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S1 The [Fe(NCH)6]
2+ LIESST Model

In this work, we simulate the Fe(II) light-induced spin-state trapping (LIESST) dynamics,
in the case of optical d→ d excitation, using the [Fe(NCH)6]

2+ model complex. Experi-
mentally, the complex investigated was [Fe(ptz)6](BF4)2 (ptz = 1-propyltetrazole), which
is in fact the compound on which the LIESST mechanism was first studied.1 [Fe(NCH)6]

2+

is a well-established model for Fe(II) spin crossover (SCO), with the main focus on the
computation of the high-spin (HS)-low spin (LS) energy gap.2–5 However, the application
of the [Fe(NCH)6]

2+ model for LIESST requires further explanation, which we present
below.

First, the LIESST mechanism of [Fe(ptz)6](BF4)2, in the case when the dynamics is
initiated by optical d → d excitation, exclusively involves metal-centered (MC) states.
Thus, simplification of the ligands is justified, in contrast to cases involving metal-to-
ligand charge transfer (MLCT) states. Second, [Fe(ptz)6]

2+ and [Fe(NCH)6]
2+ have the

same Fe(II)N6 core, with similar chemical environment; indeed, the multiconfigurational
second-order perturbation theory (CASPT2) PESs of [Fe(NCH)6]

2+ along the symmet-
ric Fe-N stretching mode (ν15, Figure 4a) are in very good agreement with those with
the ligands 1-H -tetrazole6 (tz) and 1-methyltetrazole7 (mtz), which are much closer to
ptz; this further supports the adequacy of the [Fe(NCH)6]

2+ model. Furthermore, our
CASPT2-calculated HS-LS energy gap of 210 cm−1 (26.1 meV) is in excellent agreement
with SCO behaviour. The adequacy of the [Fe(NCH)6]

2+ LIESST model is further con-
firmed by the very decent overall agreement between our CASPT2-based QD results and
experiments on [Fe(ptz)6](BF4)2.

1,8 As a final note, it is expected that the [Fe(NCH)6]
2+

model would break down in cases for which the ligands play a decisive role such as MLCT
excitation and energy transfer via ligand modes.

S2 TSH Simulations

As both trajectory surface hopping (TSH) and quantum dynamics (QD) employing a
spin-vibronic Hamiltonian are known and well-documented methods, we here only briefly
describe them. For further details, the reader is referred to the literature.9–15

In TSH, nuclear motion is treated classically by solving the equations of motion given
by Newton’s second law. The nuclear motion is dictated by the forces acting on the
potential energy surface (PES); in most cases as also in this work, calculated on-the-fly
within the Born-Oppenheimer approximation by a quantum chemistry program. Impor-
tantly, TSH is not restricted by the number of nuclear degrees of freedom (DoF), as the
nuclear motion is classical, thus the computational bottleneck is solely determined by the
electronic structure. However, this also means that quantum effects are not accounted for.
Nevertheless, certain quantum aspects, such as electronic transitions and decoherence can
be approximately taken into account. In TSH, electronic transitions are approximated
by stochastic hops, whose probability is proportional to the nonadiabatic coupling. The
electronic coefficients are propagated according to the electronic Schrödinger equation:
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TSH is thus classified as a semi-classical molecular dynamics method.
TSH simulations were carried out using the SHARC2.1 code.11 The classical equations

of motion were integrated by a Velocity Verlet algorithm. A time step of 0.5 fs was used
for the nuclear propagation. Surface-hopping probabilities were calculated16 by a method
based on Tully’s fewest switches17 and local diabatization (electronic propagation by wave
function overlaps).18 For the electronic propagation, we applied a time step of 0.005 fs. We
used the correction scheme of Granucci et al.,19 based on the overlap of frozen Gaussian
wavepackets, to approximately account for electronic decoherence.

The electronic structure calculations for the TSH dynamics were carried out using
ORCA4.2,20,21 interfaced to SHARC. The present work focuses on the simulation of
LIESST, for which intersystem crossing (ISC) has a central importance. The TSH dy-
namics thus has to include spin-orbit coupling (SOC). Therefore, we employ the diagonal
electronic representation, which is obtained by diagonalization of the electronic Hamilto-
nian in the adiabatic basis, in which SOCs appear as off-diagonal elements. As a com-
promise between accuracy and computational cost, we include the forces only for those
states in the transformation into the diagonal representation, whose potential energy is
less than 0.5 eV, relative to the classically occupied active state.

For the studied [Fe(NCH)6]
2+ complex, computational feasibility of on-the-fly TSH

does not allow to go beyond the quantum chemical level of time-dependent density
functional theory (TD-DFT). We employ the (TD-)B3LYP* exchange-correlation func-
tional,22,23 which, for Fe complexes. was found to consistently yield accurate excited-state
energetics.24–27 We use the TZVP basis set for all atoms. For TD-DFT, we utilize the
Tamm-Dancoff approximation (TDA).28 Two-electron integrals were approximated by the
resolution of identity (RI-J) and chain of spheres (COSX) methods.29 SOC for TD-DFT
was calculated using the approach of Izsák and Neese et al. based on second-quantised
spin operators and SOC integrals written in a spherical basis.30 In these calculations
we applied a mean-field/effective potential SOC operator31 and the zeroth-order regular
approximation (ZORA).32,33

From an electronic structure point of view, we face a methodological problem with
TD-DFT. TD-DFT for excited states is based on linear response, which, utilizing a singlet
reference (which is used for singlet and triplet excited-states), cannot access quintet states,
as this would require double excitations. Although quintet states can be calculated using
a quintet reference, this is not the case for triplet-quintet SOCs (the triplet states are
obtained from a singlet-reference TD-DFT calculation). Therefore, our TSH model only
includes singlet and triplet states: 4 singlets (the ground state plus 3 excited states) and
18 triplets (6 excited states, each possessing 3 spin components). These on-the-fly TD-
DFT PESs (including SOC) allow to identify the most important nuclear motion in the
singlet and triplet states. Although triplet-quintet ISC could not be taken into account,
our methodology does allow identification of the dominant nuclear DoF responsible for
accessing triplet-quintet crossing regions. We here emphasize that our intention with
TSH is to identify the dominant excited-state nuclear motion for QD, not to be able to
simulate the full dynamics.

