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Summary
Interpretation of the function of non-coding risk loci for neuropsychiatric disorders and brain-relevant traits via gene expression and

alternative splicing quantitative trait locus (e/sQTL) analyses is generally performed in bulk post-mortem adult tissue. However, genetic

risk loci are enriched in regulatory elements active during neocortical differentiation, and regulatory effects of risk variants may be

masked by heterogeneity in bulk tissue. Here, we map e/sQTLs, and allele-specific expression in cultured cells representing two major

developmental stages, primary human neural progenitors (n ¼ 85) and their sorted neuronal progeny (n ¼ 74), identifying numerous

loci not detected in either bulk developing cortical wall or adult cortex. Using colocalization and genetic imputation via transcriptome-

wide association, we uncover cell-type-specific regulatory mechanisms underlying risk for brain-relevant traits that are active during

neocortical differentiation. Specifically, we identified a progenitor-specific eQTL for CENPW co-localized with common variant associ-

ations for cortical surface area and educational attainment.
Introduction

Genome wide association studies (GWASs) have identified

many common non-coding variants associated with risk

for neurodevelopmental disorders, or inter-individual vari-

ability in brain structure and other brain-related traits.1–7

However, it is challenging to determine the mechanism

of these non-coding variants because, in general, (1) the

genes impacted by non-coding risk variants are unknown,

(2) the cell type(s) and developmental period(s) where the

variants have an effect are not known, and (3) theremay be

limited availability of cells or tissue representing the causal

developmental stage and cell type.

One potential mechanism by which non-coding genetic

variation can influence brain traits is through alterations

in gene expression or expression quantitative trait loci

(eQTLs). Genetic variation also impacts transcript

splicing,8–10 and several studies have implicated geneti-

cally mediated alterations in splicing as important risk fac-

tors for neuropsychiatric disorders.11–13

Most current efforts to explain the function of these risk

loci rely on mapping local expression and splicing quanti-

tative trait loci (e/sQTLs) in bulk adult brain tissue, which

has been a fruitful approach.14,15 However, neuropsychi-

atric disorder genetic risk loci are enriched in cell types

relevant for neocortical differentiation that are not
1Department of Genetics, University of North Carolina at Chapel Hill, Chapel

olina at Chapel Hill, Chapel Hill, NC 27599, USA; 3Neurogenetics Program, De

ifornia, Los Angeles, Los Angeles, CA 90095, USA; 4Center for Autism Research a

of California, Los Angeles, Los Angeles, CA 90095, USA; 5Department of Huma

Angeles, Los Angeles, CA 90095, USA; 6Department of Psychiatry and Biobehav

of California, Los Angeles, Los Angeles, CA 90095, USA; 7Department of Biosta

USA

*Correspondence: jason_stein@med.unc.edu

https://doi.org/10.1016/j.ajhg.2021.07.011.

The American Jour

� 2021 American Society of Human Genetics.
present in the adult brain.16,17 e/sQTL studies performed

on human fetal brain bulk cortical tissue have demon-

strated the importance of developmental stage and cell

composition, by identifying thousands of fetal brain-spe-

cific e/sQTLs.18–20 However, these studies necessarily focus

on one developmental time point for each individual and

heterogeneity in bulk tissue may mask cell-type-specific

allelic effects.21–24

Utilizing a cell-type-specific in vitro model system

including neural progenitors (ndonor ¼ 85) and their virally

labeled and sorted neuronal progeny (ndonor ¼ 74) derived

from a multi-ancestry population, here we investigated

how common genetic variants impact brain-related traits

through gene expression and splicing during human neu-

rogenesis. We discovered 2,079/872 eQTLs in progenitors

and neurons and 5,900/4,396 sQTLs in progenitors and

neurons, respectively. Importantly, 66.1%/47% of eQTLs

and 79.3%/73.4% of sQTLs in progenitor/neuron were

unique and not found in fetal bulk brain e/sQTLs from a

largely overlapping sample19 or in adult bulk e/sQTL data

from GTEx.25 We showed both eQTLs and sQTLs colocal-

ized with known GWAS loci for neuropsychiatric disorders

and other brain-relevant traits in a cell-type-specific

manner. By integrating the dataset generated here with

cell-type-specific chromatin accessibility from the same

cell lines17 and brain structure GWAS,4 we propose a
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regulatory mechanism whereby genetic variation influ-

ences educational attainment, a proxy for human intelli-

gence, across multiple levels of biology. Furthermore, we

genetically imputed cell-type-specific and temporal spe-

cific gene expression and alternative splicing associated

with brain-relevant traits and neuropsychiatric disorder

risk using transcriptome-wide association studies (TWASs).
Material and methods

Cell culture
Generation of human neural progenitor cells was previously

described.17,26 Briefly, human fetal brain tissue was acquired

from the UCLA Gene and Cell Therapy Core following IRB regula-

tions from approximately 14–21 gestation weeks (inferred to be

12–19 post conception weeks). The tissue was derived from volun-

tary terminations of pregnancy. We excluded known trisomy 21

cases. We were not aware of any fetal anomalies in any body sys-

tem. For a small subset of intact samples, cortical tissue was

dissected to generate primary human neural progenitor cells

(phNPCs). For most samples that were non-intact, flat and sheet-

like pieces of brain tissue that were presumed to originate from

the cortex were selected to generate phNPCs. The tissue was

then dissociated and cultured as neurospheres as previously

described.26 Neurospheres were plated on laminin/fibronectin

and polyornithine-coated plates for an average of 2.5 5 1.8 SD

passages, and cryopreserved.

Cryopreserved phNPCs were transferred to UNC Chapel Hill, af-

ter material transfer agreement, where all downstream culture and

analyses were completed. Donors processed for ATAC-seq

(described previously17) and RNA-seq (described here) were

cultured simultaneously. The overall design of the experiment

and media used for culture was previously described.17 Briefly,

we cultured 89 unique donors for subsequent RNA-seq library

preparation. We first randomly assigned the approximately 8–9

donors into 12 rounds for a feasible cell culture workload. We

thawed one round every 3 weeks. To reduce batch effects, we pro-

cessed each round on the same day of the week and designated the

same person to do each task as much as possible. Cells were iso-

lated at two time points: progenitor and their differentiated and

virally labeled neuronal progeny. Progenitors were cultured in pro-

liferation media including growth factors for 3 weeks (see Liang

et al.17), and we lifted them with trypsin to prepare RNA-seq li-

braries. Differentiation in the absence of growth factors was per-

formed for 5 weeks, after which the culture was transduced with

AAV2-hSyn1-eGFP virus, that specifically expresses a reporter

gene in neurons without integrating into the genome, at 20,000

multiplicity of infection (MOI) and then differentiated for another

3 weeks. FACS sorting (using either BD FACS Aria II or Sony

SH800S) at 56 days (8 weeks) post-differentiation was used to

isolate EGFP-labeled neurons (Figure S1A). After cells were isolated

as either progenitors or neurons, we added Qiazol and stored the

mixture at �80�C for randomized RNA isolation to reduce batch

effects.
Immunofluorescence labeling and imaging
At the progenitor stage or after 8 weeks of differentiation, we fixed

the cells by incubating them in 4% PFA and performed permeabi-

lization with 0.4% Triton in PBST. We used 10% goat serum dis-

solved in PBST for blocking. We incubated blocked samples with
1648 The American Journal of Human Genetics 108, 1647–1668, Sep
primary antibodies dissolved in PBST solution with 3% goat serum

at 4�C overnight followed by washing 3 times with PBST. Samples

were subject to incubation in fluorophore-conjugated secondary

antibodies, for 1 h at room temperature, then they were stained

with DNA-binding dye DAPI with 10 min incubation. We used

antibodies with concentrations listed as follows: SOX2 (1:400,

rabbit, Millipore #AB5603), Ki67 (1:1,000, rat, Invitrogen #14-

5698-82), HOPX (1:1,000, Sigma-Aldrich, Catalog#:HPA030180,

Lot#: C105752), TUJ1 (1:2,000, mouse, Biolegend #801202), GFP

(1:500, Millipore, Catalog#: AB16901, Lot#:2712295), Alexa Fluor

568 (1:1,000, goat anti-rabbit, Invitrogen #A11036), Alexa Fluor

647 (1:1,000, goat anti-rat, Invitrogen #A21247), Alexa Fluor 488

(1:1,000, goat anti-mouse, Invitrogen #A11001).
RNA-seq library preparation
We isolated RNA from progenitors and neurons using the QIAGEN

miRNeasy Minelute kit, quantified RNA concentration with a Qu-

bit 2.0 fluorometer, and assessed RNA integrity via eRIN scores us-

ing the Agilent Tapestation. We prepared libraries for sequencing

using Kapa Biosystems KAPA Stranded RNA-seq with Riboerase

(HMR) kit by loading 50 ng of total RNA into the initial reaction.

We followed the manufacturer’s instructions for fragmentation

and PCR steps. To obtain �350 bp average insert size, we frag-

mented cDNA at 85�C for 6 min. Final library concentrations

were determined using Qubit 2.0 fluorometer and pooled to a

normalized input library. Pools were sequenced on a NovaSeq S2

flowcell using 150 bp PE reads with an average read depth of

99.8M 5 29.8 SD read pairs per sample.
RNA-sequencing data processing
We merged fastq files from the same library when sequenced on

multiple flow cells and trimmed the adapters using sequences pro-

vided by Illumina with Cutadapt/1.15.27 Quality control of each

library was performed with FastQC. For alignment, we first inte-

grated the sequence of AAV2-hSyn1-eGFP plasmid used for label-

ing neurons into GRCh38 release92 reference genome. Then, we

aligned the fastq files to this combined reference genome by im-

plementing STAR/2.6.0a aligner.28

We processed aligned data further with different steps based on

downstream analyses. To estimate gene expression levels, we

quantified reads with the union exon based approach using featur-

eCounts, where for each gene, all overlapping exons were merged

to form union exons, and the reads mapped to those union exons

with the same strandedness were counted.29 Gene models were

identified using the GTF file Homo_sapiens.GRCh38.92 merged

with AAV2-hSyn1-eGFP plasmid.

For allele-specific expression and splicing quantification, we re-

mapped the aligned data with WASP software (v2018-07)30 to

reduce reference mapping bias. First, we identified reads overlap-

ping with bi-allelic SNPs within our acquired genotype data.

Following this, the genotype of any reads overlapping with a

SNP was swapped with the other allele, and re-mapped. WASP dis-

carded re-mapped reads that did not map to the same genomic

position. As a final step, we implemented the rmdup.py script pro-

vided in the WASP software which removes duplicate reads

randomly, regardless of their mapping score.
Mycoplasma contamination test
Adaptor trimmed reads (see above) were mapped using STAR to a

combined reference including the GRCh38 release 92 human

reference genome, AAV2-hSyn1-eGFP plasmid, and more than
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1,400 mycoplasma genomes. Alignment parameters allowed for

simultaneous mapping of reads to one or more human and myco-

plasma genomes. No sample exceeded 0.11% of total reads map-

ping to any mycoplasma genome, indicating none of our cultures

were contaminated with mycoplasma. This mapping strategy was

only used for mycoplasma contamination analysis and not for

subsequent analyses.

Genotype processing
We performed genotyping using Illumina HumanOmni2.5 or Hu-

manOmni2.5Exome platform and exported SNP genotypes to

PLINK format following the procedure previously described.17

Briefly, we converted SNP marker names from Illumina KGP IDs

to rsIDs using the conversion file provided by Illumina. We per-

formed quality control with PLINK v.1.90b3 software31 as follows.

We filtered out SNPs with the following criteria: variant missing

genotype rate>5% (–geno 0.05), deviations fromHardy-Weinberg

equilibrium at p < 1 3 10�6 (–hwe 10�6), minor allele frequency

<1% (–maf 0.01). We also filtered out individuals with missing ge-

notype rate >10% (–mind 0.10). We obtained 1,760,704 directly

genotyped variants surviving our QC procedure. Lastly, we called

sex from genotype data using PLINK v.1.90b3 software based on

heterozygosity on the X chromosome. When there was an ambi-

guity for sex assessment based on genotype data, we checked

XIST expression. We estimated the population structure of our

study cohort by implementing multidimensional scaling (MDS)

for genotype data of our samples and genotype data from

HapMap3, following the protocol from the ENIGMA consortium.

By plotting MDS1 versus MDS2, we visually show each donor’s

ancestry relative to known populations (Figure S2B).

Imputation
After filtering genotype data, we pre-phased the data with SHAPEIT

v.2.837.32 For our imputation reference panel, we used 1000 Ge-

nomes Project Phase 3 that contains a total of 37.9 million SNPs in

2,504 individuals with multiple ancestries, including those from

West Africa, East Asia, and Europe.33 Imputation was implemented

using Minimac4 software34 (v.1.0.0). On the X chromosome, we

separatelyperformedpre-phasingand imputationsteps for thepseu-

doautosomal region and non-pseudoautosomal regions. Following

imputation, we retained any variants with missing genotype rate

lower than 0.05, Hardy-Weinberg equilibrium p value greater than

13 10�6, andminor allele frequency (MAF) bigger than 1%.We re-

tained SNPs with sufficient imputation quality (R2 > 0.3), and

obtained approximately 13.6 million SNPs in total.

