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SUMMARY
Human hematopoiesis is a dynamic process that starts in utero 18–21 days post-conception. Understanding
the site- and stage-specific variation in hematopoiesis is important if we are to understand the origin of he-
matological disorders, many of which occur at specific points in the human lifespan. To unravel how the he-
matopoietic stem/progenitor cell (HSPC) compartment changes during human ontogeny and the underlying
gene regulatory mechanisms, we compare 57,489 HSPCs from 5 different tissues spanning 4 developmental
stages through the human lifetime. Single-cell transcriptomic analysis identifies significant site- and devel-
opmental stage-specific transitions in cellular architecture and gene regulatory networks. Hematopoietic
stem cells show progression from cycling to quiescence and increased inflammatory signaling during
ontogeny.We demonstrate the utility of this dataset for understanding aberrant hematopoiesis through com-
parison to two cancers that present at distinct time points in postnatal life—juvenile myelomonocytic leuke-
mia, a childhood cancer, and myelofibrosis, which classically presents in older adults.
INTRODUCTION

Definitive hematopoiesis begins in the human embryo at

4–5 weeks post-conception, when hematopoietic stem cells

(HSCs) first arise in the aorta-gonad-mesonephros (AGM) re-

gion. Hematopoiesis then migrates to the fetal liver (FL) and sub-

sequently to the bone marrow (BM), which becomes the domi-

nant hematopoietic organ at birth and remains so throughout

postnatal life (Ivanovs et al., 2017). Single-cell transcriptomics

have been extensively applied to clarify the cellular architecture

and molecular pathways in hematopoiesis, but the majority of

studies have been conducted in adult tissues (Hay et al., 2018;

Velten et al., 2017), mouse models (Dahlin et al., 2018; Tusi

et al., 2018), or human cord blood (Notta et al., 2016; Zheng

et al., 2018). A recent analysis of first and second trimester hu-

man FL, fetal kidney, and fetal skin indicated that the hematopoi-

etic compartment in FL changes from being predominantly

erythroid in early gestation to lympho-myeloid in later develop-

ment, and that hematopoietic stem/progenitor cells (HSPCs)
Cel
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become less proliferative during fetal maturation (Popescu

et al., 2019). The transition of HSPCs from a proliferative to

quiescent state has also been associated with the migration of

hematopoiesis from FL to fetal BM (FBM), along with a concom-

itant decrease in the frequency of non-committed HSPCs, sug-

gesting a role for the niche in regulating hematopoietic cell state

(Ranzoni et al., 2021).

However, the transcriptome profiles of the lineage-negative

(Lin�), CD34+ HSPC compartment in hematopoietic tissues

during development and postnatal aging have never been

directly compared using the same platform. These studies are

crucial if we are to understand the variation in hematopoiesis

during normal human ontogeny. For example, whether certain

patterns of fetal, pediatric, or adult-specific gene expression

signatures exist that are permissive for the emergence of

age-dependent hematopathologies has not previously been

described.

We therefore generated a comprehensive dataset encom-

passing 57,489 HSPCs sampled from healthy human
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hematopoietic tissues, including first trimester early FL (eFL),

paired second trimester FBM and FL (isolated from the same fe-

tuses), pediatric BM (PBM), and adult BM (ABM). This study

directly compares human HSPC from all stages of ontogeny

(early fetal life to adulthood) at the single-cell level. Precise delin-

eation of the consistencies and differences in the cellular compo-

sition and molecular pathways in the HSPC compartments

across human development demonstrated pronounced site-

and developmental stage-specific transitions in cellular architec-

ture and transcriptional profiles between hematopoietic tissues.

While megakaryo-erythropoiesis predominated in eFL, lympho-

myeloid progenitors showed dramatic expansion following the

onset of hematopoiesis in the BM of the developing fetus. The

proportion of lymphoid progenitors in the BM hematopoietic

compartment then progressively decreased during postnatal

life. Analysis of the most naive HSPCs suggested that molecular

programs that underpinned these ‘‘shifts’’ in lineage composition

originated very early within the primitive HSC compartment. In

addition, HSCs but not lineage-committed progenitors showed

progression from cycling to quiescence and increased inflam-

matory signaling during development from fetal through to adult

life. Finally, comparison of HSPCs sampled over normal human

ontogeny to HSPCs from two hematological cancers that occur

at extremes of life, juvenile myelomonocytic leukemia (JMML)

affecting young children and myelofibrosis (MF) affecting older

adults, suggested a fetal origin for JMML and exacerbation of

the adult BM-associated inflammatory signaling programs in

MF HSPCs. These observations highlight the value of this

comprehensive single-cell transcriptomic resource for under-

standing the changes in normal hematopoiesis through human

ontogeny, as well as unraveling the cellular and molecular dis-

ruptions that occur in hematopoietic disorders.