100 initial conditions (nuclear geometries and velocities) were sampled from a Wigner
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distribution based on the ground-state normal modes of [Fe(NCH)6]
2+ calculated at the

B3LYP*/TZVP level, whose frequencies and characters are given in Table S1. From these
100 initial conditions, 500 fs long trajectories were run starting from the S4 adiabatic state
(the highest-lying adiabatic singlet spin-free excited state, out of the 3 calculated). This
technique corresponds to projection of the ground-state nuclear distribution into the 1T1g

manifold.

Table S1: DFT-caculated ground-state normal modes of [Fe(NCH)6]
2+. The B3LYP* and

BP86 normal modes are utilized in the TSH and QD simulations, respectively. Obtained by

using the TZVP basis set for all atoms. Frequencies are given in cm−1. The mode labels are

based on the B3LYP*-calculated frequency ordering (this mode notation is used in the main

article as well).

Mode Symmetry (Oh) B3LYP* BP86 Character
ν1 t2u 87.1 88.8 Rocking, bending (Fe-N-C)
ν2 t2u 87.1 88.8 Rocking, bending (Fe-N-C)
ν3 t2u 87.1 88.8 Rocking, bending (Fe-N-C)
ν4 t2g 106.7 108.8 Rocking, bending (Fe-N-C)
ν5 t2g 106.7 108.8 Rocking, bending (Fe-N-C)
ν6 t2g 106.7 108.8 Rocking, bending (Fe-N-C)
ν7 t1u 125.0 128.1 Rocking, bending (Fe-N-C)
ν8 t1u 125.0 128.1 Rocking, bending (Fe-N-C)
ν9 t1u 125.0 128.1 Rocking, bending (Fe-N-C)
ν10 t1g 248.6 261.7 Rocking, bending (Fe-N-C)
ν11 t1g 248.6 261.7 Rocking, bending (Fe-N-C)
ν12 t1g 248.6 261.7 Rocking, bending (Fe-N-C)
ν13 eg 299.1 331.9 Antisymmetric stretching (Fe-N)
ν14 eg 299.1 331.9 Antisymmetric stretching (Fe-N)
ν15 a1g 318.4 356.0 Symmetric stretching (Fe-N)
ν16 t1u 334.3 355.6 Fe off-center movement, bending (Fe-N-C)
ν17 t1u 334.3 355.6 Fe off-center movement, bending (Fe-N-C)
ν18 t1u 334.3 355.6 Fe off-center movement, bending (Fe-N-C)
ν19 t2u 361.1 383.4 Twisting (Fe-N-C, N-Fe-N)
ν20 t2u 361.1 383.4 Twisting (Fe-N-C, N-Fe-N)
ν21 t2u 361.1 383.4 Twisting (Fe-N-C, N-Fe-N)
ν22 t2g 376.0 395.9 Bending (Fe-N-C, N-Fe-N)
ν23 t2g 376.0 395.9 Bending (Fe-N-C, N-Fe-N)
ν24 t2g 376.0 395.9 Bending (Fe-N-C, N-Fe-N)
ν25 t1u 464.8 497.3 Bending (Fe-N-C, N-Fe-N)
ν26 t1u 464.8 497.3 Bending (Fe-N-C, N-Fe-N)
ν27 t1u 464.8 497.3 Bending (Fe-N-C, N-Fe-N)
ν28 t1g 786.0 731.1 Bending (N-C-H)
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ν29 t1g 786.0 731.1 Bending (N-C-H)
ν30 t1g 786.0 731.1 Bending (N-C-H)
ν31 t2u 787.0 731.8 Bending (N-C-H)
ν32 t2u 787.0 731.8 Bending (N-C-H)
ν33 t2u 787.0 731.8 Bending (N-C-H)
ν34 t1u 787.7 733.0 Bending (N-C-H)
ν35 t1u 787.7 733.0 Bending (N-C-H)
ν36 t1u 787.7 733.0 Bending (N-C-H)
ν37 t2g 788.9 734.1 Bending (N-C-H)
ν38 t2g 788.9 734.1 Bending (N-C-H)
ν39 t2g 788.9 734.1 Bending (N-C-H)
ν40 eg 2238.4 2168.2 Antisymmetric stretching (N-C)
ν41 eg 2238.4 2168.2 Antisymmetric stretching (N-C)
ν42 t1u 2239.1 2168.0 Antisymmetric stretching (N-C)
ν43 t1u 2239.1 2168.0 Antisymmetric stretching (N-C)
ν44 t1u 2239.1 2168.0 Antisymmetric stretching (N-C)
ν45 a1g 2249.8 2189.8 Symmetric stretching (N-C)
ν46 eg 3373.1 3324.2 Antisymmetric stretching (C-H)
ν47 eg 3373.1 3324.2 Antisymmetric stretching (C-H)
ν48 t1u 3373.2 3324.2 Antisymmetric stretching (C-H)
ν49 t1u 3373.2 3324.3 Antisymmetric stretching (C-H)
ν50 t1u 3373.2 3324.3 Antisymmetric stretching (C-H)
ν51 a1g 3378.7 3331.6 Symmetric stretching (C-H)
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Figure S1 presents the electronic population dynamics with all three singlet excited
states (1T1g) and eighteen triplet states (3T1g+