Sample quality control
One library with missing eRIN score and one library with missing

final cDNA concentration from neurons were removed. In order to

detect sample swaps or mixing between samples, we evaluated

consistency of genotypes called from the RNA-seq and genotyping

array via VerifyBamID v.1.1.3.35 We removed the RNA-seq libraries

file with [FREEMIX] > 0.04 or [CHIPMIX] > 0.04 (nlibrary ¼ 14).

Also, we corrected samples where we detected swaps (nlibrary ¼
8). After quality control, we retained 85 unique donors for progen-

itors, and 74 unique donors for neurons for subsequent analyses.

Replicate correlation and determination of technical

factors correlating with gene expression
Quantified RNA-seq reads with featureCounts were imported to

generate a gene count matrix in DESeqDataSet format from
The American Jour
DESeq2 R package.36 We filtered out the lowly expressed genes

(those where fewer than 10 read counts of a gene were observed

in fewer than 5% of samples), and normalized the data via vari-

ance stabilizing transformation (vst()) function from DESeq2 R

package.36 We included genes on the X and Y chromosomes and

genes transcribed from mitochondrial DNA meeting the expres-

sion criteria. We subset the normalized gene expression matrix

into progenitor- and neuron-specific samples. To identify major

axes of variation in gene expression across samples, we computed

principal components of gene expression with prcomp() function

from stats R package for each cell type separately and reported the

proportion of variance explained by each component.

We recorded biological and technical variables for each sample

which may potentially impact gene expression: cell type, post-

conception week, sex, tissue acquisition date, researcher extract-

ing RNA and preparing libraries, RNA input amount, index num-

ber and bases, final cDNA concentration, BioAnalyzer run date,

average fragment size of BioAnalyzer cDNA, sequencing pool,

cell input, Qiazol lot number and addition date, eRIN, RNA

extraction date, RNA tapestation date, QIAGEN extraction kit

lot number, FACS sorting date and time, total live cells during

sorting, FACS machines used, researcher performing FACS sorting,

papain lot number and addition date, differentiation rank (a qual-

itative assessment of cell health evaluated under the microscope),

well location in the 6-well plate, date to plate for differentiation,

researcher washing and differentiating cells and date, virus addi-

tion date, researcher adding virus, PBS lot number used for cell

proliferation and differentiation, laminin, polyornithine lot

numbers used for proliferation and differentiation, donor ID,

round, media lot numbers used for proliferation, passage number,

split dates, researcher performing each split, rank for proliferation

(qualitative assessment of cell health), trypsin lot number used for

splitting cells, and fibronectin lot number. To identify technical

covariates impacting expression levels, we assessed whether any

recorded biological or technical variables were significantly corre-

lating with the first 10 expression PCs separately for each cell

type. We observed that different FACS machines (Sony SH800S

with ndonor ¼ 8; FACS Aria II with ndonor ¼ 66) used to isolate

GFP-labeled neurons had a strong impact on global gene expres-

sion in neurons (PC1: r ¼ 0.59, p value ¼ 1.782e�08; PC2: r ¼
0.58, p value ¼ 3.972e�08) (Figure S2D). To remove the impact

of sorter on global neuron expression profiles prior to differential

expression analysis, we implemented limma::removeBatchEffect

function.37 Then, we combined the gene expression matrix

from batch-corrected neurons with progenitors gene expression

data.

We cultured 20 donors multiple times during the course of the

experiment in order to quantify cell culture-induced noise. We

calculated Pearson’s correlation of gene expression between li-

braries from the same donors (nlibrary-library pairs ¼ 15 in progenitors

and nlibrary-library pairs ¼ 12 in neurons), and between each library

across donors in a pairwise manner (nlibrary-library pairs ¼ 11,556

for progenitors; nlibrary-library pairs ¼ 9,312 for neurons). For neu-

rons, we used gene expression values after batch correction with

the limma R package for the sorter type, as described above. We

performed an unpaired two-sided t test for statistical assessment

of mean difference between these two categories after fisher’s z

transformation of correlation r values (Figure S1C).

Differential gene expression analysis
We identified differentially expressed genes between progenitors

and neurons by using vst normalized expression values corrected
nal of Human Genetics 108, 1647–1668, September 2, 2021 1649
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Figure 1. Study design and cell-type-specific expression
(A) Study design illustrating the fetal brain tissue derived cell-type-specific system used to perform eQTL and sQTL analysis.
(B) Immunofluorescence of the cells showed that undifferentiated progenitors were SOX2 (in red) and PAX6 (in green) positive, and 8-
week differentiated neurons labeled with AAV2-hSyn1-EGFP were positive for EGFP (in green) (scale bar is 100 mm, DAPI in blue).
(C) Principal component analysis of progenitor (purple) and neuron (green) transcriptomes from each donor indicates cell-type-specific
clustering.
(D) MA plot showing differentially expressed genes in progenitor versus neurons. log2FC> 0 and adjusted p value< 0.05 indicates genes
upregulated in neurons shown in green (neuron up), log2FC < 0 and adjusted p value < 0.05 indicates genes upregulated in progenitors
shown in purple (progenitor up) and genes not significantly differentially expressed between two cell types are shown in gray. Blue lines
indicate |log2FC| > 1.5.
for sorterwith limmaRpackage.37We retained the genes if at least 10

countsof thegenewerepresent inmore than5%of thesamples from

either one of the cell types. To perform a paired differential gene

expression analysis, which inherently controls for donor-related dif-

ferences, we established the following design matrix: model.ma-

trix(�CellType þ as.factor(DonorID) þ RIN, data). Following this,

we adjusted p values for each gene via multiple test correction with

the Benjamini-Hochberg procedure38 and defined significant differ-

entially expressed genes as adjusted p value < 0.05.

Gene Ontology analysis
We performed gene ontology enrichment analysis by using the

gprofiler2 package as the R interface to the g:Profiler tools by using

GO:BP database.39 For differentially expressed genes, after per-

forming DGE analysis, we categorized the genes into two groups

as upregulated in progenitors (logFC < �1.5 and adjusted p value

< 0.05) and upregulated in neurons (logFC > 1.5 and adjusted

p value < 0.05) (Figure 1D). For each enrichment analysis, we

applied multiple test correction and considered only pathway en-

richments with adjusted p value lower than 5% false discovery rate

as statistically significant.

Transition mapping (TMAP)
Toevaluate the transcriptomic similaritybetweenour in vitro culture

systemand the in vivobrain,weperformed transitionmappinganal-

ysis as described in previous work.26,40 To evaluate transcriptomic

similarity to cortical laminae in the developing brain, we used pre-

viously published laminar expressiondata from laser capturemicro-

dissections of prenatal human brain41 (H376.IIIB.02. female, 16

pcw, brainspan.org). In our comparison, genes were retainedwhich

showed expression in either cell type andwere present on the array

in which the in vivo data were acquired. We used gene symbols to

find ensemblIDs and used ensemblIDs to match with in vitro data.

When multiple probes were present for a given gene on the array,

the probe with the highest expression per gene was used.We quan-
1650 The American Journal of Human Genetics 108, 1647–1668, Sep
tile normalized the gene expression andwe performed in vivo differ-

ential gene expression via limma between every two laminae.

Similarly, we performed differential expression analysis in our

in vitro cultures as described above. We applied transition mapping

via RRHO2 R package with ‘‘stratified approach’’ to avoid misinter-

pretation of the discordant overlaps.42 In this algorithm, first genes

were ranked based on their degree of differential expression (DDE)

(i.e., �log10(p value)3 signed effect size) separately for in vivo and

in vitro data. Following ranking, a hypergeometric test was applied

to assess enrichment for each overlap between two datasets for a se-

ries of arbitrary step sizes. By employing a stratified algorithm, we

computed thedegreeofoverlap. Finally,wevisualized thehypergeo-

metric test �log10(p values) as a heatmap (Figure S1G).

Cell-type-specific local eQTL mapping
To perform local eQTL analysis, we conducted an association test

between gene expression (retaining genes if at least 10 counts of

the gene were present in more than 5% of the samples of that cell

type, resulting in 24,778 and27,649 genes for progenitors andneu-

rons, respectively) with genetic variants within51 Mb window of

geneTSS for both autosomal chromosomes andXchromosome, for

progenitors and neurons separately. Each gene TSS was defined as

the transcription start site of the gene isoform with the most up-

stream exon based on GTF file Homo_sapiens.GRCh38.92.

We removed variants of low allele frequency in order to prevent

one donor from strongly influencing association results. For

variant selection, PLINK v.1.90b3 software function was imple-

mented to obtain donor counts per genotype group for each

variant. We included only variants with at least two heterozygous

donors and no homozygous minor allele donors, or at least two

minor allele homozygous donors for autosomal chromosomes,

and for X chromosome we retained the variants with at least

two haploid allele counts in addition to this criteria.

For eQTL mapping, we used a linear mixed effects regression

model to control for population stratification and cryptic
tember 2, 2021
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relatedness with EMMAX software.43 To compute the kinship ma-

trix, we implemented emmax-kin -v -h -d algorithm creating the

identity by state (IBS) kinship matrix by excluding all genetic var-

iants located on the same chromosome as the tested variant from

non-imputed genotype data for each single variant association

test (MLMe method; see Yang et al.44). We used additional

ancestry control by including the first ten MDS components

from the genotype data as covariates.45 In order to control for un-

measured technical variables impacting gene expression, we

computed global gene expression PCs. To optimize eQTL discov-

ery, we sequentially added gene expression PCs and re-ran the

genetic associations via EMMAX. For neurons, we included a co-

variate for FACS sorter for each run given its strong impact on

gene expression.

The full association model for neurons was:

expression�SNPþ 10MDS of global genotypeþ kinshipmatrix

þ FACS sorter þ PCs of global gene expression

The full model for progenitors was:

expression�SNPþ 10MDS of global genotypeþ kinshipmatrix

þ PCs of global gene expression

For each run, we adjusted nominal values of all gene variant as-

sociations, and defined significant associations with nominal p

value lower than 5% false discovery rate (FDR).38 We found that

10 PCs and 12 PCs of gene expression resulted in a maximum

number of eGenes discovery in progenitors and neurons, respec-

tively (Figure S2E). Our final eQTL model was:

Neuron:

expression�SNPþ 10MDS of global genotypeþ kinshipmatrix

þ FACS sorter þ 12 PCs of global gene expression

Progenitors:

expression�SNPþ 10MDS of global genotypeþ kinshipmatrix

þ 10 PCs of global gene expression

In order to stringently control our association results for both

number of variants and genes tested, we further implemented a hi-

erarchical correction procedure called eigenMT-FDR46 for the

models optimized above. Using this method, as step 1, we adjusted

the nominal p values of the all cis SNPs separately for each gene to

compute locally adjusted p values with the eigenMT method that

resulted in the estimation of effective number of independent

tests from the genotype correlation matrix including cis SNPs.47

In step 2, locally adjusted minimum p values for all genes were

then subjected to FDR procedure to obtain globally adjusted p

values. In step 3, we defined eGenes as genes with globally

adjusted p value lower than 0.05. Then, to find other independent

SNPs for those eGenes, we set the significance threshold as the

maximum nominal p value from step 1 that had corresponding

globally adjusted p value lower than 0.05.

We performed conditional analysis by using this threshold

p value gathered from the eigenMT-FDR multiple correction

method to identify independent significant eQTLs. To identify

conditionally independent eQTLs, for each eGene (a gene signifi-

cantly associated with at least one variant), we iteratively included

the hard call genotype of the variant with the strongest association

with eGene as a covariate and re-ran the regressionmodel specified

above (Figure S3A). We defined a variant as ‘‘conditionally inde-

pendent’’ from the variant conditioned on, if the association of

the variant with the eGene was still significant based on the initial

threshold p value. Then, we conditioned on those variants that

met threshold p value condition at the first round plus the primary

variant and identified third conditionally independent eQTLs. We

applied this procedure iteratively until no additional significant

eQTLs remained.48,49
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Bulk fetal brain eQTL mapping
We utilized bulk fetal cortical wall eQTL data described previ-

ously.19 We re-analyzed data in this study with the followingmod-

ifications to harmonize with the eQTL approach implemented in

this study: (1) we controlled for population stratification using a

linear mixed effects model as described above and (2) we included

23 additional donors which were genotyped after the publication

of the previous manuscript. We used rRNA-depleted RNA-seq data

from flash frozen human fetal brain cortical wall tissues derived

from 240 donors at 14–21 gestation weeks (inferred to be 12–19

post conception weeks). We excluded 4 donors for sample swap

and contamination based on verifyBAMID analysis, and 1 donor

with sex ambiguity, resulting in 235 unique donors for eQTL anal-

ysis (35 of unique donors shared with cell-type-specific data).

Gene-based annotations of the genome were derived from Homo

sapiens gene ensembl v.92 (GRCh38) for eQTLs. We included

only genes with at least 10 counts in 5% of donors. We normalized

the data with the VST method to be used as phenotype in eQTL

analysis. We also extracted genomic DNA from the same donors

and performed genotyping on a dense array (Illumina Omni

2.5þExome) and imputation to a common reference panel (1000

Genomes Phase 3; described above). Variants were retained in

the analysis if there were at least two heterozygous donors and

no homozygous minor allele donors, or if there were at least two

minor allele homozygous donors as for cell-type-specific eQTLs,

as described above.

