Biophysical Journal, Volume 120

Supplemental information

α I-spectrin represents evolutionary optimization of spectrin for red

blood cell deformability

John Hale, Xiuli An, Xinhua Guo, Erjing Gao, Julien Papoin, Lionel Blanc, Christopher D. Hillyer, Walter Gratzer, Anthony Baines, and Narla Mohandas Supplementary Information for

αl-spectrin represents evolutionary optimization of spectrin for red blood cell deformability.

Authors

John Hale^{1*}, Xiuli An², Xinhua Guo², Erjing Gao¹, Julien Papoin³, Lionel Blanc^{3,4}, Christopher D. Hillyer¹, Walter Gratzer⁵, Anthony Baines⁶ and Narla Mohandas¹

Affiliations

1 The Red Cell Physiology Laboratory, The New York Blood Center, New York, New York 10021

2 Membrane Biology Laboratory, The New York Blood Center, New York, New York 10021

3 Nelkin Laboratory of Pediatric Oncology and Laboratory of Developmental Erythropoiesis, The Feinstein Institutes for Medical Research, Manhasset, NY 11030

4 Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549

5 Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK

6 Department of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK

αI 340 Bp

Figure S1. Genotyping by PCR of litter mates: (WT) wild-type mice, (HE) heterozygous and (HO) homozygous knock-in mice. 340-bp indicates presence of α I-spectrin and 700-bp indicates presence α II-spectrin.

Figure S2. SDS gel electrophoresis and immunoblot analysis of WT and knock-in red cell membranes. Equal protein loadings of ghosts from either WT or $\alpha II\beta I$ were separated by SDS gel electrophoresis and either stained with Coomassie brilliant blue (left panel) or transferred to PVDF and probed with antibodies specific for αI , αII or total α -spectrin as indicated. The positions of standard marker proteins (kDa) are indicated on the left edge.

	WT (n=9)	αШβΙ (n=7)
WBC (x10 ³ /µl)	7.76 ± 1.57	7.07 ± 3.45
RBC (x 10 ⁶ /µl)	9.93 ± 0.36	8.69 ± 0.21 ***
HGB (g/dl)	14.28 ± 0.49	12.9 ± 0.41 ***
HCT (%)	44.92 ± 1.81	40 ± 0.96 ***
MCV (fl)	45.32 ± 0.73	46 ± 0.43 *
MCH (pg)	14.38 ± 0.17	14.84 ± 0.16 ***
MCHC (g/dl)	31.77 ± 0.5	32.26 ± 0.5
CHCM (g/dl)	30.81 ± 0.32	31.27 ± 0.71
CH (pg)	13.93 ± 0.15	14.39 ± 0.23 **
RDW (%)	13.46 ± 0.99	13.03 ± 0.31
HDW (%)	1.81 ± 0.13	1.94 ± 0.05 *
PLT (x 10³/µl)	1217.56 ± 216.16	1233.57 ± 273.23
MPV (fl)	7.08 ± 0.73	7.03 ± 0.96
Retic (%)	3.17 ± 0.36	4.29 ± 0.58 **

Table S1. The hematological parameters of WT (n=9 mice) and α II β I (n=7 mice) red blood cell samples as measured by AVIDA 120. WBC indicates white blood cell count; RBC red blood cell count; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; ORCHC, mean corpuscular hemoglobin content; CHCM, corpuscular Hemoglobin concentration mean; CH, corpuscular hemoglobin content; RDW, red cell distribution width; HDW, hemoglobin distribution width; PLT, platelet count; MPV, mean platelet volume; Retic, reticulocyte count. Data is expressed as the mean \pm SD (standard deviation), P \leq 0.05, ** P \leq 0.01,*** P \leq 0.001).

allbl-FIMD.avi

Movie S1 (separate file). Fluorescence imaged micro-deformation: Video of the captured image sequence of the micropipette aspirated $\alpha II\beta I$ RBC as the buffer is exchanged adjusting the RBC volume and thereby changing the aspiration tongue length.