3T2g with three spin components for each
triplet) summed up. It is clear that the singlet-triplet ISC is significantly slower than for
the CASPT2-based QD simulation (see Figure 5 in the main article). The most possible
reasons for this discrepancy include the utilized PESs (TD-DFT vs CASPT2) and the
exclusion of quintet states in the TSH simulations. We note that this mismatch should
not qualitatively affect the dominant normal modes, identified by the TSH simulations.
Crucial to this point, we previously found very good agreement between the ground and
excited-state (metal-centered) CASPT2 and (TD-)B3LYP* of the [Fe(1-H -tetrazole)6]

2+

complex,6,24 which is an analogous model with Fe(II)N6 core. The simulated electronic
population and nuclear dynamics (the latter quantified by the normal mode analysis
described in the next section) are converged with respect to the number of utilized tra-
jectories (100).

Figure S1: Adiabatic (spin-diabatic) TSH/TD-DFT population dynamics of [Fe(NCH)6]
2+,

with the singlet and triplet populations summed up.
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In order to validate the dominance of the three selected modes ν13, ν14, and ν15, we
performed TSH simulations in reduced dimension with Fe-N stretching nuclear motion
only and freezing all other nuclear degrees of freedom. This was realized by utilizing
only the nuclear gradients along the Fe-N bonds in the dynamics, and constraining the
N-C and C-H bond lengths in each NCH ligand using the rattle algorithm.34 First, we
initiated the dynamics from the Franck-Condon (FC) geometry with zero velocities, the
adiabatic (spin-diabatic) energies along the trajectory are shown in Figure S2 for the a)
full and b) reduced-dimensional case. As is clear from the figure, the two trajectories show
excellent agreement, confirming that the excited-state nuclear motion is indeed dictated
by the Fe-N stretching modes. There are two differences though that deserve discussion.
First, in the full dimensional case, two triplet components form an avoided crossing at
ca. 130 fs (Figure S2a), while in reduced dimension, the two triplets only approach each
other by 0.15 eV (Figure S2b). Note that this triplet crossing involves Fe-N stretching
only (it is not the signature of the involvement of other modes) and does not affect the
simulated dynamics, as it occurs at considerably lower energy, during propagation on a
singlet surface. Second, and more importantly, in the reduced-dimensional case, the the
trajectory enters a triplet PES at 240 fs (see the circles in Figure S2b that represent the
energy of the active state), while this does not occur when the nuclear motion is full-
dimensional. From this point, the the two trajectories will differ, as they propagate on
different surfaces. Note, however, that the difference in singlet-triplet transition is barely
a consequence of the stochastic algorithm and the comparison of two single trajectories.
To prove this, we carried out reduced-dimensional test TSH simulations for an ensemble of
50 trajectories, for which the initial conditions where generated by a Wigner distribution
based on solely the three Fe-N stretching modes, ν13, ν14, and ν15. In Figure S3, we
compare the obtained electronic populations to the full-dimensional case, considering the
same number of trajectories. The results exhibit a good overall agreement, especially in
terms of the dimension reduction from 51D to 3D, validating our simulated TSH dynamics
and the three selected dominant modes.
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Figure S2: Adiabatic (spin-diabatic) DFT/TD-DFT energies of [Fe(NCH)6]
2+ along the tra-

jectory started from the FC geometry with zero velocities for two cases: a) full and b) reduced-

dimensional dynamics. For b), nuclear motion only occurs along the Fe-N stretching coordinates.

The energies of the active (classically populated) state are indicated by circles. For simplicity,

we utilize the electronic state symmetry labels at the FC geometry.

Figure S3: Adiabatic (spin-diabatic) TSH/TD-DFT population dynamics of [Fe(NCH)6]
2+ in

a) full-D and b) reduced dimension (Fe-N stretching only). The initial conditions were generated

using a Wigner distribution based on a) all normal modes and b) the ν13 − ν15 Fe-N stretching

modes only.
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S3 Normal Mode Analysis

In order to identify the most dominant nuclear motion, we projected the Cartesian dis-
placements relative to the FC geometry on the B3LYP*-calculated ground-state normal
modes (Table S1). The dimensionless mass-frequency weighted normal mode coordinates
q(t) are obtained by

q(t) = DT∆r(t) , (S1)

where ∆r(t) are the Cartesian displacements from the trajectories and D is a trans-
formation matrix calculated by diagonalization of the mass-weighted Hessian. The dy-
namical normal mode activity was calculated by evaluating the standard deviation

σi =

√√√√√ 1

NtrajNstep

Ntraj∑
j=1

Nstep∑
k=1

q2i,j(k∆t)−

 1

NtrajNstep

Ntraj∑
j=1

Nstep∑
k=1

qi,j(k∆t)

2

, (S2)

which quantifies the total nuclear motion for each normal mode i. Here Ntraj and
Nstep denotes the number of trajectories (100) and time steps (1001), respectively.