We performed local eQTL analysis to test the association be-

tween each gene’s expression and variants within the51 Mb win-

dow of the transcription start site of each gene. We applied linear

mixed model association software EMMAX43 to control for popu-

lation stratification and cryptic relatedness (as described above for

cell-type-specific eQTL analysis). We used the linear mixed effects

regression model testing association between expression of each

gene and nearby genetic variants, controlling for ten MDS geno-

type components, ten PCs of gene expression, and a kinship ma-

trix as random effect excluding the chromosome genotypes

testing with the MLMe approach.44 After association, nominal p

values were corrected for hierarchical multiple testing using the

eigenMT-FDR method as described above, and we obtained inde-

pendent eQTLs performing conditional analysis as described for

cell-type-specific eQTLs above.

Enrichment of eQTLs within functional genomic

annotations
To identify enrichment of eQTLs and sQTLs within functionally

annotated genomic regions, we implemented GARFIELD software

to control for the distance to TSS, LD, and minor allele frequency

(MAF) of QTLs.50 We used functional genomic annotations from

25 chromatin states given in the ChromHMM BED files of Road-

map Epigenomics project from human male fetal brain51,52 lifted

over from hg19 to hg38. For all eQTLs, we extracted the p value

from the strongest association for each variant (with minimum

p value) in the case that one variant was associated with multiple

genes. To create annotation files, we considered a variant overlap-

ping with a functional element if the variant itself or any of the

variants in high LD within 500 kb (r2 > 0.8) overlapped with

each of the annotation categories. LD pruning50 was performed

at r2 > 0.01 within GARFIELD software. Following this, a logistic

regression model controlling for the distance to TSS of the gene

with the strongest association to the tested SNP, LD proxies, and

MAF binned for five quantiles was performed with GARFIELD soft-

ware for enrichment at eigenMT-FDR p value thresholds defined in
nal of Human Genetics 108, 1647–1668, September 2, 2021 1651



eQTL analysis. The effective number of annotations were esti-

mated and multiple testing adjusted p values were computed by

the software to identify enrichment of eQTLs within defined

annotations.
Enrichment of eGenes within likely in vitro artifacts
To determine whether eQTL discovery was driven by in vitro arti-

facts, we performed an enrichment analysis via fgsea software53

to test whether discordant genes between in vivo laminar expres-

sion data41 and our cell-type-specific in vitro data were enriched

among cell-type-specific eGenes. To define discordant genes, we

used two lists of differentially expressed genes from in vivo oSVZ

versus SP (selecting these regions as the most overlapping with

our cell types in Figure S1G) and separately from in vitro progenitor

versus neurons as described for TMAP analysis. We defined the

discordant genes as genes with adjusted p value lower than 0.01

and opposing sign of log fold change. Then, for each cell type,

we tested for enrichment of discordant genes among all eGenes

ranked by their ascending m-value (from low values for cell-type-

specific to high values for shared effect size).
Allele-specific expression analysis pipeline
To identify sites with allele specific expression (ASE), we initially

extracted uniquely mapped reads from the RNA-seq data remap-

ped with WASP to reduce mapping bias and to discard duplicate

reads; then, we applied the ASEReadCounter algorithm from

GATK tools.54 For each donor, we counted allele-specific reads

overlapping with bi-allelic variants identified in the genotypeVCF

files. We retained only variants with at least five heterozygous do-

nors and at least ten counts from either allele (at least two counts

supporting each allele). ASE can be falsely called when genotyping

errors are present in the dataset. We used two approaches to iden-

tify and remove potential genotyping errors. (1) We detected

wrongly called variant genotypes by assessing concordance be-

tween genotypes called by DNA versus RNA.55 We removed vari-

ants that were called homozygous based on the genotype data

when at least ten counts of the alternate allele were present in

the RNA-seq data, and (2) we discarded variants where at least

seven heterozygous donors based on genotype data have zero

counts for one of the alleles, which may indicate a donor falsely

called as heterozygote when in truth the donor is a homozygote

(given that (1/2)7 ¼ 0.008, meaning that probability of having

all donors receiving an imprinted allele from either mother or fa-

ther is low). Because ASEReadCount does not disambiguate the

strandedness of reads, it is not possible to confidently assign reads

overlapping with multiple gene annotations to a specific gene.54

Therefore, if a variant overlapped with more than one gene anno-

tation, we removed the variant by implementing findOverlaps

function from IRanges R package56 for genes based on their

genomic coordinates defined GTF file Homo_sapiens.GRCh38.92.

To evaluate allelic imbalance, we used DESeq2 with the design:

design¼�0 þ RNAidþ Allele. Excluding homozygous donors, we

computed the log2 fold change of non-reference allele counts over

reference allele counts and used a Wald test to detect allelic imbal-

ance by setting fitType ¼ ‘‘mean’’ after visual inspection of disper-

sion. Multiple test correction was performed with the Benjamini

and Hochberg method, and we defined significant ASE sites as

those with adjusted p values lower than 0.05.

To compare eQTLs with ASE sites (Figures 2B, S4F, and S4G), we

extracted eQTLs associations with the variants tested for ASE anal-

ysis (at least 5 heterozygous donors and overlapping with at least
1652 The American Journal of Human Genetics 108, 1647–1668, Sep
10 RNA-seq reads).We also extracted eGenes (defined based on sig-

nificant eigenMT-FDR global p value) with at least 10 counts per

donor. To calculate allelic fold change (aFC) for the eQTLs in

this list, we applied aFC software57 using VST normalized genes

and controlling for the same fixed effect covariates used for

eQTL analysis.
Quantification of intron excisions
To identify alternatively excised introns, separately for each cell

type, we extracted exon-exon junctions from uniquely mapped

reads from WASP-mapped RNA-seq data in BAM format via re-

gtools function where reads map to a minimum of 6 nt of each

exon.58 Next, we processed those junctions that are called intron

excisions or exon-exon junctions with the pipeline provided by Leaf-

Cutter software.59 First, intron excisions with shared splice junc-

tions were clustered together applying an iterative procedure until

each cluster has at least 50 reads across donors and introns with

maximum 50 kb length, separately for progenitors and neurons.

For differential splicing analysis, we performed clustering by

combining exon-exon junctions files from each cell type. For

each cluster, intron excisions supported by at least one count in

more than five donors were retained (within each set of donors

contributing to the three different sQTL analyses for that cell

type [progenitor, neuron] or tissue class [fetal brain bulk]; or for

differential splicing analysis across donors from both cell types

used [progenitorþ neuron]).We further calculated intron excision

ratios and filtered out introns represented in less than 40% of do-

nors (within each set of donors contributing to the three different

sQTL analyses for that cell type [progenitor, neuron] or tissue class

[fetal brain bulk]; or for differential splicing analysis across donors

from both cell types used [progenitor þ neuron]) with prepare_-

phenotype_table.py. We referred to each intron excision ratio as

percent spliced in (PSI) that corresponds to the usage of each intron

compared to other introns in the same cluster. Standardized and

quantile normalized intron excision ratios, and global alternative

splicing PCs computed with those ratios were used for down-

stream analysis.
Differential splicing analysis
To perform differential splicing analysis, we used quantile normal-

ized PSI values as input to the limma package.37 Identical to differ-

ential expression analysis, neuron splice ratios were corrected for

batch including FACSmachine used for sorting with limma::remo-

veBatchEffect function. Batch corrected neuron splice ratios were

combined with progenitor data. We implemented a paired differ-

ential splicing analysis inherently controlling donor-related differ-

ences with the design matrix: model.matrix(�CellType þ as.fac-

tor(DonorID) þ RIN, data). We defined intron junctions with

adjusted p values via multiple test correction with Benjamini-

Hochberg procedure38 lower than 0.05 as significant differentially

spliced introns.
Splicing QTL mapping
We performed cell-type-specific splicing QTL analysis by testing

the association of PSI with the genetic variants located within

the 5200 kb window from starting and end points of the splice

junctions for autosomal chromosomes and the X chromosome.

Identical to local eQTL analysis, we used only genetic variants

that met the following criteria: if there were at least two heterozy-

gous donors and no homozygous minor allele donors, or if there

were at least two minor allele homozygous donors.
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Figure 2. Cell-type-specific eQTL analysis
(A) Enrichment of progenitor eSNPs (left) and neuron eSNPs (right) within chromatin states in the fetal brain from chromHMM listed on
the y axis. The x axis shows the effect size of enrichment with 95% upper and lower confidence interval and the plot is color-coded based
on �log10(p value) value from enrichment analysis. Significant enrichments are shown with an asterisk. Enrichment was tested using
eQTLs thresholded at the eigenMT-FDR p value.
(B) Comparison of the effects of shared ASE sites and eQTLs in progenitors (left in purple) and neurons (right in green). Nonsignificant
ASE sites are shown as darker colors for both cell types, and significant ASE sites are shown as lighter colors. Correlation coefficient (r)
values are indicated in colors for each category and the red dashed line indicates y ¼ x.
(C) Overlap percentage of cell-type-specific eSNP-eGene pairs shared with fetal bulk eQTLs in progenitors and neurons atm-value > 0.9.
Odds ratio (OR) test p values are shown.
(D) The fraction of progenitor/neuron primary eGene-eSNP pairs that are true associations (p1) in fetal bulk eQTLs. 95% upper and lower
confidence interval are shown.
We used standardized and normalized intron excision ratios

(percent spliced in) calculated by LeafCutter as the phenotype

for sQTL mapping. EMMAX43 was used to test for association be-

tween SNPs within a cis-region of 5200 kb of the intron cluster

and intron ratios within cluster. We controlled for population

stratification and cryptic relatedness as described above for

eQTL mapping. Also, we controlled for unmeasured technical

variables impacting alternative splicing via computed global

splicing PCs. Similar to eQTL analysis, we optimized sQTL dis-

covery by sequentially adding global splicing PCs to the genetic

associations via EMMAX. Again for neurons, we additionally

controlled for FACS sorter for each run given its strong impact

on splicing.

The full model for neurons was:

PSI �SNP þ 10 MDS of global genotype þ kinship matrix þ
FACS sorter þ PCs of global splicing

The full model for progenitors was:

PSI �SNP þ 10 MDS of global genotype þ kinship matrix þ PCs

of global splicing

For every run, we adjusted nominal values of all PSI variant as-

sociations and defined significant associations with lower than

at 5% false discovery rate (FDR).38 We found that 1 PC and 1 PC

across the PSI matrix resulted in a maximum number of intron ex-

cisions with at least one significant association in progenitors and

neurons, respectively (Figure S6B). Our final sQTL model was:
The American Jour
Neuron:

PSI �SNP þ 10 MDS of global genotype þ kinship matrix þ
FACS sorter þ 1 PCs of global splicing

Progenitors:

PSI �SNP þ 10 MDS of global genotype þ kinship matrix þ 1

PCs of global splicing

Implementing the same hierarchical correction procedure as for

eQTLs (eigenMT-FDR46) first, we adjusted the p values of the all cis

SNPs strongest association separately for each intron excision to

compute locally adjusted p values with the eigenMT method,47

and then locally adjusted minimum p values for all intron exci-

sions were subjected to the BH procedure giving globally adjusted

p values. Intron excision with corresponding global p value lower

than 0.05 were considered as significant alternative splicing

events. In order to find other independent significant sQTLs in

addition to the ones associated with lowest p values, we applied

conditional analysis at eigenMT-FDR p value threshold as

described for eQTL analysis.

For bulk fetal cortical tissue sQTLmapping, we applied the same

strategy used for cell-type-specific sQTLs and found the following

model maximized significant intron junctions discovery:

PSI �SNP þ 10 MDS of global genotype þ kinship matrix þ 6

PCs of global splicing

After calculating eigenMT-FDR threshold p value, we performed

conditional analysis to define independent significant sQTLs.
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To find genes overlapping with intron excision, we annotated

intron junctions by using LeafCutter based on genomic coordi-

nates and gene model provided in GTF file Homo_sa-

piens.GRCh38.104. Intron junctions assigned as cryptic 5’, cryptic

3’, or novel annotated pair were considered as novel splicing

events for the genes overlapped with junctions including unanno-

tated splice sites for the ARL14EP.
RNA binding protein motif analysis
We performed enrichment of sSNPs in RNA binding protein bind-

ing sites via GARFIELD as described above with the only difference

being controlling for the distance to the intron with the strongest

association to the tested SNP. In this analysis, we used BED files

including RNA binding protein sites from a CLIP-seq database as

annotation files60 and assessed significant enrichment of cell-

type-specific sQTLs for binding sites of each RBP.
Comparison of QTL association methods
To determine the impact and reproducibility of a linear mixed ef-

fects model as compared to a standard linear regression on QTL re-

sults, we applied the FastQTL61 method in nominal pass mode for

different models to run eQTL analysis on autosomal chromo-

somes. To test for impacts on population stratification, we per-

formed FastQTL (1) without controlling either for population

structure or technical confounders, (2) controlling for only tech-

nical confounders, (3) controlling for 10 MDS of global genotype

and global gene expression PCs. Following this analysis, we

compared genomic inflation factors (lGC) across those three

groups to our data where we controlled for 10MDS of global geno-

type and global gene expression, as well as the cryptic relatedness

with kinship matrix.

