1 (MIM: 120426).49 The variant is evaluated with
respect to four overlapping transcripts and it is assigned maximum SQUIRLS score ¼ 0.893. Transcripts with predicted maximum
SQUIRLS score are highlighted in the table. The variant is located 31 bp upstream of the canonical site of exon 1 and it is predicted
to create a cryptic donor site (Ri ¼ 8.19 bits) which is stronger than the canonical donor (Ri ¼ 6.17 bits) by 2.02 bits. Using the cryptic
donor site would lead to removal of 31 bases from the coding sequence. Bar charts compare the canonical donor site with the predicted
cryptic site. The bar chart shows that the variant replaces cytosine (blue rectangle) with a guanine (orange rectangle). The change is pre-
dicted to allow a more favorable contact between spliceosome and the alt allele, resulting in usage of the cryptic site and removing 31
bases from the coding sequence.
annotated VCF file that contains pathogenicity predictions

with respect toalloverlapping transcripts. SQUIRLSalso sup-

ports pre-computing the pathogenicity predictions for all

possible variants in the regions of interest, including SNVs

and if desired MNVs up to specified length.

SQUIRLS provides interpretable predictions

The majority of machine learning algorithms that are used

as aids in variant prioritization work as black boxes. After

making a prediction, the algorithms do not explain how

the particular answer was made, which factors were

considered, and the insights regarding the most likely mo-

lecular cause. When designing SQUIRLS, our motivation

was to create an algorithm that is both accurate and inter-

pretable. We addressed these goals by limiting features to a

small set of biologically interpretable attributes (Table 1).

SQUIRLS can output its results in three ways: (1) by adding

annotations to the VCF file; (2) as a tab-separated values

(TSV) file that can be easily incorporated into larger anal-
1574 The American Journal of Human Genetics 108, 1564–1577, Sep
ysis pipelines; and (3) as an HTML file that presents the

specific values calculated for each of the attributes relevant

to a given variant in the context of visualizations that

show the most important predicted effects. Figure 6 pre-

sents an example of the output produced by SQUIRLS for

each candidate SAV.
Discussion

In this work, we have presented SQUIRLS, an efficient and

accurate algorithm for the prioritization of splice variants

in exome or genome data. Our approach displays AUROC

and AP performance that is comparable or better than that

of previously published methods and is superior to these

methods with respect to its ability to rank disease-associated

variants within the long list of candidate splicing variants

found in exomes. In contrast to previousmethods, SQUIRLS

was designed to leverage a small set of interpretable features
tember 2, 2021



and canprovide visualizations of the predicted effects of var-

iants on splicing that can help clinical interpretation.

To develop SQUIRLS, we focused on non-canonical

splice variants. Canonical variants, defined as those that

affect positions 51 or 52 of introns, are typically easy to

interpret because variants at these positions only rarely

do not deleteriously affect splicing. It has been substan-

tially more difficult to develop algorithms that accurately

classify splice variants at other positions. For this work,

therefore, we performed extensive and detailed curation

to identify non-canonical splice variants that are associ-

ated with Mendelian disease from the literature and from

ClinVar. The resulting dataset, which to our knowledge is

the largest of its kind, is freely available (Table S1). We

developed a machine learning model using random forests

and logistic regression, whereby substantial preprocessing

of sequence data is performed to generate a set of 15 fea-

tures, using also information theory techniques to assess

the information content of sequences that include splice

variants. Using logistic regression as the final step is essen-

tial in this context to improve performance. Indeed, a sim-

ple ensemble combination strategy based on averaging the

raw scores computed by the random forests, or each

random forest alone, worsens the overall performance

(data not shown).

While SQUIRLS can be used on its own to specifically

look for diagnostically relevant splice variants, it can also

be easily used as a component of diagnostic exome/

genome pipelines to improve recognition of causal splice

variants. We optimized the classifier for high sensitivity

to reduce the number of false negatives. In a full WES/

WGS analysis pipeline, the false positive rate can be

controlled by other strategies available for data analysis

such as phenotype-based prioritization.50–52 For instance,

combining the predictions of SQUIRLS with linkage anal-

ysis, candidate gene lists, or phenotype analysis would be

likely to further improve rankings of causal variants.50,51

Many resources for genomic diagnostics precalculate

scores for some subset of all possible variants. For

instance, dbNSFP collects functional predictions and an-

notations for over 80,000,000 human nonsynonymous

single-nucleotide variants and splice-site variants from

various other algorithms that precompute values for all

possible nucleotide changes in specified regions.53 Even

if pre-computing indels can be feasible when limited to

a few bp and to a specific region or gene panel, this

approach does not scale well for the prediction of

splicing-relevant variation, which can affect multiple nu-

cleotides and be located at arbitrary intronic and exonic

positions. In our study, three of the approaches we

compared with SQUIRLS offer precomputed scores but

did not cover all tested variants. Of the 243 test variants,

CADD missed 3 (1%), SpliceAI missed 27 (11%), and S-

CAP missed 108 (43%). For clinical use, it is therefore

important to optimize not only recall and precision but

to engineer software such that it can analyze a wide range

of variants in little time.
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A limitation of SQUIRLS and all other approaches for

computational prediction of SAVs in WES/WGS data that

we are aware of, is that the algorithms predict the existence

of an alteration of splicing, but do not attempt to predict

the exact defect. In general, SAVs can be associated with

a range of splice defects such as exon skipping, partial

loss of exonic sequence, complete or partial intron inclu-

sion, and the creation of pseudoexons. We included all

available disease-associated SAVs in our training and test

sets without reference to molecular mechanisms because,

inmost cases, this informationwas not available. It is likely

that machine learning algorithms could leverage mecha-

nistic information to further improve performance, and

this represents a promising avenue for future research.