S4 QD Simulations

Quantum dynamics (QD) is the most rigorous approach for the simulation of excited-
state dynamics. QD in the converged case delivers the exact solution by solving the
time-dependent Schrödinger equation. However, due to exponential scaling, the appli-
cability of exact QD is limited to low/reduced-dimensionality problems (typically < 10
DoF). Nevertheless, QD utilizing reduced-dimensionality model Hamiltonians can deliver
invaluable results, provided the modes are well-chosen. In the present work, we utilize
the modes selected by the normal mode analysis performed on the TSH trajectories.

For photophysical processes with relatively small amplitude nuclear motion, the vi-
bronic coupling Hamiltonian35,36 is a very powerful and efficient technique. The method is
based on a (quasi-)diabatic electronic basis, in which couplings between electronic states
are represented by off-diagonal elements of the electronic Hamiltonian. These potential-
like couplings are numerically well-suited for QD. In contrast to the adiabatic basis, in
the diabatic representation, kinetic-like couplings, which exhibit singularities at conical
intersections, are negligible. This has the important consequence that diabatic states
maintain their electronic character along nuclear coordinates. Diabatic states can be
constructed by a transformation from the adiabatic basis, termed as diabatization.

The Hamiltonian utilized in our QD simulations has the following form:

H = (TN + V0)1 +W + S . (S3)
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Here the first two terms define the harmonic oscillator zeroth-order HamiltonianH0 =
TN + V0 with the nuclear kinetic energy operator

TN =
1

2

∑
i

ωi
∂2

∂q2i
(S4)

and the harmonic ground-state potential

V0 =
1

2

∑
i

ωiq
2
i . (S5)

Here qi is the dimensionless mass-frequency weighted normal coordinate for mode i
and 1 is a unit matrix with dimension equal to the number of electronic states included in
the model. The on-diagonal elements of the W matrix define the diabatic excited-state
potentials:

W (α) = ε(α) +
∑
i

κ
(α)
i qi +

1

2

∑
i

(ωi + γ
(α)
i )q2i . (S6)

In Equation S6, ε(α), κ
(α)
i , and γ

(α)
i are the zeroth, first, and second-order diagonal

expansion coefficients for mode i, state α. The off-diagonal elements of W express the
linear nonadiabatic couplings and are given by:

W (αβ) =
∑
i

λ
(αβ)
i qi . (S7)

The S matrix in Equation S3 is the SOC matrix, including singlet-triplet, triplet-
triplet, triplet-quintet, and quintet-quintet terms.

The κ
(α)
i , λ

(αβ)
i , and γ

(α)
i coefficients were determined by diabatization by ansatz,15

separately for singlet, triplet, and quintet states. This is based on a fitting procedure,
which ensures that the adiabatic potentials resulting from diagonalization of the W
potential matrix is in best agreement with those calculated by quantum chemistry.

For the description of electronic structure, we employ CASPT2, which is crucial to
access triplet-quintet SOCs (as mentioned, this is not possible using linear response TD-
DFT), and at the same time, also providing accurate excited-state energetics.6,24,37–39 All
multiconfigurational self consistent field (CASSCF)/CASPT2 calculations were carried
out using the OpenMolcas20.10 program package.40,41 The selection of the active space
in CASSCF is based on previous multiconfigurational works on Fe(II) complexes;6,24,42

we thus included the two σ-eg Fe-N bonding orbitals, the three t2g Fe-3d-based orbitals,
the two σ∗-eg∗ Fe-N antibonding orbitals and the corresponding set of five (three t2g plus
two eg∗) Fe-4d-based orbitals, this second shell is important to accurately account for
dynamical electron correlation.43 In addition, we also included the pair of correlating
Fe-3s/Fe-4s orbitals, which, similarly as in ref. 4, tend to rotate into the active space.
This leads to the active space abbreviated as CAS(12e,14o). In the CASSCF/CASPT2
computations, we froze all core orbitals (Fe-1s, Fe-2s, Fe-2p, N-1s, C-1s) and used and
an imaginary level shift of 0.2 a.u., as well as an IPEA shift of 0.25 a.u. for CASPT2.
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In order to reduce computational cost, and more importantly, to avoid numerical
problems, we apply D2 point group symmetry in the CASSCF/CASPT2 calculations.
The calculations were carried out for one 1A, two 1B1, two 1B2, two 1B3, two 3B1, two two
1B2, two 1B3, one 5B1, one 5B2, and one 5B3 root (these state labels are consistent with D2

symmetry). The 2-root calculations consist of a state-averaged SA-CASSCF with equal
roots and a subsequent multi-state MS-CASPT2 computation. We note that the second
root of the singlet 1B1/

1B2/
1B3 states, corresponding to the three components of the

upper 1T2g manifold, is not included in the dynamics, as their energetically high-lying.
However, they are included in the diabatization as some components of the 1T1g-

1T2g

interact with each other. We utilize the Douglas-Kroll-Hess (DKH) Hamiltonian44,45 to
account for relativistic effects, which is important for the calculation of SOCs, which
were calculated at the FC geometry using an approach based on a one-electron effective
mean-field SOC Hamiltonian46 and spin-orbit state interaction (SO-SI).47,48 We employ
an accurate relativistic correlation consistent (ANO-RCC) basis set with the following
contractions: 7s6p5d4f3g2h for Fe, 4s3p2d1f for N, 4s3p1d for C, and 2s1p for H atoms.

The CASPT2 ground-state minimum along the symmetric Fe-N stretching coordinate
is shifted by ca. −0.07 Å from the B3LYP*-optimized geometry. To alleviate this dis-
crepancy, we use the BP86/TZVP-optimized ground-state structure and normal modes
(given in Table S1) in the QD simulations, in which case the shift is only ca. −0.03 Å.