We also compared autosomal eGenes/significant introns and

primary eGene-eSNP/intron-sSNP pairs detected via either EM-

MAX or FastQTL. For EMMAX analysis, eGenes/significant introns

and primary eGene-eSNP/intron-sSNP pairs were defined using

the eigenMT-FDR approach with 5% FDR. For FastQTL, eGenes/

significant introns and primary eGene-eSNP/intron-sSNP pairs

were defined by fitting nominal p values of the most highly asso-

ciated pairs extrapolated from a beta distribution to adaptive per-

mutations with the setting –permute 1000 10000 as previously

described.62 Then, Storey’s q value method63 was applied on per-

mutation p values derived from beta approximation across

genes/introns for multiple correction with 5% FDR.
QTL sharing
We estimatedm-values to assess cell type specificity of SNP-gene or

SNP-intron excision pairs withMetasoft.64 Prior to software imple-

mentation, we extracted e/sQTLs from the neuron data corre-

sponding to primary progenitor eSNP-eGene/sSNP-introns

junction pairs to determine overlap of sharing significant progen-

itor e/sQTLs with neuron eQTLs. Similarly, we extracted e/sQTLs

from the progenitor data corresponding to neuron primary

eSNP-eGene/sSNP-introns junction pairs to determine overlap of

sharing significant neuron eQTLs with progenitor e/sQTLs. We

estimated standard errors by dividing beta estimates from EMMAX

by t-statistics for each association p value. We defined associations

shared across different QTLs asm-value> 0.9. Similarly, in order to

find significant progenitor/neuron e/sQTLs shared with fetal bulk

e/sQTLs, we extracted e/sQTLs from the fetal bulk data corre-

sponding to progenitor/neuron primary eSNP-eGene/sSNP-in-

trons junction pairs and defined shared QTLs at m-value > 0.9.
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We also applied the p1 statistic63 to quantify QTL sharing for

progenitor versus neuron and progenitor/neuron versus fetal

bulk primary eSNP-eGene pairs/sSNP-intron junction pairs using

the R qvalue package.65 To find the fraction of progenitor/neuron

primary eSNP-eGene pairs that are true associations in neuron/

progenitor eQTLs (p1), we extracted nominal p values from

neuron/progenitor eQTLs for corresponding progenitor/neuron

primary eSNP-eGene pairs. Using the qvalue() function by setting

lambda seq (0.2,0.8,0.1), we computed the p0 value and defined

the p1 as 1 � p0. The previously described p1 statistic requires

the gene to be detectable in both cell types, which may underesti-

mate cell type specificity. To account for this, in a separate analysis,

when a SNP-gene pair was not tested in a cell type, we assigned a

random p value (sampled from a uniform distribution). We

applied the same strategy to find the fraction of progenitor/

neuron primary sSNP-intron junction pairs that are true associa-

tions in neuron/progenitor sQTLs. Similarly, in order to find the

fraction of progenitor/neuron primary eSNP-eGene or sSNP-

intron junction pairs that are true associations in fetal bulk eQTLs

or fetal bulk sQTLs, we used nominal p values from fetal bulk

eQTLs or sQTLs for corresponding progenitor/neuron primary

eSNP-eGene or sSNP-intron junction pairs to compute the p1

value.

We considered an LD-based overlap of e/sQTLs between two da-

tasets when the index e/sSNPs were in LD (r2 > 0.8 where LD was

calculated in our sample population) and the eSNP-eGene/sSNP-

intron pairs were shared. To determine the total number of

eSNP-eGene/sSNP-intron pairs as the universe for enrichment an-

alyses, we pruned all variants associated with each gene per gene

for r2 > 0.01 by using PLINK command plink –indep-pairwise 50

5 0.01. To determine whether different proportions of sharing

were observed between two cell types, we performed an odds ratio

test described here.66

To test for temporal specificity of cell-type-specific e/sQTL data,

we downloaded GTEx adult brain e/sQTL data.25 We called loci

from the two datasets as colocalized when (1) index adult brain

e/sQTLs are found within LD buddies of cell-type-specific e/sQTLs

at LD r2 > 0.8 (where LD is calculated using either the European

population from 1000 Genomes or our study’s population) and

(2) the cell-type-specific e/sQTL data conditioned on index adult

brain e/sQTLs, the cell-type-specific index e/sQTL no longer sur-

vives the global significance threshold.
LD-thresholded colocalization with brain disorders and

traits GWAS
To find eQTLs and sQTLs colocalizedwith indexGWAS loci, we per-

formed LD-thresholded colocalization analysis for each cell type

separately.67 We used summary statistics of GWASs for schizo-

phrenia (SCZ)1 (MIM: 181500), major depression disorder

(MDD)68 (MIM: 608516), bipolar disorder (BP)2 (MIM: 125480),

educational attainment (EA),69neuroticism,70 IQ,5 cognitiveperfor-

mance (CP),69 attention-deficit/hyperactivity disorder (ADHD)6

(MIM: 143465), Alzheimer disease (AD)71 (MIM: 104300), Parkin-

son disease (PD)72 (MIM: 168600), insomnia,73 epilepsy74 (MIM:

600669), autism spectrum disorder (ASD)75 (MIM: 209850), and

cortical thickness and surface area from the ENIGMA project.4 We

used liftover to convert the positions of variants inGWAS summary

statistics from hg19 to hg38 with liftOver function from R

rtracklayer package.76 Variant rsids were assigned with dbSNP151

based on positions of variants in summary statistics data. To define

index GWAS SNPs at genome-wide significant threshold p value
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(5 3 10�8), we implemented a clumping procedure, where we

defined two LD-independent GWAS signals so as to have pairwise

LD r2 < 0.5 based on LD matrix computed with European popula-

tion of 1000 Genomes (1000G European phase 3). Prior to clump-

ing, duplicated rsIDs in 1000G EUR genotype files were assigned

with unique names, and BIM files were modified for each chromo-

some. Following a unique id assignment, BIM files were merged

back to BED and FAMfiles with –bmerge function of PLINK1.9 soft-

ware (plink –bfile BED file –bmerge modified_BIM file). Since all

GWASs we leveraged in our colocalization analysis have been con-

ducted in populations of European ancestry, and our study popula-

tion is multi-ancestry, we computed LD r2 separately within these

two different populations. We considered the index eQTL or sQTL

SNP coincident with the index GWAS SNP if the pairwise LD r2

between them was greater than 0.8 based on either the LD

matrix computed via either European 1000 Genomes Phase 3 data

or our study population. Following that, we performed a condi-

tional eQTL/sQTL analysis by conditioning on the coincident

index GWAS SNP. If the association of index QTL and gene expres-

sion or intron excision was no longer significant based on p value

thresholds defined with eigenMT-FDR method for each dataset,

we identified that cell-type-specific and fetal bulk eQTL/sQTL as a

colocalized loci with the given GWAS trait. Since GTEx raw data

are not available publicly, conditional analysis was not performed

to infer colocalization.
Transcription factor motif analysis
We used motifbreakR to detect the disruption of the transcription

motif binding site where there was a variant within a chromatin

accessibility peak (Figure 4D).77
TWAS analysis
We performed transcriptome-wide association analysis for progen-

itor and neurons separately with FUSION software.78 First, we ob-

tained a set of variants shared between the genotypes from 1000

Genomes European phase 333 and our study population restricted

to variants described for eQTL analysis and removed monomor-

phic variants within European genotype data. We estimated cis-

heritability of genes (including variants within 51 MB window

of the TSS) and intron junctions (including variants within

5200 kbwindow of two ends of intron junctions) with GCTA soft-

ware79 by controlling for the same covariates for global gene

expression/splicing and 10 PCs of global genotypes used in e/

sQTL analysis. VST normalized gene expressions were further sub-

ject to quantile normalization for heritability estimation. 1,703/

973 genes and 6,552/6,578 intron junctions were significantly

cis-heritable in progenitors/neurons for heritability p value <

0.01. To determine the method to be used to estimate the genetic

component of gene expression/splicing (weights), we performed

leave-one-out cross validation80 for the prediction models

including LASSO regression,81 Elastic-net regression82 and EM-

MAX43 within FUSION software. We used the weights computed

from the prediction model with the highest cross validation R2

(the highest performance) per gene/intron junction for down-

stream analysis for progenitor, neuron, and fetal bulk brain tissue.

To evaluate the reproducibility of TWAS analysis, we pseudo-

randomly (maintaining similar proportions of donor ancestry)

down-sampled the fetal bulk eQTL data to the sample size of pro-

genitor (ndonor ¼ 85) and neuron (ndonor ¼ 74) data twice per cell

type, and calculated weights. For adult brain bulk tissue data, we

obtained the weights of genes and intron junctions from Com-
The American Jour
monMind Consortium study.83 Also for the reproducibility of

TWAS analysis, we used the weights of genes from GTEx adult

frontal cortex (BA9) v.7 model.62

Before running TWAS analysis, we prepared GWAS summary

statistics for schizophrenia (SCZ),1 major depression disorder

(MDD),68 educational attainment (EA),69 neuroticism,70 IQ,5 Alz-

heimer disease (AD),71 Parkinson disease (PD),72 and global surface

area (GSA) and average thickness from ENIGMA study4 with

following adaptations: (1) we obtained common variants found

both in genotype files from our study and in GWAS summary sta-

tistics; (2) we calculated z-score by dividing the beta coefficient by

the standard error if the beta coefficient was available in the sum-

mary statistics, or dividing the natural logarithm of odds ratio by

the standard error if odds ratio was given in the summary statistics;

(3) we matched the sign of the z-score based on the allelic direc-

tionality of weights from FUSION software.

To performTWAS analysis, we tested the association between the

predicted gene expression/splicing (w) and brain traits listed above

(Z) by implementing the algorithm ZTWAS ¼ w’ Z/sqrt(w’Dw)where

D is the LDmatrix as the covariance among all cis-variants from the

FUSION software.78,83 Since the population structure of our dataset

was different from European neuropsychiatric GWASs, we per-

formed TWAS analysis separately with different LD estimates

computed based on our study or European population from 1000

Genomes Phase 3 as the covariance. For variants missing in

GWAS summary statistics which existed in our study’s genotypes,

we implemented IMPG imputation84 allowing imputation of

maximum 40% of missing variants within the FUSION algorithm.

To identify genes/intron junctions not driven by co-expression,

we defined jointly independent genes/intron junctions through

performing summary-statistic-based joint analysis,85 where we re-

placed SNPs with genes/intron junctions as described in previous

work83 within the FUSION software. Implementing genes/intron

junctions to the model one at a time in decreasing order of signif-

icance, we evaluated whether the conditional TWAS test remained

significant. Those with significant conditional TWAS association

were defined as jointly independent.

Results

Transcriptomic profiles of primary human progenitors

and neurons recapitulates cell-type-specific

characteristics of cortical development

We established an in vitro culture of primary human neural

progenitor cell (phNPC) lines derived from genotyped hu-

man fetal brain tissue (n ¼ 89 unique donors) at 12–19

post conception weeks (PCW) (14–21 gestation weeks),

that recapitulates the developing human neocortex26,86–88

(Figure 1A, Material and methods). Immunofluorescence

of the cells showed that undifferentiated progenitors were

PAX6 and SOX2 positive (90%–95%), consistent with a ho-

mogeneous culture of radial glia89,90 (Figure 1B). At 5 weeks

post-differentiation, phNPC cultures were transduced with

a virus which expresses EGFP in neurons (AAV2-hSyn1-

EGFP),whichenabledus to isolateneurons via FACS sorting

at 8 weeks post-differentiation (Figures 1A, 1B, S1A, and

S1B, Material and methods).

We acquired transcriptomic profiles of progenitors and

neurons via RNA sequencing, observing a strong correla-

tion of libraries from the same donor cultured at different
nal of Human Genetics 108, 1647–1668, September 2, 2021 1655



times (Figure S1C). After correction for technical con-

founds (Figure S1D), progenitors and neurons clustered

separately by principal component analysis (PCA) of global

gene expression, indicating global transcriptomic differ-

ences by cell type (Figure 1C). Both cell types showed ex-

pected expression of a variety of known cell-type-specific

markers (Figure S1E). Next, we identified differentially ex-

pressed genes, which were enriched in cell cycle and

neurotransmission gene ontology terms, upregulated in

progenitors and neurons, respectively (Figures 1D and

S1F, Table S1).

We evaluated how well the in vitro progenitors and neu-

rons we generated model in vivo neurodevelopment. We

implemented the transition mapping (TMAP) approach

for a global assessment of transcriptomic overlap between

in vitro cultures and in vivo post-mortem human brain sam-

ples, as described in our previous work26 (Material and

methods). We compared the transition from progenitor

to neurons with laser capture microdissection of cortical

laminae from postmortem human fetal brain at 15–21

PCW.41We observed the strongest overlap in the transition

from progenitors to neurons with the transition from outer

subventricular zone (oSVZ) to intermediate zone (IZ) or

subplate zone (SP) (Figure S1G), supporting the in vivo fi-

delity of our culture system representing neurogenesis dur-

ing mid-fetal development.