RESULTS

Analysis of 57,489 HSPCs revealed 21 distinct cell
clusters across human ontogeny
Single-cell RNA sequencing (scRNA-seq) was performed on

Lin�CD34+ cells from: eFL (15,036 cells); matched FL (17,351

cells) and FBM (14,935 cells) isolated from the same fetuses;

PBM (13,311 cells); and ABM (6,300 cells) using the 10x Geno-

mics platform (Figure 1A). A total of 66,933 HSPCwere captured,

and following quality control, 57,489 single-cell transcriptomes

were included in downstream analyses (Table S1). Datasets

were integrated using an adaptation of the Harmony algorithm

(Korsunsky et al., 2019) that automatically finds the similarity of

identified clusters across all samples by performing sequential

gene set enrichment analysis (GSEA) with identified marker

genes from differential gene expression analysis (see STAR

Methods), implemented in the SingCellaR package. This led to

optimal data integration with improved resolution of erythroid

from eosinophil/basophil/mast progenitors than when using the

standard Harmony or Seurat methods as indicated by visual in-

spection (Figures S1A–S1C) and the objective measures kBET,

iLISI, and cLISI (Figures S1D and S1E) (B€uttner et al., 2019; Kor-

sunsky et al., 2019).

To identify the cellular composition of the 57,489 HSPCs

captured from different stages and tissues over ontogeny,
2 Cell Reports 36, 109698, September 14, 2021
graph-based Louvain clustering was performed. This identified

21 clusters with distinct expression patterns of canonical stem/

progenitor and hematopoietic lineage marker genes (Figures

1B, S2A�S2C; and Table S2) (Drissen et al., 2019; Hay et al.,

2018; Pellin et al., 2019; Popescu et al., 2019; Velten et al.,

2017). While some clusters were easy to identify by their clear

expression of canonical markers, other clusters were less readily

classifiable due to the low-level expression of lineage-affiliated

genes and/or expression of multiple lineage markers. To facili-

tate the annotation of these clusters, we collated lineage signa-

ture genes from 75 published human hematopoiesis gene sets

(Table S3) and performed GSEA on the expressed genes for

each cluster using these gene sets to guide assignment of cell

types (Figure 1C).

Cluster 1 had a robust expression of hematopoietic stem

cell/multipotent progenitor (HSC/MPP)-affiliated genes, while

clusters 7 and 12 showed HSC/MPP genes together with evi-

dence of early myeloid or lymphoid priming, respectively (Fig-

ures 1B and 1C, and Figure S2C). Cell clusters representing

the major hematopoietic lineage progenitor subsets (erythroid,

myeloid, lymphoid, megakaryocytic, dendritic, eosinophil/baso-

phils/mast cells) were identified, as well as clusters with the

expression of genes representing >1 lineage likely to represent

non-lineage-primed HSC/MPP or oligopotent progenitors (e.g.,

erythro-megakaryocytic [cluster 4] and eosinophil/basophil/

mast cell precursors [cluster 17]) (Figure 1C). A population of

non-hematopoietic cells (cluster 19) expressing endothelial

geneswas detected, which derived predominantly but not exclu-

sively from eFL. Some lineage progenitor clusters had differential

enrichment of G2M checkpoint and S phase gene signatures

(Table S4), allowing us to classify certain progenitor populations

by their distinct proliferation state (e.g., cluster 9, erythroid

[cycling]; cluster 10, B lymphoid [cycling]; Figure 1B). To further

investigate the resolution of this dataset, we compared our fetal

liver data with the published scRNA-seq data from FL (Popescu

et al., 2019). The FL cells from our study mostly mapped to

CD34+ progenitor/precursor cell clusters of the reference data-

set (HSC/MPP, PreProB, ProB, MEMP, early erythroid, DC pre-

cursors, and neutrophil-myeloid progenitors) (Figures S2D and

S2E). As expected, given the sorting strategy that we used,

our dataset achieved a higher resolution of cell populations

within the HSC/MPP and progenitor populations (Figures S2D

and S2E).

Site- and developmental stage-specific differences in
the cellular composition of the HSPC compartment
To accurately determine differences in the composition of

Lin�CD34+ progenitors between hematopoietic sites and onto-

logical stages, we identified cells showing an enriched expres-

sion of curated gene signatures corresponding to HSC/MPP

and to the main lineage progenitor subtypes (myeloid, mega-

erythroid-mast cell, and B-lymphoid progenitors; Figure 2A; Ta-

ble S4). Using an AUCell (Aibar et al., 2017) score of >0.15, a

clear distinction between cellular subsets was seen, with 24%

of cells (13,871 cells) classified as HSC/MPP, 15% as myeloid

(8,330 cells), 16% as lymphoid (9,473 cells), 2% as eosinophil/

basophil/mast cell (1,361 cells), 12% as erythroid (6,778 cells),

and 1% as megakaryocytic (572 cells) progenitors (Figure 2A).
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Figure 1. Single-cell RNA-sequencing (scRNA-seq) of 57,489 hematopoietic stem/progenitor cells (HSPCs) from 5 hematopoietic tissues

across human ontogeny reveals 21 distinct cellular subsets

(A) Experimental design. Lineage-negative (Lin�) CD34+ HSPCs were fluorescence-activated cell sorting (FACS) sorted for scRNA-seq from first trimester (early)

fetal liver (eFL), matched second trimester FL and fetal bone marrow (FBM), pediatric bone marrow (PBM), and adult bone marrow (ABM). A bar chart shows the

number of cells per tissue.