In Figures S4–S6, we present the CASPT2-calculated PESs along the three modes
(points) and their fit, obtained from diagonalization of the diabatic Hamiltonian. Note
that these PESs are termed adiabatic (spin-diabatic), meaning that any geometry the
states within a spin multiplicity are energetically ordered at the given geometry, but
such energy ordering does not hold for states with different multiplicities. The diabatic
potentials along ν14 and ν15 are shown in Figure 4 of the main article, the diabatic PESs
along mode ν13 are displayed in Figure S7.

The parameters of the diabatic spin-vibronic Hamiltonian are given below in Tables
S2–S11.
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Figure S4: Adiabatic (spin-diabatic) PESs of [Fe(NCH)6]
2+ along ν13. The points were cal-

culated by CASPT2, while the lines represent their fit by the diabatic Hamiltonian. Nuclear

displacements are given in dimensionless mass-frequency scaled normal coordinates The colours

code different spin multiplicities: blue – singlet (ground state – dark blue, excited states – light

blue) green – triplet, red – quintet.
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Figure S5: Adiabatic (spin-diabatic) PESs of [Fe(NCH)6]
2+ along ν14. The points were cal-

culated by CASPT2, while the lines represent their fit by the diabatic Hamiltonian. Nuclear

displacements are given in dimensionless mass-frequency scaled normal coordinates The colours

code different spin multiplicities: blue – singlet (ground state – dark blue, excited states – light

blue) green – triplet, red – quintet.
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Figure S6: Adiabatic (spin-diabatic) PESs of [Fe(NCH)6]
2+ along ν15. The points were calcu-

lated by CASPT2, while the lines represent their fit by the diabatic Hamiltonian. Note that for

ν15, all off-diagonal coupling elements of the diabatic Hamiltonian are zero, thus the diabatic

and adiabatic representations are identical. Nuclear displacements are given in dimensionless

mass-frequency scaled normal coordinates. The colours code different spin multiplicities: blue

– singlet (ground state – dark blue, excited states – light blue) green – triplet, red – quintet.
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Figure S7: Diabatic CASPT2 PESs of [Fe(NCH)6]
2+ along ν13. Nuclear displacements are

given in dimensionless mass-frequency scaled normal coordinates. The colours code diabatic

states: 1A1g – dark blue, 1T1g – light blue, 3T1g – dark green, 3T2g – light green, 5T2g – red.

For simplicity, we keep these octahedral state labels, even if the Oh symmetry is only kept at

q13 = 0.
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Table S2: Zeroth-order coefficients ε(α), given in eV. The tabulated ε(α) values are the

CASPT2-calculated vertical excitation energies at the FC geometry. Both FC adiabatic and

diabatic state labels, the latter in parantheses, are given. Note that the S4–S6 (1T2g) states

were not used in the QD simulations but are reported here for completeness.

State ε(α)

S0 (1GS) 0.000

S1 (1T1g) 2.266

S2 (1T1g) 2.266

S3 (1T1g) 2.266

S4 (1T2g) 3.251

S5 (1T2g) 3.251

S6 (1T2g) 3.251

T1 (3T1g) 1.280

T2 (3T1g) 1.280

T3 (3T1g) 1.280

T4 (3T2g) 1.812

T5 (3T2g) 1.812

T6 (3T2g) 1.812

Q1 (5T2g) 1.333

Q2 (5T2g) 1.333

Q3 (5T2g) 1.333
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Table S3: First-order diagonal coefficients κ
(α)
i , given in eV. The tabulated κ

(α)
i values are

related to the nuclear gradients at the FC geometry. Both FC adiabatic and diabatic state

labels, the latter in parantheses, are given. Note that the S4–S6 (1T2g) states were not used in

the QD simulations but are reported here for completeness.

State κ
(α)
13 κ

(α)
14 κ

(α)
15

S0 (1GS) 0.000 0.039 0.047

S1 (1T1g) −0.018 0.096 −0.120

S2 (1T1g) −0.008 0.098 −0.120

S3 (1T1g) 0.024 −0.103 −0.120

S4 (1T2g) −0.040 0.140 −0.140

S5 (1T2g) 0.008 −0.009 −0.140

S6 (1T2g) 0.033 −0.013 −0.140

T1 (3T1g) −0.007 0.096 −0.148

T2 (3T1g) 0.019 0.095 −0.148

T3 (3T1g) −0.014 −0.120 −0.148

T4 (3T2g) −0.028 0.147 −0.138

T5 (3T2g) −0.005 −0.009 −0.138

T6 (3T2g) 0.033 −0.013 −0.138

Q1 (5T2g) 0.000 0.047 −0.332

Q2 (5T2g) 0.000 0.028 −0.332

Q3 (5T2g) 0.000 0.020 −0.332
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Table S4: Second-order diagonal coefficients γ
(α)
i , given in eV. The tabulated γ

(α)
i values

express the change in vibrational frequencies, relative to DFT-calculated (BP86) grond-state

frequencies given in Table S1. Both FC adiabatic and diabatic state labels, the latter in paran-

theses, are given. Note that the S4–S6 (1T2g) states were not used in the QD simulations but

are reported here for completeness.