Cell-type-specific genetically altered gene expression

via local expression quantitative loci (eQTL) analysis

To investigate the impact of genetic variation on gene

expression, we performed a local eQTL analysis by testing

the association of each gene’s expression levels with ge-

netic variants residing within 51 Mb window of its tran-

scription start site (TSS)62,91 (Figure S2A, see Material and

methods). We implemented a linear mixed effects model

(LMM) to stringently control for population stratification

using a kinship matrix as a random effect with inferred

technical confounders as fixed effects, separately for each

cell type (lGC for progenitor ¼ 1.028 and lGC for neuron

¼ 1.007; see Material and methods, Figures S2B–S2E). After

retaining associations that were lower than 5% false

discovery rate with a hierarchical multiple testing correc-

tion46,47 (Material and methods), we obtained condition-

ally independent eQTLs (Figures S3A and S3B, see Material

and methods). We identified 1,741 eGenes with 2,079

eSNP-eGene pairs in progenitors and 840 eGenes with

872 eGene-eSNP pairs in neurons (Figure S3C and Table

S2). As a complementary analysis, we performed eQTLs us-

ing a linear model approach (FastQTL)61 followed by an

adaptive permutation. We detected 90%/93% of eGenes

and 87%/90% of primary eSNP-eGene pairs discovered

via the LMM approach in progenitor/neuron were also

identified using the standard linear model, indicating

that our LMM approach was highly robust and reproduc-

ible (Figure S3D).

To determine whether our detected eQTLs were driven

by in vitro artifacts, we tested whether eGenes were en-
1656 The American Journal of Human Genetics 108, 1647–1668, Sep
riched in genes with discordant expression between our

in vitro culture and the in vivo brain. We selected low-fidel-

ity genes as those with opposing directions of differential

expression effect size between in vivo oSVZ versus SP and

in vitro progenitor versus neuron (Figure S1G). We did

not observe an enrichment of cell-type-specific eGenes

within this low fidelity gene list in neurons or progenitors

(Figure S4A). This observation suggests that the potential

confounding effect of in vitro conditions in our model sys-

tem was not a major driver of cell-type-specific eGene

discovery.

We next evaluated QTL sharing across cell types using

multiple different methods to increase confidence in the

findings: (1) LD-based overlap, i.e., high LD between signif-

icant index SNPs indicates a shared effect, (2) m-values,92

i.e., posterior probability of the shared effect, and (3) p1,
63

i.e., the proportion of QTLs selected in one dataset that

are true positives in another. We observed that 14.8%/

35.5% of progenitor/neuron conditionally independent

eSNP-eGenepairswere sharedwith the other cell type using

LD-based overlap (Figure S3C). 53.1%/69.3%of progenitor/

neuron primary eSNP-eGene pairs were shared with the

other cell type with m-value92 > 0.9 (Figure S4B). Also, the

fraction of progenitor/neuron primary eSNP-eGene pairs

that are true associations in neuron/progenitor eQTLs (p1)

was 76.9%/91.4%, when subset to gene-SNP pairs that

were detectable in both datasets (Figure S4C). A higher

shared effect for neuron primary eQTLs with progenitor

eQTLs than progenitor primary eQTLs with neuron eQTLs

suggested similar genetic effects on transcriptomes in

immature neurons with their parent cells, whereas parent

progenitor cells have unique features, such as proliferation

ability, that are not present in neurons.

We determined whether eSNPs were enriched in specific

functional chromatin annotations in fetal human brain,51

(Figure 2A). Both progenitor- and neuron-specific eSNPs

were enriched in promoters and actively transcribed sites

present in the fetal brain, and progenitors were enriched in

enhancers regions and depleted in quiescent chromatin

regions. Importantly, 40.8%/38.8% of progenitor/neuron-

specific significant eQTLs (restricted to variants tested for

allele-specific expression [ASE] analysis), respectively, were

supported by cell-type-specific ASE, that is less susceptible

to cross donor technical confounding, like population

stratification55,62,93 (Figures S4D–S4G, Table S2). For the

significant eQTLs tested but unsupported by ASE, low power

in the ASE analysis where only heterozygous donors were

tested may have masked their significant detection in the

ASE data. Also, the eQTLs supported by ASE sites were highly

concordant in effect size and direction (Figure 2B), providing

further confidence in the identified allelic effects on gene

expression.

Comparing cell-type-specific eQTLs to bulk eQTLs

We aimed to determine the utility of our cell-type-specific

eQTL study by comparison to pre-existing bulk brain

eQTL studies. Comparing our results to a bulk fetal cortical
tember 2, 2021



wall eQTL dataset from a previous study using a partially

overlapping set of donors,19 we observed that 26.2%/45%

of progenitor/neuron conditionally independent eSNP-

eGene pairs were shared with the fetal bulk eQTL using

the LD-based overlap (Figure S5A; odds ratio test between

cell type sharing with fetal bulk: p value: 6.5 3 10�25).

45.9%/67.1% of progenitor/neuron primary eSNP-eGene

pairs were also detected in the fetal bulk eQTLs (Figure 2C,

m-value > 0.9 indicates shared effects; odds ratio test be-

tween cell type sharing with fetal bulk: p value: 2.47 3

10�27). Also, the fraction of progenitor/neuron primary

eSNP-eGene pairs that were true associations (p1) in fetal

bulk eQTLswere 74.9%/92%when subset to gene-SNPpairs

that were detectable in both datasets (Figure 2D; see

Figure S5B for results with imputed missing eSNP-eGene

pairs). Taken together, our observations show that although

many genetic effects on gene expression are observed in

bothbulk and cell-type-specific eQTLdata, novel regulatory

mechanisms can be identified using cell-type-specific

eQTLs, especially in progenitors, which can provide addi-

tional information beyond existing prenatal datasets.18–20

We next explored the temporal specificity of cell-type-

specific eQTLs by utilizing adult brain bulk cortical eQTL

data from the GTEx project.25 We observed 18.9%/28.3%

of conditionally independent eSNP-eGene pairs in progen-

itors and neurons, respectively, were also found in adult

brain eQTL data (LD-based overlap; Figure S5C). That sug-

gests substantial independent genetic mechanisms regu-

lating genes from development to adulthood, as observed

previously.20

Cell-type-specific splicing quantitative trait loci (sQTL)

Given the previously known impact of genetic variation

on alternative splicing,9,11,19,94 we next performed a

splicing quantitative loci (sQTL) analysis separately within

progenitors and neurons. We quantified alternative intron

excisions as percent spliced in (PSI) by implementing the

LeafCutter software, an annotation free approach that al-

lows for discovery of novel isoforms.59 We found 35,238

and 36,070 intron excisions present more often in progen-

itors and neurons, respectively (|log2FC|> 0.5, seeMaterial

and methods, Table S3). As a specific example, we found a

differential alternative splicing site within theDLG4 (MIM:

602887) encoding the postsynaptic density protein 95

(PSD-95). An exon skipping splice site supporting

nonsense-mediated decay (splice 1, ENST00000491753)

was upregulated in progenitors; while another splice site

supporting multiple protein coding transcripts (splice 2)

was upregulated in neurons (Figure 3A). Post-transcrip-

tional repression of PSD-95 expression in neural progeni-

tors via nonsense mediated decay at splice site 1 has

been previously experimentally validated,95,96 giving

strong confidence in the cell-type-specific splicing calls.

For the sQTL analysis, we implemented an association

test between PSI of each intron excision and genetic vari-

ants located within a 5200 kb window from the start

and end of the splice junctions (Figures 1A and 3B). We re-
The American Jour
tained significant associations which were lower than 5%

false discovery rate by implementing a hierarchical multi-

ple testing correction (see Material and methods) and

applied conditional analysis to identify independent

sQTLs (Figures S3A and S6A–S6C). We identified 4,568

intron excisions associated with 5,900 conditionally inde-

pendent sSNPs-intron junction pairs in progenitors and

3,870 intron excisions associated with 4,396 conditionally

independent sSNPs-intron junction pairs in neurons

(Figure S6D, Table S3). Similar to the eQTL analysis, we

additionally performed sQTLs using the standard linear

model (FastQTL)61 followed by an adaptive permutation,

and we detected 79.8%/78.7% of significant introns and

77.3%76.5% of primary sSNP-intron pairs discovered via

the LMM approach in progenitor/neuron were also identi-

fied using the standard linear model (Figure S6E).

Regarding the cell-type specificity of sQTLs, we found

that 22.4%/30% of progenitor/neuron conditionally inde-

pendent sSNP-intron junction pairs were shared with other

cell types using the LD-based overlap (Figure S6D). 59.4%/

57.3% of progenitor/neuron primary sSNP-intron junction

pairs were shared withm-value> 0.9 (Figure S7A). The frac-

tion of primary progenitor/neuron sSNP-intron junction

pairs that are true associations in neuron/progenitor sQTLs

(p1) was 87.3%/85.3% when subsetting to sSNP-intron

junction pairs that were detectable in both datasets

compared (Figure S7B). However, this analysis may have

overestimated sQTL sharing, because 21.5%/30.2% of pro-

genitor/neuron primary sSNP-intron pairs were not detect-

able in neuron/progenitor sQTL data, which was a higher

missing data rate as compared to eQTLs where 6.3%/11%

of progenitor/neuron primary eGene-eSNP pairs were not

detectable in neuron/progenitor eQTL data. To account

for this, we also computed p1 accounting for the missing

data (Figure S7B), which suggested substantially more cell-

type-specific sQTLs.

As an example, we found that the indel variant

rs11382548 creating a canonical splice acceptor sequence

impacted two different intron excisions supporting alter-

native 30 splice sites for TMEM216 (MIM: 613277)

(Figure 3C). Deletion of the A nucleotide at a canonical

splice acceptor site of the last exon of TMEM216 leads to

disruption of the alternative splicing event for transcript

ENST00000334888 and increased usage of transcript

ENST00000398979 and ENST00000515837 in both pro-

genitors and neurons. This sQTL may be relevant to neuro-

genesis because knockdown of the TMEM216 reduces divi-

sion of both apical and intermediate progenitor cells

during corticogenesis.97

Interestingly, many splice sites were previously unanno-

tated in the gene models we used (Ensembl Release 104).

We detected 8.2%/10.6% cryptic at the 50 end, 11.4%/

11.5% cryptic 30 end, and 8.8%/10.8% cryptic at both

ends for significant intron excisions within progenitors/

neurons.

Leveraging RNA binding sites of 172 RNA-binding pro-

teins in total from CLIP-seq databases,60 we also found
nal of Human Genetics 108, 1647–1668, September 2, 2021 1657
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Figure 3. Cell-type-specific sQTL analysis
(A) Differential splicing of two intron junctions within DLG4. Splice 1 (chr17:7,191,358–7,192,945) supports a previously validated
nonsense-mediated decay transcript (ENST00000491753) with higher expression in progenitors, whereas splice 2 (chr17:7,191,358–
7,191,893) has higher expression in neurons.
(B) A schematic illustrating splicing QTLmapping. Association of variants locating within 200 kb distance from each end of intron junc-
tions were tested. The T allele is associated with more frequent splicing of the shorter intron junction.
(C) Two intron junctions supporting an alternative 30 splicing site for TMEM216 regulated by variant rs11382548 located at the splice
site. The regional association of variants to two introns is shown in the genomic tracks on the left colored by pairwise LD r2 relative to
variant rs11382548, association p values on the y axis, and genomic location of each variant on the x axis. Dashed line indicates signif-
icance threshold. Gene model of TMEM216 is shown in the upper right with the position of the variant rs11382548 (closest variant to
the splice site), green box indicates the splice site. Boxplots in the lower right show quantile normalized PSI values for splice 1
(chr11:61,397,975–61,398,261) and splice 2 (chr11:61,397,975–61,398,270) at variant rs11382548.
(D) Enrichment of cell-type-specific sSNPs within RNA-binding protein (RBP) binding sites based on a CLIP-seq dataset. The significantly
enriched RBPs based on �log10(enrichment p value) are listed on the y axis, and the x axis shows the effect size from enrichment test
with 95% upper and lower confidence interval, where data points colored by �log10(p value) from the enrichment test and cell-type-
specific RBPs are colored with purple for progenitors at the left, and as green for neuron at the right.
(E) Overlap percentage of cell-type-specific sSNP-intron junction pairs shared with fetal bulk sQTLs for progenitors and neurons at m-
value > 0.9. Odds ratio (OR) test p values are shown.
that 37 RNA-binding proteins were enriched in progenitor

sQTLs and 23 RNA binding proteins were enriched in

neuron sQTLs60 (Figure 3D, Table S3). Strikingly, 24 and

10 of these RNA-binding proteins were specifically en-
1658 The American Journal of Human Genetics 108, 1647–1668, Sep
riched in progenitor- and neuron-specific sQTLs, respec-

tively. Among RBP binding sites specifically enriched for

progenitor sQTLs, we found TARDBP, prominently ex-

pressed in neural progenitors98 and known to play a role
tember 2, 2021



in neural progenitor proliferation.99 In neurons, we de-

tected enrichment of the EZH2 which regulates neuronal

differentiation.100 These observations suggest that sQTLs

interfere with the binding sites of RBPs that play cell-

type-specific splicing roles during neural development.