Another limitation is that SQUIRLS was trained on rela-

tively common classes of noncanonical SAVs and may

not be able to correctly classify rarer classes of variants

such as deep intronic SAVs, multinucleotide SAVs, or vari-

ants affecting exonic splicing enhancers.

The UK 100,000 Genomes project and many other ini-

tiatives are poised to make genomic medicine part of

healthcare for individuals with rare and common dis-

ease. In order to maximize the diagnostic yield of these

programs, speed, efficiency, and ease of use are critical

for technical incorporation of an algorithm into the

diagnostic pipeline. However, it is also crucial that the

output of the algorithm is easily interpretable by the

clinical scientists receiving the results of this pipeline

in order that they can apply their findings to the treat-

ment of the affected individual. In this work, we have

presented an accurate and interpretable algorithmic

approach for analyzing non-canonical splice variants

that to date have been difficult to assess in exome or

genome data. SQUIRLS combines state-of-the-art accu-

racy with the ability to analyze arbitrary variants. On

typical mid-range consumer hardware, SQUIRLS can

analyze an exome file within a minute. To our knowl-

edge, SQUIRLS is currently the only software that com-

bines these abilities.
Data and code availability

SQUIRLS source code and pre-compiled release files are freely

available for academic use on GitHub (see web resources). Links

to the database files required for running SQUIRLS are available

in the setup section of the online manual. The dataset of the splice

variants used for training and evaluation of SQUIRLS is available

in the online supplement.
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10.1016/j.ajhg.2021.06.014.
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SQUIRLS download, https://github.com/TheJacksonLaboratory/
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Figure S1. Defining computational models of donor and acceptor sites. We aligned 
sequences neighboring splice junctions (±80bp) and we determined probabilities of observing 
a base b at l-th position of the A) splice donor and acceptor B) sites. Probabilities are depicted 

as sequence logos where height of a character representing a base b corresponds to probability 

of observing b at l-th position of the splice junction. 

After computing Riw (methods), we summed the elements by columns to get the uncertainty 
decrease at l-th position of the splice donor C) and acceptor D) sites. We chose a heuristic 

threshold t=0.05 bits (red line) to correct for the background noise and we determined the size 

of splice donor and acceptor sites to be 9bp and 27bp, respectively. The splice site regions are 
denoted by the dashed vertical lines. 
 

 

  



 

 

Figure S2. Cytoband-aware splitting of variants into training and test set. Each vertical 
line represents a cytoband, the line height represents the number of variants present within the 
cytoband. 

  



 
Figure S3. Relative feature importances in the donor/acceptor random forest classifiers. If 

the feature is used at the top of a decision tree, then it contributes to the prediction of a larger 

proportion of variants.  



 

 
Figure S4. Density estimate for donor and acceptor scores calculated for  all non-canonical 

training set variants (ndonor = 1,139, nacceptor = 484, nneutral = 62,986). A) SQUIRLS assigns low 

donor, acceptor, as well as the final SQUIRLS score to 62,986 splicing neutral variants. B)  

Unscaled scores for donor variants (generated by the donor-specific random forest classifier). C)  

Unscaled acceptor scores for acceptor variants  (generated by the acceptor-specific random 

forest classifier). The models show site-specificity (e.g., donor variants are not assigned  high 

acceptor scores and acceptor variants are not assigned high donor scores). The raw scores from 

the donor and acceptor random forest classifiers do not span the entire range of [0,1]. SQUIRLS 

uses logistic regression to generate the final SQUIRLS score.  



 
Figure S5. Performance of SQUIRLS, SpliceAI, S-CAP, CADD, and MaxEnt on all variants 

in the test set, including 6,008 canonical SAVs. A) Receiver operating characteristic curves 

indicate that SQUIRLS and SpliceAI achieve comparable performance. B) Precision-recall curves 

show that SQUIRLS and SpliceAI are able to find the most of the true splice variants, while 

maintaining high precision. 

  



 

 
Figure S6. Comparison of SQUIRLS and SpliceAI predictions for the test set of non-

canonical SAVs (213 splice variants and 10,068 neutral variants). The predictions are plotted 

with respect to distance to the canonical splice site. Each variant is represented by two circles, 

one for SQUIRLS and the other for SpliceAI. The dashed line represents a threshold value used 

by SQUIRLS to label a variant either as a splice variant (above the line) or as neutral variant. 

SpliceAI uses one of three thresholds to classify splice variants with high precision (0.8), 

recommended (0.5), or with high recall (0.2).  

 



 

Figure S7. Rank analysis simulation results. 243 cases were analyzed with SQUIRLS, 
whereby a disease-associated SAV was spiked into a VCF file. The figure displays the same 
results as panels B and C of Fig. 5 of the main manuscript. 
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