State γ
(α)
13 γ

(α)
14 γ

(α)
15

S0 (1GS) 0.006 0.004 −0.017

S1 (1T1g) 0.011 0.000 −0.012

S2 (1T1g) 0.018 0.001 −0.012

S3 (1T1g) 0.008 0.016 −0.012

S4 (1T2g) 0.005 0.003 −0.015

S5 (1T2g) 0.010 0.017 −0.015

S6 (1T2g) 0.006 0.016 −0.015

T1 (3T1g) 0.016 −0.001 −0.009

T2 (3T1g) 0.013 −0.001 −0.009

T3 (3T1g) 0.014 0.018 −0.010

T4 (3T2g) 0.011 0.001 −0.014

T5 (3T2g) 0.012 0.024 −0.014

T6 (3T2g) 0.010 0.024 −0.014

Q1 (5T2g) 0.020 0.023 −0.003

Q2 (5T2g) 0.023 0.019 −0.003

Q3 (5T2g) 0.023 0.020 −0.003
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Table S5: First-order off-diagonal coefficients λ
(αβ)
i , given in eV. The magnitude of the tab-

ulated λ
(αβ)
i values characterises the nonadiabatic coupling. Both FC adiabatic and diabatic

state labels, the latter in parantheses, are given. Note that the S4–S6 (1T2g) states were not

used in the QD simulations but are reported here for completeness.

State λ
(αβ)
13 λ

(αβ)
14 λ

(αβ)
15

S1 (1T1g) - S2 (1T1g) 0.099 0.000 0.000
S1 (1T1g) - S3 (1T1g) 0.065 0.004 0.000
S1 (1T1g) - S4 (1T2g) −0.002 0.000 0.000
S1 (1T1g) - S5 (1T2g) 0.006 0.066 0.000
S1 (1T1g) - S6 (1T2g) 0.043 0.021 0.000
S2 (1T1g) - S3 (1T1g) 0.015 0.004 0.000
S2 (1T1g) - S4 (1T2g) 0.009 0.000 0.000
S2 (1T1g) - S5 (1T2g) 0.106 −0.021 0.000
S2 (1T1g) - S6 (1T2g) 0.010 0.068 0.000
S3 (1T1g) - S4 (1T2g) −0.056 0.002 0.000
S3 (1T1g) - S5 (1T2g) −0.048 0.001 0.000
S3 (1T1g) - S6 (1T2g) −0.013 0.001 0.000
S4 (1T2g) - S5 (1T2g) 0.008 0.001 0.000
S4 (1T2g) - S6 (1T2g) 0.067 0.001 0.000
S5 (1T2g) - S6 (1T2g) −0.051 0.000 0.000
T1 (3T1g) - T2 (3T1g) 0.024 0.001 0.000
T1 (3T1g) - T3 (3T1g) 0.121 0.002 0.000
T1 (3T1g) - T4 (3T2g) 0.008 0.001 0.000
T1 (3T1g) - T5 (3T2g) 0.078 −0.011 0.000
T1 (3T1g) - T6 (3T2g) 0.052 0.091 0.000
T2 (3T1g) - T3 (3T1g) 0.050 0.001 0.000
T2 (3T1g) - T4 (3T2g) −0.049 0.001 0.000
T2 (3T1g) - T5 (3T2g) −0.091 0.090 0.000
T2 (3T1g) - T6 (3T2g) 0.025 0.010 0.000
T3 (3T1g) - T4 (3T2g) −0.033 0.007 0.000
T3 (3T1g) - T5 (3T2g) 0.035 0.000 0.000
T3 (3T1g) - T6 (3T2g) −0.012 0.001 0.000
T4 (3T2g) - T5 (3T2g) 0.017 0.000 0.000
T4 (3T2g) - T6 (3T2g) 0.091 0.000 0.000
T5 (3T2g) - T6 (3T2g) −0.019 −0.002 0.000
Q1 (5T2g) - Q2 (5T2g) 0.002 0.013 0.000
Q2 (5T2g) - Q3 (5T2g) 0.020 0.000 0.000
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Table S6: CASPT2 singlet-triplet SOC matrix elements (cm−1) calculated at the FC geometry.

For simplicity, only the FC adiabatic labels are used, for the corresponding diabatic labels see,

e.g., Table S2. Elements not shown in the table are below 1 cm−1.

SOC ms = −1 ms = 0 ms = 1

Re Im Re Im Re Im

〈 S0|ĤSO| T1〉 −390.9 −390.9

〈 S0|ĤSO| T2〉 552.9

〈 S0|ĤSO| T3〉 −390.9 390.9

〈 S1|ĤSO| T2〉 −64.5 64.5

〈 S1|ĤSO| T3〉 −91.3

〈 S1|ĤSO| T5〉 173.9 −173.9

〈 S1|ĤSO| T6〉 −245.9

〈 S2|ĤSO| T1〉 −64.5 64.5

〈 S2|ĤSO| T3〉 64.5 64.5

〈 S2|ĤSO| T4〉 −173.9 173.9

〈 S2|ĤSO| T6〉 −173.9 −173.9

〈 S3|ĤSO| T1〉 −91.3

〈 S3|ĤSO| T2〉 −64.5 −64.5

〈 S3|ĤSO| T4〉 245.9

〈 S3|ĤSO| T5〉 −173.9 −173.9

〈 S3|ĤSO| T5〉 −173.9 −173.9
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Table S7: CASPT2 triplet-triplet SOC matrix elements (cm−1) calculated at the FC geometry.

For simplicity, only the FC adiabatic labels are used, for the corresponding diabatic labels see,

e.g., Table S2. Elements not shown in the table are below 1 cm−1.