To determine whether variants associated with alterna-

tive splicing also alter expression of the same genes, we

compared cell-type-specific sQTLs with cell-type-specific

eQTLs. Only 16.6% and 5.8% of sGenes, the genes that

harbor intron excisions, were also eGenes for progenitors

and neurons eQTLs, respectively (Figure S7C, upper panel).

Furthermore, we also found that only 2.8% and 1.3% of

conditionally independent sSNP-sGene pairs overlapped

(pairwise LD R2 > 0.8) with conditionally independent

eSNP-eGene pairs for progenitors and neurons, respec-

tively (Figure S7C, lower panel). Also, we found that

5.9%/4.4% of progenitor/neuron primary sSNP-sGene

pairs were shared with progenitor/neuron eQTLs with

the m-value > 0.9, and the fraction of progenitor/neuron

primary sQTLs that are true associations in progenitor/

neuron eQTLs (p1) was 45%/43% when subsetting to

SNP-Gene pairs that were detectable in both datasets.

These results indicate that sQTLs generally function

through independent mechanisms from eQTLs.

We next examined whether cell type specificity provides

additional identification of sQTLs beyond what has previ-

ously been detected with bulk RNA-seq. 37.2%/42% of pro-

genitor/neuron sSNP-intron junction pairs were also de-

tected in the fetal bulk sQTLs (Figure 3E, m-value > 0.9

indicates shared effects; odds ratio test between cell type

sharing with fetal bulk: p value: 1.5 3 10�8, see

Figure S7D for LD-based overlap for conditionally indepen-

dent sSNP-intron junction pairs and Figure S7E for p1

based overlap). A smaller overlap of progenitor sQTLs

with bulk cortical fetal tissue as compared to neuron sQTLs

indicated that our cell-type-specific model system allowed

for novel discovery of progenitor sQTLs. Also, we found

5.8%/7% of conditionally independent sSNP-intron junc-

tion pairs in progenitors and neurons, respectively, were

shared with adult brain bulk cortical sQTL data from

GTEx25 (LD-based overlap; Figure S7F), showing temporal

specificity of cell-type-specific sQTLs.

Using cell-type-specific e/sQTLs to propose regulatory

mechanisms of brain-related GWASs

We sought to explain the regulatory mechanism of indi-

vidual loci associated with neuropsychiatric disorders,

brain structure traits, and other brain-relevant traits by

leveraging genetic variants regulating cell-type-specific

gene expression and splicing. We co-localized GWAS loci

of these traits with cell-type-specific eQTLs and sQTLs us-

ing a conditional analysis to ensure the loci were shared

across traits67 (see Material and methods for the list of

GWASs used for this analysis).

We discovered 41, 13, and 20 GWAS loci that co-local-

ized specifically with progenitor eQTL, specifically with

neuron eQTLs, or with both cell types, respectively
The American Jour
(Figure 4A, Table S4). These observations show that the

same genetic variants impact gene expression, neuropsy-

chiatric traits, and brain structure in a cell-type-specific

manner. Importantly, 98 trait associated loci-gene pairs

(one locus could be associated with multiple different

genes) were not found using fetal bulk cortical tissue

eQTLs, where tissue heterogeneity may have masked their

detection (Figure 4B).

Next, we leveraged our cell-type-specific chromatin

accessibility QTL (caQTL) dataset17 together with eQTLs

in order to explain the regulatory mechanism underlying

GWAS loci associated with brain relevant traits. As a spe-

cific example, we found a colocalization of a locus within

the CENPW (MIM: 611264) across caQTLs, eQTLs, and

GWASs for global surface area (GSA) and for educational

attainment (EA) (Figure 4C). The progenitor index eSNP

rs4897179 that was not detected in bulk cortical fetal tissue

eQTLs (nominal p value ¼ 3.26 3 10�7 in progenitors,

nominal p value ¼ 0.068 in neurons, and nominal p value

¼ 0.26 in fetal cortical bulk tissue), for the CENPW eGene,

was colocalized with variant rs9388490, which is the index

SNP for both GSA and EAGWAS (nominal p value¼ 4.953

10�12 in GSAGWAS, and nominal p value¼ 1.433 10�8 in

EA GWAS). Also, we found that a SNP (rs9388486) located

within a chromatin accessible peak region 107 bp up-

stream of TSS of the CENPW was colocalized with the in-

dex eSNP.We therefore consider rs9388486 as the potential

causal variant and noted that the C allele disrupts the mo-

tifs of the transcription factors CREM, ATF2, ATF4, and

ATF1 (Figure 4D). CENPW is required for appropriate kinet-

ochore formation and centriole splitting duringmitosis,101

and increased CENPW levels lead to apoptosis in the devel-

oping zebrafish central nervous system.102 Overall, these

observations propose a cell-type-specific mechanism

whereby the C allele at variant rs9388486 disrupts tran-

scription factor binding and diminishes accessibility at

the CENPW promoter, resulting in decreased CENPW

expression levels in progenitors (Figures 4E and 4F), pre-

sumably altering neurogenesis or reducing apoptosis, lead-

ing to increased cortical surface area and higher cognitive

function.

We also aimed to examine cell-type-specific splicing

QTLs colocalized with GWAS loci. We observed 29, 20,

and 34 GWAS loci in total that co-localized with specif-

ically progenitor/neuron sQTLs and sQTLs present in

both cell types (Figure 5A, Table S4). Similar to eQTL coloc-

alizations, we observed that 111 trait-associated loci-intron

junction pairs were detected only with cell-type-specific

sQTL (one locus could be associated with multiple intron

junctions), but not fetal bulk cortical sQTLs (Figure 5B).

Interestingly, we detected a progenitor-specific sSNP

(rs1222218) regulating a novel alternative exon skipping

event for ARL14EP (MIM: 612295) was colocalized with a

SCZ index SNP (rs1765142)1 (Figure 5C). The risk allele

for SCZ led tomore frequent skipping of the exon, support-

ing expression of a novel isoform (Figures 5D and 5E). The

cryptic splice junction has been previously discovered in
nal of Human Genetics 108, 1647–1668, September 2, 2021 1659
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Figure 4. Colocalization of cell-type-specific eQTLs with GWAS for brain-related traits
(A) Number of GWAS loci colocalized with progenitor (purple)- or neuron (green)-specific eQTLs or both cell types (orange). Each GWAS
trait is listed on the y axis (SA, surface area; TH, thickness).
(B) LD-based overlap of colocalized GWAS loci-gene pairs per trait combinations across progenitor, neuron, and fetal bulk eQTL coloc-
alizations for the traits listed in (A).
(C) Genomic track showing regional association of variants with educational attainment (EA), global surface area (GSA), and CENPW
expression in progenitors and neurons, �log10 of association p values on the y axis, and genomic location of each variant on the x
axis. Progenitor eSNP rs4897179 (3rd row) was coincident with index SNP (rs9388490) for both EA (1st row) and GSA GWAS (2nd row),
and conditioning progenitor eSNP rs4897179 on rs9388490 showed colocalization of the two signals (5th row). Also, rs4897179 was co-
localized with another variant (rs9388486) located in the chromatin accessibility peak at the promoter of CENPW (6th and 8th rows).
Genomic tracks were color-coded based on LD r2 relative to the variant rs9388486. Dashed line indicates significance threshold.
(D) Plot showing the chromatin accessibility peak (chr6:126,339,531–126,340,960) in progenitors across different genotypes of
rs938848. The C allele of rs9388486 disrupted binding motifs of transcription factors including CREM, ATF1, ATF2, and ATF4.
(E) Boxplots showing chromatin accessibility across rs9388486 genotypes in progenitors (purple) and neurons (green) (top). Boxplots
showing VST normalized CENPW expression across rs9388486 genotypes in progenitors (purple), neurons (green), and fetal bulk
(blue) (bottom).
(F) A schematic showing that one or more of the implicated transcription factors (TF) has decreased preference to bind at the C allele,
which results in lower CENPW expression, increase in global surface area, and educational attainment.
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Figure 5. Colocalization of cell-type-specific sQTLs with GWAS for brain-related traits
(A) Number of GWAS loci colocalized with progenitor (purple)- or neuron (green)-specific sQTLs or both cell types (orange). Each GWAS
trait is listed on the y axis (SA, surface area; TH, thickness).
(B) LD-based overlap of colocalized GWAS loci-intron junction pairs per trait across progenitor, neuron, and fetal bulk sQTL colocaliza-
tions for the traits listed in (A).
(C) Genomic tracks color-coded based on pairwise LD r2 relative to the variant rs1222218 showing regional association of variants with
SCZ and an unannotated alternative splicing event for ARL14EP in progenitors and neurons, association p values on the y axis, and
genomic location of each variant on the x axis. A cryptic exon skipping splice site (chr11:30,323,202–30,332,866) was associated
with progenitor sSNP (rs1222218) colocalized with SCZ GWAS index SNP (rs1765142). Dashed line indicates significance threshold.
(D) Sashimi plots with the gene model of ARL14EP and the genomic position of the unannotated splice site (blue) overlapping with AR-
L14EP. Average INT normalized PSI values for the splice site are shown for each genotype group. Schizophrenia risk allele G increases the
frequency of the exon skipping event in progenitors.
(E) Boxplots showing INT normalized PSI values for splice across rs1222218 genotypes in progenitors and neurons.
GTEx within a variety of tissues including adipose and

lung, but not in the adult brain.25 ARL14EP has been

shown to play a role in axonal development in the mouse

neurons.103 Here, we propose a novel transcript of this

gene with expression in progenitors as a risk factor for SCZ.

Genetic imputation of cell-type-specific GWAS

susceptibility genes and alternative splicing

Next, we imputed genes and alternative splicing associated

with brain-related traits by integrating the polygenic

impact of cell-type-specific regulatory variants with

GWAS risk variants in a transcriptome-wide association

study (TWAS) approach.78 We found 1,703/973 genes

and 6,552/6,578 intron junctions as significantly cis-heri-

table in progenitors/neurons (heritability p value < 0.01).

We found the cis-heritable impact of 124/102 genes and

372/370 intron junctions in progenitor/neuron signifi-
The American Jour
cantly correlated with at least one brain-related trait (Table

S5). Of those significant TWAS genes/introns, we separated

conditionally independent genetic predictors from the co-

expressed ones and defined them as jointly independent.83

We performed cell-type-specific TWASs on both gene

expression and splicing for schizophrenia (jointly inde-

pendent genes: 23/26; jointly independent introns: 65/

62 in progenitor/neuron), IQ (jointly independent genes:

25/24; jointly independent introns: 42/63 in progenitor/

neuron), and neuroticism (jointly independent genes:

13/15 neuron; jointly independent introns: 39/34 in pro-

genitor/neuron) (Figures 6A–6C and S8A–S8C). Also, we

found novel loci not discovered in colocalization analysis

per trait, demonstrating the additional power of TWASs

compared to a single-marker testing approach.

We evaluated the reproducibility of TWAS results to

ensure that the cell type and temporal specificity discovered
nal of Human Genetics 108, 1647–1668, September 2, 2021 1661



Figure 6. Prediction of differential gene expression during human brain development via TWAS
(A) Manhattan plots for schizophrenia, IQ, and neuroticism TWAS for progenitors (purple-gray, top) and neurons (green-gray, bottom)
where the LDmatrix used was based on a European population. Each dot shows�log10 (TWAS p value) for each gene on the y axis, gene
names were color coded based on discovery also in colocalization analysis (orange), defined as the nearest gene to GWAS locus (dark
pink), being in both these two categories (blue), and discovered only in TWAS analysis (black). Only joint independent genes are labeled
(positively and negatively correlated genes represented by triangle and square, respectively, and red line used for TWAS significant
threshold).
(B) Manhattan plots for IQ TWAS, as described in (A).
(C) Manhattan plots for neuroticism TWAS, as described in (A).
(D) IQ TWAS results for B3GALNT2, regional association of variants to IQ trait shown at the top, and statistics from each TWAS study
shown at the bottom (red line used for genome-wide significant threshold 5 3 10�8).
were not merely due to the sample size of our cell-type-spe-

cific QTL study. We observed that SCZ TWAS results using

weights from a smaller sample sized adult brain eQTL data

from GTEx (n ¼ 118)62 showed a high correlation with

TWAS results performed with weights derived from the in-

dependent CommonMind Consortium (CMC) adult brain

eQTL (n¼ 452),14 whereas low correlationwas observed be-

tween SCZ TWAS with weights derived from adult brain as

compared to fetal bulk brain or cell-type-specific eQTL

data (Figure S9A). Similarly, SCZ TWAS results with weights

calculated from two fetal bulk eQTLdatasets down-sampled

to the size of progenitor (n¼ 85) and neuron (n¼ 74) data-

sets showed a high correlation indicating that reproducible

TWAS is achievable in these sample sizes (Figure S9B). These

results provide evidence that the limited size of our study
1662 The American Journal of Human Genetics 108, 1647–1668, Sep
was not the major driver for the observed cell-type- and

temporal-specific TWAS results. Also, despite the difference

in population structure between our dataset and European

neuropsychiatric GWASs, we observed that TWAS genes/in-

trons were highly overlapped when different LD estimates

were used (Figure S10A).

We next compared our cell-type-specific TWAS approach

to TWAS analyses performed using weights calculated

from bulk cortical fetal tissue19 and adult brain e/sQTLs

from the CMC.14,83 Most TWAS findings were specific to a

cell type or temporal e/sQTLdataset, rather thanbroadly de-

tected, indicating that different developmental or cell type

e/sQTL datasets contribute complementary information

about genes influencing risk for neuropsychiatric disorders

or other brain traits (Figure S10B and Table S5 for
tember 2, 2021



comparison). As an example, despite IQGWASs falling short

of the genome-wide significance threshold at B3GALNT2

(MIM: 610194) locus, we detected that genetically imputed

B3GALNT2 expression was significantly correlated with IQ

in progenitors, but not in neuron, fetal bulk tissue or in

CMC adult brain tissue (Figure 6D). Mutations in the

B3GALNT2 play a role in glycosylation of a-dystroglycan

and were associated with intellectual disability in individ-

uals with congenital muscular dystrophy (MDDGA1

[MIM: 615181]).104 Overall, here we showed that an in-

crease in B3GALNT2 expression in progenitors is associated

with lower IQ, suggesting this gene’s early cell-type-specific

impact on cognitive function.

Within the cell-type-specific splicing TWAS, we found an

intron junction of MRM2 (MIM: 606906) more frequently

spliced that was associated with increased risk for schizo-

phrenia specifically in progenitor cells (TWAS-Z: 6.54),

but it was not significantly cis-heritable within neuron,

fetal bulk, or adult bulk data (Figure S10C).MRM2 is amito-

chondrial rRNA methyltransferase,105 and was found to be

associated with intellectual disability106 and mitochon-

drial encephalopathy (MELAS [MIM: 540000]).105 We

propose a cell-type-specific developmental basis for alter-

native splicing of the MRM2 associated with risk for

schizophrenia.

Discussion

Here, we investigated the influence of genetic variation on

brain-related traits within a cell-type-specific model system

recapitulating a critical time period of human brain devel-

opment, neurogenesis. Our analysis discovered features of

gene regulation that will be complementary to previous

eQTLs and sQTLs identified in bulk human brain in that:

(1) we identified thousands of novel eQTLs, ASEs, and

sQTLs during brain development that are enriched in reg-

ulatory elements present during neurogenesis; (2) most e/

sQTLs in progenitors/neurons were not identified in previ-

ous fetal bulk post-mortem tissue datasets using LD-based

overlap indicating the importance of cell type specificity

for identifying genetic influences on gene regulation; (3)

using this resource, we are able to propose cell-type-specific

variant-gene/transcript-trait(s) pathways to further explore

molecular and developmental causes of neuropsychiatric

disorders; (4) by integrating the polygenic effects across

traits and gene expression, we are able to impute cell-

type-specific gene expression/alternative splicing dysregu-

lation in individuals with neuropsychiatric disorders in

time periods prior to disease onset.

As one example of a cell-type-specific variant-gene-trait

pathway, we discovered a locus near the CENPW colocal-

ized across cell-type-specific caQTL, eQTL, brain size, and

cognitive function. Through the integration of multi-

omic gene-to-trait databases, we hypothesize that the C

allele at rs9388486 leads to decreased TF binding of up to

four transcription factors (ATF1/2/4, CREM) in progeni-

tors, resulting in decreased chromatin accessibility at the
The American Jour
promoter peak, decreased expression of CENPW, leading

to increased cortical surface area, and increased cognitive

function. CENPW has a strong role in proliferation, as it

is required for kinetochore formation during mitosis.107

This is consistent with progenitor proliferation influencing

surface area, as described in the radial unit hypothesis.108

Increased levels of CENPW may cause death of progenitor

cells either by directly being an apoptotic inducer or by

triggering apoptosis in response to an imbalance in cell ho-

meostasis with excessive mitotic activity.102 In all, we

demonstrate how integration across multi-level biological

data can be used to propose functional mechanisms under-

lying complex traits, and future studies may be able to

develop computationalmodels to propose causal pathways

across multi-omic QTL data.9,109,110 Such information will

be crucial to both design efficient functional validation ex-

periments as well as to leverage GWAS loci to advance

treatment targets for neuropsychiatric disorders.

Though the most commonly proposed regulatory mech-

anism by which non-coding genetic variation influences

complex traits is through gene expression levels,91 our

data also support mechanisms by which genetic variants

associated with cell-type-specific alternative splicing influ-

ence complex brain-relevant traits. Importantly, we

observed sQTLs impacting previously unannotated cell-

type-specific alternative splicing events that are also colo-

calized with brain-relevant GWASs. For example, we found

a progenitor-specific sSNP regulating one unannotated

exon skipping splice site for the ARL14EP also colocalized

with an index SNP for schizophrenia GWAS, indicating a

developmental molecular pathway contributing to schizo-

phrenia risk.

Our cell-type-specific TWAS analysis identified that alter-

ation in expression of multiple genes and transcripts are

associated with risk for different neuropsychiatric condi-

tions. We followed a unique TWAS approach allowing us

to explore cell type and temporal specificity by leveraging

existing fetal brain bulk and adult e/sQTLs together with

the cell-type-specific data we generated here. This type of

analysis allows the imputation of the genetically regulated

component of differential expression within cell types

years prior to disease onset. As such, it allows the knowl-

edge of gene expression differences that cannot be gained

from post-mortem tissue of affected individuals versus

control subjects, which must be acquired after diagnosis.

This window into developmental gene expression differ-

ences may be particularly important to understand disease

risk, as these results are not subject to confounding by

medication use or the altered experiences of the environ-

ment of individuals living with a neuropsychiatric

illness.111 Nevertheless, further support for such data could

be gained from iPSC lines modeling early developmental

time periods from large populations of affected individuals

versus control subjects.

With our cell-type-specific model, we propose how and

when genetics influence brain-related traits through gene

expression and splicing. The sample size of our study
nal of Human Genetics 108, 1647–1668, September 2, 2021 1663



(n ¼ 89 independent donors) is consistent with other pre-

viously published cell-based QTLs,21,24,112,113 and cell-type

resolution may have led to novel and higher powered

eQTL discovery masked in bulk tissue. However, it is also

possible that the novel loci identified here contain false

positives due to relatively low sample size as compared to

post-mortem datasets19,114 or are caused by in vitro cell cul-

ture artifacts. eGenes identified in this study are not en-

riched in genes with low fidelity in our in vitro system,

nevertheless the replication of the cell-type-specific study

using scRNA-seq from developing fetal brain tissue or

cell-type-specific iPSC-derived eQTL datasets24,115 of inde-

pendent donors derived from a multi-ancestry population

will be crucial to mitigate these concerns. This in vitro sys-

tem has particular utility in that, in the future, it may be

used to determine the impact of genetic variation in

response to activation of specific pathways or response to

environmental stimuli.23 By pursuing cell type, temporal,

and environmental specificity of eQTLs, we expect that a

greater degree of mechanisms underlying risk for neuro-

psychiatric disorders and brain-relevant traits can be

uncovered.
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Figure S1, related to Figure 1: Pre-processing RNA-seq data and evaluation of the fidelity of in 

vitro cell-type specific system. 

(A) Flow cytometry results showing sorting of live EGFP positive neurons in pink. The y-axis 

marks fluorescence from a live/dead stain (annexin V/SYTOX) and the x-axis marks fluorescence 

from GFP. 

(B) Immunolabeling indicates that undifferentiated progenitor cultures were positive for outer 

radial glia marker HOPX in green, proliferation marker Ki67 in yellow and pan-radial glia marker 

SOX2 in red, and neurons from 8 week differentiated cultures were positive for the neuronal 

marker TUJ1 (scale bar is 100 m, DAPI in blue). 

(C) Replicate correlation of RNA-seq libraries across donors and within donors. Gene expression 

profiles were more correlated between libraries generated from the same donor thawed at 

different times as compared to libraries across different donors for both progenitors (left, p-

value=0.00025) and neurons (right, p-value=0.0127).  

(D) Principal component analysis (PCA) before and after batch correction of neuron for the 

machine (Sony SH800S in blue, FACS Aria II in red, progenitors not sorted in grey) used for 

sorting. 

(E) Heatmap showing cell-type specific expression of literature-based progenitor (PAN-RG: Pan-

radial glia, V-RG: ventricular radial glia, O-RG: outer radial glia) and neuronal markers listed on 

the y-axis. The x-axis indicates progenitor (purple) or neuron (green) cells from each donor. The 

color of the heatmap indicates the relative gene expression normalized for each gene between 0 

and 1. 



(F) Gene ontology (GO) analysis showing pathways enriched for genes upregulated in progenitors 

(left, in purple), and for genes upregulated in neurons (right, in green). The x-axis shows adjusted 

-log10(p-values) for enrichment and each GO term is listed in the y-axis. 

(G) Comparison of the transitions between mitotic and postmitotic regions of in vivo cortical 

laminae in the developing cortex and in vitro progenitor and neurons with rank-rank 

hypergeometric overlap (RRHO) maps. The extent of overlap between in vivo and in vitro 

transcriptome was represented by each heatmap colored based on -log10(p-value) from a 

hypergeometric test. Each map shows the extent of overlapped upregulated genes in the bottom 

left corner, whereas shared downregulated genes are displayed in the top right corners 

(ventricular zone - VZ; inner and outer subventricular zone - i/oSVZ, intermediate zone - IZ; 

subplate - SP; inner and outer cortical plate - i/oCP, marginal zone - MZ). 





Figure S2, related to Figure 1, Figure 2 and Methods: Local eQTL and the detection of covariates 

for eQTLs. 

(A) A schematic showing that variants within +/- 1MB cis window from the transcription start site 

(TSS) of each gene were tested for the association with gene expression. 

(B) Multidimensional scaling (MDS) of global genotypes showing the multi-ancestry donors in our 

study. MDS1 vs MDS2 values plotted where each red circle represents a unique donor in our 

study and each different color represents different ancestry from HapMap3 (ASW: African 

ancestry, CEU:Northern and Western European ancestry, CHB: Han Chinese ancestry, CHD: 

Chinese in metropolitan Denver, GIH:  Gujarati Indians in Houston, JPT: Japanese in Tokyo, 

LWK: Luhya in Webuye, MEX:Mexican ancestry, MKK: Maasai in Kinyawa, TSI:  Toscani in Italy, 

YRI: Yoruba in Ibadan). 

(C) GC) without controlling for population structure and 

technical confounders (no control), only controlling for technical confounders by adding global 

gene expression PCs, controlling for both population structure (10 MDS of global genotype) and 

technical confounders, and controlling for kinship matrix in addition to the previous covariates. 

(D) Correlation of technical confounders with the top 10 principal components of gene expression 

in progenitor, neurons and all data (asterisk indicates significant correlation). 

(E) Covariate selection analysis for eQTLs with number of eGene vs. number of global gene 

expression PCs (progenitors in purple, neurons in green). Blue arrows indicate the number of PCs 

used in each dataset. 

 





Figure S3, related to Figure 2 and 3: Conditional QTL analysis and comparison of linear mixed 

effects models vs standard linear models. 

(A)  A schematic showing the conditional e/sQTL procedure. Conditionally independent SNPs 

were found conditioning on the genetic variant with the most significant association, and iteratively 

applying the same algorithm until there were no further significant associations with local variants.  

(B) Number of eGenes on the x-axis regulated by the number of conditionally independent eSNPs 

on the y-axis indicated by eQTL order (left).  

(C) LD-based overlap between progenitor and neuron eQTLs for eSNP-eGene pairs and eGenes. 

(D) Comparison of eGenes and primary eGene-eSNP pairs detected by EMMAX followed by 

eigenMT-FDR and FastQTL followed by adaptive permutation. 

 





Figure S4, related to Figure 2: Cross cell-type specific eQTL comparison and ASE analysis. 

(A) Gene set enrichment test for cell-type specific eGenes in genes with discordant expression 

between our in vitro culture and the in vivo brain. Enrichment p-values are shown. Blue vertical 

lines indicate genes with m-value lower than 0.1 and black vertical lines indicate genes with m-

value higher than 0.9. 

(B) Posterior probability of shared effect size (m-value) across cell-types for m-value > 0.9. 

(C) The fraction of progenitor/neuron primary eGene- 1) 

in neuron/progenitor eQTLs detectable in both cell-types or either cell-types. 95% upper and lower 

confidence interval are shown. 

(D) A schematic illustrating allele specific expression (ASE) in a heterozygous individual for a 

variant of interest. 

(E) Overlap between progenitor and neuron specific ASE sites. 

(F) Overlap between eGenes and genes with ASE (progenitors in purple, neurons in green). 

(G) Overlap between cell-type specific eSNPs and ASE sites (progenitors in purple, neurons in 

green). 

 





Figure S5, related to Figure 2: Cell-type and temporal specificity of eQTLs. 

(A) LD-based overlap percentage of cell-type specific eSNP-eGene pairs shared (pink) with fetal  

bulk eQTLs (variants with LD r2 > 0.8 were considered as the same loci). Odds ratio test p-value 

is shown. 

(B) The fraction of progenitor/neuron primary eGene- 1) 

in fetal bulk eQTLs, subset to genes detectable in either cell-type specific and fetal bulk data. 95% 

upper and lower confidence interval are shown. 

(C) LD-based overlap between progenitor/neuron eQTLs and adult brain cortex eQTLs for eSNP-

eGene pairs. 