SOC ms = −1 ms = 0 ms = 1
Re Im Re Im Re Im

〈 T1,−1|ĤSO| T2〉 −100.8

〈 T1,−1|ĤSO| T3〉 142.5

〈 T1,−1|ĤSO| T5〉
〈 T1,−1|ĤSO| T6〉 170.6

〈 T1,0|ĤSO| T2〉 −100.8 −100.8

〈 T1,0|ĤSO| T5〉 120.6 120.6

〈 T1,1|ĤSO| T2〉 −100.8

〈 T1,1|ĤSO| T3〉 −142.5

〈 T1,1|ĤSO| T5〉 120.6

〈 T1,1|ĤSO| T6〉 −170.6

〈 T2,−1|ĤSO| T3〉 100.8

〈 T2,−1|ĤSO| T4〉 120.6

〈 T2,−1|ĤSO| T6〉 −120.6

〈 T2,0|ĤSO| T3〉 −100.8 100.8

〈 T2,0|ĤSO| T4〉 120.6 120.6

〈 T2,0|ĤSO| T6〉 120.6 −120.6

〈 T2,1|ĤSO| T3〉 −100.8

〈 T2,1|ĤSO| T4〉 120.6

〈 T2,1|ĤSO| T6〉 120.6

〈 T3,−1|ĤSO| T4〉 170.6

〈 T3,−1|ĤSO| T5〉 −120.6

〈 T3,0|ĤSO| T5〉 120.6 −120.6

〈 T3,1|ĤSO| T4〉 −170.6

〈 T3,1|ĤSO| T5〉 120.6

〈 T4,−1|ĤSO| T5〉 −98.2

〈 T4,−1|ĤSO| T6〉 138.9

〈 T4,0|ĤSO| T5〉 −98.2 −98.2

〈 T4,1|ĤSO| T5〉 −98.2

〈 T4,1|ĤSO| T6〉 −138.5

〈 T5,−1|ĤSO| T6〉 98.2

〈 T5,0|ĤSO| T6〉 −98.2 98.2

〈 T5,1|ĤSO| T6〉 −98.2
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Table S8: CASPT2 triplet-quintet real SOC matrix elements (cm−1) calculated at the FC

geometry. For simplicity, only the FC adiabatic labels are used, for the corresponding diabatic

labels see, e.g., Table S2. Elements not shown in the table are below 1 cm−1.

Real SOC ms = −2 ms = −1 ms = 0 ms = 1 ms = 2

〈 T2,−1|ĤSO| Q3〉 335.4 136.9

〈 T2,0|ĤSO| Q3〉 237.1 237.1

〈 T2,1|ĤSO| Q3〉 136.9 335.4

〈 T3,−1|ĤSO| Q2〉 335.4 136.9

〈 T3,0|ĤSO| Q2〉 237.1 237.1

〈 T3,1|ĤSO| Q2〉 136.9 335.4

〈 T5,−1|ĤSO| Q3〉 201.5 82.3

〈 T5,0|ĤSO| Q3〉 142.5 142.5

〈 T5,1|ĤSO| Q3〉 82.3 201.5

〈 T6,−1|ĤSO| Q2〉 −201.5 −82.3

〈 T6,0|ĤSO| Q2〉 −142.5 −142.5

〈 T6,1|ĤSO| Q2〉 −82.3 −201.5
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Table S9: CASPT2 triplet-quintet imaginary SOC matrix elements (cm−1) calculated at the

FC geometry. For simplicity, only the FC adiabatic labels are used, for the corresponding

diabatic labels see, e.g., Table S2. Elements not shown in the table are below 1 cm−1.

Imaginary SOC ms = −2 ms = −1 ms = 0 ms = 1 ms = 2

〈 T1,−1|ĤSO| Q2〉 335.4 −136.9

〈 T1,−1|ĤSO| Q3〉 −335.4

〈 T1,0|ĤSO| Q2〉 237.1 −237.1

〈 T1,0|ĤSO| Q3〉 −387.3

〈 T1,1|ĤSO| Q2〉 136.9 −335.4

〈 T1,1|ĤSO| Q3〉 −335.4

〈 T2,−1|ĤSO| Q1〉 335.4 −136.9

〈 T2,0|ĤSO| Q1〉 237.1 −237.1

〈 T2,1|ĤSO| Q1〉 136.9 −335.4

〈 T3,−1|ĤSO| Q1〉 −335.4

〈 T3,0|ĤSO| Q1〉 −387.3

〈 T3,1|ĤSO| Q1〉 −335.4

〈 T4,−1|ĤSO| Q2〉 201.5 −82.3

〈 T4,−1|ĤSO| Q3〉 201.5

〈 T4,0|ĤSO| Q2〉 142.5 −142.5

〈 T4,0|ĤSO| Q3〉 232.7

〈 T4,1|ĤSO| Q2〉 82.3 −201.5

〈 T4,1|ĤSO| Q3〉 201.5

〈 T5,−1|ĤSO| Q1〉 −201.5 82.3

〈 T5,0|ĤSO| Q1〉 −142.5 142.5

〈 T5,1|ĤSO| Q1〉 −82.3 201.5

〈 T6,−1|ĤSO| Q1〉 −201.5

〈 T6,0|ĤSO| Q1〉 −232.7

〈 T6,1|ĤSO| Q1〉 −201.5
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Table S10: CASPT2 quintet-quintet real SOC matrix elements (cm−1) calculated at the FC

geometry. For simplicity, only the FC adiabatic labels are used, for the corresponding diabatic

labels see, e.g., Table S2. Elements not shown in the table are below 1 cm−1.