 





Figure S6, related to Figure 3: Cell-type specific sQTL and comparison of linear mixed effects 

models vs standard linear models 

(A) Correlation of technical confounders with the top 10 principal components of global splicing in 

progenitor, neurons and all data (asterisk indicates significant correlation). 

(B) Covariate selection analysis for sQTLs with number of significant intron vs. number of global 

splicing PCs (right, progenitors in purple, neurons in green). Blue arrows indicate the number of 

PCs used in each dataset. 

(C) Number of intron junctions on the x-axis regulated by the number of conditionally independent 

sSNPs on the y-axis indicated by sQTL order. 

(D) LD-based overlap of intron junctions, sGenes harboring intron junctions, and  sSNP-intron 

junction pairs for progenitor vs neuron sQTLs. 

(E) Comparison of intron junctions and primary intron junction-sSNP pairs detected by EMMAX 

followed by eigenMT-FDR and FastQTL followed by adaptive permutation. 

 





Figure S7, related to Figure 3: Cell-type and temporal specificity of sQTLs. 

(A) Posterior probability of shared effects across cell-type specific sQTLs with m-value > 0.9. 

(B) The fraction of progenitor/neuron primary intron- 1) in 

neuron/progenitor sQTLs detectable in both or either cell-types. 95% upper and lower confidence 

interval are shown. 

(C) Comparison of cell-type specific sQTL vs eQTLs, progenitor in purple and neuron in green. 

Overlap between sGenes and eGenes, upper panel; LD-based overlap between sGene-sSNP 

and eGene- eSNP pairs, lower panel. 

(D)  LD-based overlap percentage of cell-type specific sSNP-intron junction pairs shared (pink) 

with fetal bulk sQTLs (variants with LD r2 > 0.8 were considered as the same loci). Odds ratio test 

p-value is shown. 

(E) The fraction of progenitor/neuron primary intron- 1) in 

fetal bulk sQTLs detectable in both or either cell-type specific and fetal bulk data. 95% upper and 

lower confidence interval are shown. 

(F) LD-based overlap between progenitor (in purple)/neuron (in green) sQTLs and adult brain 

cortex sQTLs (in red) for intron junction-sSNP pairs. 

 





Figure S8, related to Figure 6: Prediction of differential alternative splicing events during human 

brain development via TWAS. 

(A)  Manhattan plots for schizophrenia TWAS for progenitors (purple-grey, top) and neurons 

(green-grey, bottom) where LD matrix was calculated based on a European population. Each dot 

shows the -log10(TWAS p-value) for each intron junctions on the y-axis,  introns were color-coded 

based on discovery also in colocalization analysis (orange), and being jointly independent 

(asterisk), where positively and negatively correlated splicing represented by triangle and square, 

respectively.  

(B) Manhattan plots for IQ TWAS with graphic design described in A. 

(C) Manhattan plots for Neuroticism TWAS with graphic design described in A. 

 





Figure S9, related to Figure 6: Evaluation of the impact of sample size on TWAS results. 

(A) Comparison of TWAS Z-score for SCZ performed either with CMC adult brain eQTL data (N 

= 452) and with GTEx adult brain eQTL data (N = 118), or cell-type specific and fetal bulk eQTL 

data. The genes that were significant for using both datasets are colored in red, for the data on 

the x-axis shown in white, and for the data on the y-axis in grey. 

(B) Comparison of TWAS Z-score for SCZ performed either with fetal bulk eQTL data 

downsampled for progenitor eQTL sample size (N = 85), or for neuron eQTL sample size (N = 

74). 

 





Figure S10, related to Figure 6: Cell-type/temporal specificity of TWAS genes and introns. 

(A) Comparison of TWAS genes performed by using different LD matrices based on European 

(LD European) and population included in our QTL study (LD Study) (upper plot). Comparison of 

TWAS introns performed by using different LD matrices based on European (LD European) and 

population included in our QTL study (LD Study) (lower plot). 

(B) Overlap of cell-type specific TWAS genes (from the analysis where LD was estimated from 

European population) with fetal brain bulk and adult brain bulk TWAS genes (upper plot). Overlap 

of cell-type specific TWAS introns (from the analysis where LD was estimated from European 

population) with fetal brain bulk and adult brain bulk TWAS introns (lower plot). 

(C) SCZ TWAS results for intron junction (splice, chr7:2235564-2239418) of the MRM2 gene, 

regional association of variants, that were used to test polygenic impact on introns to SCZ are 

shown on the left.  Gene-model for MRM2 is shown on the right with matching introns and 

statistics from each TWAS study shown at the bottom (red line used for genome-wide significant 

threshold of 5 x 10-8). 

 

Supplementary Table legends 

Table S1, related to Figure 1-2 and S1:  

Sheet 1: Differential gene expression analysis progenitor vs neurons (FDR < 0.05):  gene is the 

ensemblID, logFC is the expression fold change logFC > 0 indicates a gene more frequently 

expressed in neurons than progenitors; AveExpr is the average vst normalized expression of all 

samples. t is the expression fold change divided by its standard error 37. P.Value is the nominal 

p-value from the testing differential expression; adj.P.Val is the Benjamini-Hochberg FDR 

adjusted p-value; B is log-odds for the differentially expressed gene in limma. 

 



Table S2, related to Figure 2 and S2-4: 

Sheet 1-3: List of cell-type specific conditionally independent eQTLs for progenitor, neurons and 

fetal bulk: snp is the variant tested in QTL; beta is the beta coefficient; pvalue is the nominal p-

value; gene is the ensemblID of the gene tested; rank is the eQTL order; chr is the chromosome 

number, BP is the genomic position of the variant; cond.beta is the beta after conditional analysis; 

cond.pval is the p-value after conditional analysis; A1 is the effect allele. rsid is the rs id of the 

allele matching in 1000 Genome Phase 3 (NA if rsid is not available for the genomic position of 

the variant in 1000 Genome data; * if multiple variants exist for the same genomic position). 

 
Sheet 4-5: Allele specific expression analysis (FDR < 0.05). SNP is the variant tested for allele 

specific expression analysis, baseMean is the average of the normalized count values divided by 

size factors from DESeq236; log2FoldChange is the expression fold change logFC > 0 indicates 

reads more frequently expressed in donors with reference allele than donors with alternative 

allele; lfcSE is the standard error estimate for log2FoldChange; stat is the test statistics performed 

in DESEq2; pvalue is the nominal p-value from the testing differential expression; padj is the 

Benjamini-Hochberg FDR adjusted p-value; refAllele is the reference allele of the variant. 

 
Table S3, related to Figure 3 and S6-7:  

Sheet 1: Differential splicing analysis progenitor vs neurons (FDR < 0.05): intron is the splice 

junction, logFC is the expression fold change logFC > 0 indicates a gene more frequently 

expressed in neurons than progenitors; AveExpr is the average vst normalized expression of all 

samples. t is the expression fold change divided by its standard error37. P.Value is the nominal p-

value from the testing differential expression; adj.P.Val is the Benjamini-Hochberg FDR adjusted 

p-value; B is log-odds for the differentially expressed intron in limma; gene is the gene symbol of 

the gene that introns junctions overlap with; ensemblID is the ensemblID of that gene. 

 



Sheet 2-4: List of cell-type specific conditionally independent sQTLs for progenitor, neuron and 

fetal bulk sQTLs: snp is the variant tested; beta is the beta coefficient, pval is the nominal p-value; 

intron is the intron junction as chromosome:start position:end position format; rank is the order of 

sQTL after conditional analysis; chr is the chromosome, start is the start position of the junction; 

end is the end position of the junction; clusterID is the cluster identified from Leafcutter, cluster is 

the clusterID combined with chromosome number, verdict is the annotation status; gene is the 

gene symbol of the gene that introns junctions overlap with; ensemblID is the ensemblID of that 

gene; transcripts is the transcripts where intron junction overlap with; constitutive.score: degree 

of the junction shown in each transcript; cond.beta is the beta coefficient after conditional analysis 

(for primary QTLs, it is identical to beta); cond.pval is the p-value after conditional analysis (for 

primary QTLs, it is identical to pval), A1 is the effect allele; rsid is the rs id of the allele matching 

in 1000 Genome Phase 3. 

 
Sheet 5: Enrichment of RNA binding protein (RBP) sites within cell-type specific sQTLs. PThresh 

is the p-value threshold used for enrichment; OR is the odd ratio; Pvalue is enrichment p-value; 

Beta is the beta coefficient after enrichment test via GARFIELD50; SE is the standard error; 

CI95_lower is the lower bound of 95% confidence interval; CI95 upper is the upper bound of 95% 

confidence interval; NAnnotThesh is the is the number of annotated variants at the p-value 

threshold; NAnnot is the total number of variants after pruning; NThresh is the number of variant 

passing p-value threshold after pruning; N is the number of variants remained after pruning; linkID 

is the ID in annotation file; Annotation is the RNA-binding protein; Celltype is the cell type used 

for enrichment test. 

 
Table S4, related to Figure 4 and 5: Colocalization of GWAS for neuropsychiatric disease and 

other brain related traits with cell-type specific e/sQTLs and fetal bulk e/sQTLs: e/sQTLsnp is the 

e/sSNP; inibeta is the beta coefficient before conditioning on GWAS SNP; pval is the nominal p-

value prior to conditional analysis, gene/intron is the ensemblID of gene/intron junction associated 



with the e/sSNP; Condbeta is the beta estimate of e/sQTL after conditional analysis; Condpval is 

the p-value after conditional analysis; r2 is the linkage disequilibrium (LD) r2; pop is the population 

used to estimate LD r2 (European population, with “European” or the population used in the QTL 

study with “Study”); symbol of the symbol of the gene (for eQTLs); biotype is the biotype of the 

gene for eQTLs; trait is the trait for GWAS; trait is the GWAS study; A1 is the effect allele for 

e/sQTL index SNP; GWASsnp is the variant e/sSNP colocalized with; rsid is the rs id of the allele 

matching in 1000 Genome Phase 3. 

 
Table S5, related to Figure 6, S8-10:  

Sheet 1-8: List of cell-type specific/fetal bulk/adult bulk TWAS gene and introns for 

neuropsychiatric disease and other brain related traits. Output from FUSION79: ID is the gene 

ensemblID or intron id; CHR is the chromosome number; HSQ is the heritability; BEST.GWAS.ID 

is the GWAS SNP in the locus with the most significant association; BEST.GWAS.Z is the z-score 

of the best GWAS SNP; EQTL.ID is the best e/sQTL in the locus; EQTL.R2 is the cross-validation 

R2 of the best e/sQTL in the locus; EQTL.Z is the z-score of the best e/sQTL in the locus; 

EQTL.GWAS.Z is the GWAS Z-score for this e/sQTL; NSNP is the number of SNPs in the locus; 

NWGT is the number of snps with non-zero weights; MODEL is the best performing model; 

MODELCV.R2 is the the cross-validation R2 of the best performing model; MODELCV.PV is the 

p-value from the cross-validation of the best performing model; TWAS.Z is the TWAS z-score; 

TWAS.P is the TWAS p-value; trait is the GWAS trait; pop is the population used to estimate LD; 

joint_independent is the status if a gene/intron jointly independent (YES, if it is independent; NO, 

if it is not independent; NA, if it was not tested for the trait). 

 

Sheet 9-10: Summary of heritability (p-value < 0.01) and cross validation r2 from prediction models 

across cell-type specific/fetal bulk/adult bulk for gene and intron TWAS: hsq is the mean 

heritability of the genes/introns; hsq.se is the mean standard error of estimated heritability; hsq.pv 



is the mean p-value of the heritability; emmax.rsq is the mean cross-validation R2 training via 

EMMAX with p-value as emmax.pval; lasso.rsq is mean the cross-validation R2 via LASSO with 

p-value as lasso.pval; enet.rsq is mean the cross-validation R2 via elastic net with p-value as 

enet.pval; blup.rsq is mean the cross-validation R2 via BLUP with p-value as blup.pval; bslmm.rsq 

is the mean cross-validation R2 via BSLMM with p-value as bslmm.pval; top1.rsq is the mean 

cross-validation R2 via standard marginal e/sQTL Z-scores computation with p-value as top1.pval. 

95 % confidence intervals per parameter are shown their below. 

Sheet 11-12: SCZ TWAS for GTEx Brain frontal cortex and downsampled fetal bulk data. Output 

from FUSION78: PANEL: Data type; ID is the gene ensemblID or intron id; CHR is the 

chromosome number; HSQ is the heritability; BEST.GWAS.ID is the GWAS SNP in the locus with 

the most significant association; BEST.GWAS.Z is the z-score of the best GWAS SNP; EQTL.ID 

is the best e/sQTL in the locus; EQTL.R2 is the cross-validation R2 of the best e/sQTL in the locus; 

EQTL.Z is the z-score of the best e/sQTL in the locus; EQTL.GWAS.Z is the GWAS Z-score for 

this e/sQTL; NSNP is the number of SNPs in the locus; NWGT is the number of snps with non-

zero weights; MODEL is the best performing model; MODELCV.R2 is the the cross-validation R2 

of the best performing model; MODELCV.PV is the p-value from the cross-validation of the best 

performing model; TWAS.Z is the TWAS z-score; TWAS.P is the TWAS p-value; trait is the GWAS 

trait. 
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