Real SOC ms = −2 ms = −1 ms = 0 ms = 1 ms = 2

〈 Q2,−2|ĤSO| Q3〉 −84.6

〈 Q2,−1|ĤSO| Q3〉 84.6 −103.6

〈 Q2,0|ĤSO| Q3〉 103.6 −103.6

〈 Q2,1|ĤSO| Q3〉 103.6 −84.6

〈 Q2,2|ĤSO| Q3〉 84.6

Table S11: CASPT2 quintet-quintet imaginary SOC matrix elements (cm−1) calculated at

the FC geometry. For simplicity, only the FC adiabatic labels are used, for the corresponding

diabatic labels see, e.g., Table S2. Elements not shown in the table are below 1 cm−1.

Imaginary SOC ms = −2 ms = −1 ms = 0 ms = 1 ms = 2

〈 Q1,−2|ĤSO| Q2〉 84.6

〈 Q1,−2|ĤSO| Q3〉 −169.2

〈 Q1,−1|ĤSO| Q2〉 84.6 103.6

〈 Q1,−1|ĤSO| Q3〉 −84.6

〈 Q1,0|ĤSO| Q2〉 103.6 103.6

〈 Q1,1|ĤSO| Q2〉 103.6 84.6

〈 Q1,1|ĤSO| Q3〉 84.6

〈 Q1,2|ĤSO| Q2〉 84.6

〈 Q1,2|ĤSO| Q3〉 169.2
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The QD simulations were carried out utilizing the diabatic spin-vibronic Hamiltonian
defined above. The time-dependent Schrödinger equation was solved using the multicon-
figuration time-dependent Hartree (MCTDH) method as implemented in the Heidelberg
MCTDH8.4 program package.49,50 The MCTDH method is based on a wave function
ansatz, constructed by multiconfigurational series of Hartree products of time-dependent
one-particle (in the present case, one-mode) basis functions, termed as single particle
functions (SPFs). The SPFs are expanded in a time-independent primitive basis. In
this work, we employ dimensionless normal mode coordinates and harmonic oscillator
eigenfunctions. The size of the utilized SPF and primitive basis sets is given in Table
S12:

Table S12: Primitive (Ni) and SPF (n
(α)
i ) bases set sizes used in the QD simulations. The α

electronic state index takes the following values: 1: 1GS, 2 − 4: 1T1g, 5 − 13: 3T1g, 14 − 22:

3T2g, 23− 37: 5T2g.

Mode Ni n
(α)
i

ν13 81 35,35,35,35,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,25,25,25,25,30,25,25,25,25,25,25,30,25

ν14 81 35,35,35,35,25,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,25,25,25,25,30,25,30,25,25,25,25,25,25

ν15 301 35,35,35,35,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25

These basis sets ensure convergence of the dynamics for the 1 ps duration of the
QD simulation. The initial wavepacket is built of one-dimensional harmonic oscillator
eigenfunctions with zero momentum. The ground-state wavepacket is impulsively excited
by projection onto the diabatic PES corresponding to the third component of the 1T1g

manifold (α = 4). This choice of excitation into a single 1T1g component was made
based on our previous work on the accurate description of excitation into electronically
doubly-degenerate states.51

In order to test the adequacy of the chosen modes in our spin-vibronic model, we
have included ν16, a t1u mode with Fe off-center movement and Fe-N-C bending, in our
Hamiltonian, which, according to Figure 2, is the highest activity mode not included in
our model. Afterwards, we have re-run the QD simulation using this 4D Hamiltonian
but no significant change was observed relative to our 3D QD results. This is explained
by one order magnitude smaller coupling constants λ

(αβ)
i for ν16 than for ν13 and ν14; the

intrastate coefficients κ
(α)
i for ν16 vanish.
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S5 DFT-Optimized Ground-State Geometries

Table S13: Cartesian coordinates (Å) of the B3LYP*/TZVP-optimized ground-state geometry

of [Fe(NCH)6]
2+

Atom x/Å y/Å z/Å

Fe 0.000 0.000 0.000

N 1.961 0.000 0.000

N −1.961 0.000 0.000

N 0.000 1.961 0.000

N 0.000 −1.961 0.000

N 0.000 0.000 1.961

N 0.000 0.000 −1.961

C 3.106 0.000 0.000

C −3.106 0.000 0.000

C 0.000 3.106 0.000

C 0.000 −3.106 0.000

C 0.000 0.000 3.106

C 0.000 0.000 −3.106

H 4.181 0.000 0.000

H −4.181 0.000 0.000

H 0.000 4.181 0.000

H 0.000 −4.181 0.000

H 0.000 0.000 4.181

H 0.000 0.000 −4.181
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Table S14: Cartesian coordinates (Å) of the BP86/TZVP-optimized ground-state geometry

of [Fe(NCH)6]
2+

Atom x/Å y/Å z/Å

Fe 0.000 0.000 0.000

N 1.917 0.000 0.000

N −1.917 0.000 0.000

N 0.000 1.917 0.000

N 0.000 −1.917 0.000

N 0.000 0.000 1.917

N 0.000 0.000 −1.917

C 3.072 0.000 0.000

C −3.072 0.000 0.000

C 0.000 3.072 0.000

C 0.000 −3.072 0.000

C 0.000 0.000 3.072

C 0.000 0.000 −3.072

H 4.153 0.000 0.000

H −4.153 0.000 0.000

H 0.000 4.153 0.000

H 0.000 −4.153 0.000

H 0.000 0.000 4.153

H 0.000 0.000 −4.153
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