(B) Louvain community-detection clustering based on the weighted graph network and uniform manifold approximation and projection (UMAP) of 57,489 cells

identified 21 distinct hematopoietic progenitor populations.

(C) Heatmap generated using the SingCellaR cell-type annotation system showing positive gene set enrichment scores for each cluster facilitates cluster

identification. The x axis represents clusters as numbered in Figure 1B. The y axis represents a curated list of hematopoietic lineage-specific gene sets (see Table

S3).
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First and second trimester FL contributed the majority

(69.4%) of the erythroid progenitors captured (Figure 2B),

whereas lymphoid and myeloid progenitors predominantly

derived from BM samples (70.4% and 81.2% respectively; Fig-

ure 2B). Marked differences were observed in the origin of the

megakaryocyte progenitor cells captured, with a majority

(63.5%) captured from eFL (Figure 2B), while only 5%–12%

derived from any other individual tissue. Differences in lineage

specification were also demonstrable when the proportions of

progenitor cell types were quantified within individual tissue

(Figures 2C and S3A). These differences in lineage specification

for the main lineage subtypes described above were main-

tained after adjusting for the variable cell numbers obtained

from each tissue type (Figure S3B). Of note, marked differences

were seen in the cellular composition of matched FL and FBM

HSPCs when analyzing cells representing HSC/MPP and the
main lineage subtypes. There were 4.4-fold more HSC/MPP

and 8.7-fold more erythroid progenitors in FL than FBM. The

opposite trend was true for myeloid and lymphoid progenitors,

which were 7.9-fold and 2.8-fold more frequent in FBM than FL

(Figure 2C). The observations in regard to the shifts in compo-

sition of the HSPC compartment over ontogeny were confirmed

using DA-seq, a differential abundance analysis method that

enables comparative analyses of different samples indepen-

dently of clustering analysis (Zhao et al., 2020). Comparison

of FL to FBM showed a strong enrichment of lympho-myeloid

progenitors in FBM and HSC/MPP, MPP, and mega-erythroid

progenitors in FL. Comparison of FBM to PBM showed enrich-

ment of lympho-myeloid progenitors in FBM, and PBM to ABM

highlighted the enrichment of lymphoid progenitors in PBM

(Figures S3C–S3F). These results confirm our observations

from the clustering analyses.
Cell Reports 36, 109698, September 14, 2021 3



Figure 2. Site and developmental stage-

specific changes in composition of the

HSPC compartment

(A) Cells were classified using an AUCell score of

>0.15 for canonical marker genes for HSC/MPP,

myeloid, lymphoid, eosinophil/basophil/mast cell,

erythroid, and megakaryocyte progenitors.

(B) The proportion of HSC/MPP and lineage pro-

genitor subsets that derived from each tissue type.

(C) The proportion of HSPCs from each tissue

classified as HSC/MPP or lineage progenitor

subtypes.
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Four main differentiation trajectories are present
among HSPCs across human ontogeny
To explore the developmental relationships between cell clus-

ters, cells were ordered based on their gene expression using

a force-directed graph (FDG) network (Figures 3A–3C). Lineage

signature gene scores were defined as before (Psaila et al.,

2020) and superimposed on the FDG. This demonstrated four

major paths emerging from the HSC/MPP cluster (cluster 1, Fig-

ure 3A), representing erythroid, megakaryocytic, lymphoid, and

myeloid differentiation trajectories along pseudotime (Figures

3B and 3C). As expected, clusters with multipotent potential

(clusters 1, 5, 7, 11, 12, and 15) were located at the apex or cen-

tral positions in the trajectories (Figures 3A and 3B, gray cells).

The existence of the main trajectories was confirmed using diffu-

sion mapping as an alternative trajectory analysis (Figure S3G).
4 Cell Reports 36, 109698, September 14, 2021
Dendritic cell precursors (clusters 18

and 20) were closely affiliated with the

lymphoid trajectory, while the trajectory

of eosinophil/mast cell/basophil progeni-

tors (cluster 17) was associated with

that of erythroid progenitors (Figures 3A

and 3B).

Monocle3 (Trapnell et al., 2014) anal-

ysis was performed to calculate pseudo-

time and identify differentiation paths for

the four main trajectories (erythroid,

megakaryocytic, lymphoid, and myeloid)

(Figure S3H). To compare lineage differ-

entiation trajectories across tissue types,

the datasets were downsampled to con-

trol for differences in the numbers of cells

captured from each tissue, and cells

were then ordered in pseudotime (Figures

3D–3K). The expression of erythroid

and megakaryocyte-associated tran-

scriptional programs occurred earlier in

pseudotime for eFL than for other tissues

(Figures 3D–3G). The expression of

lymphoid-associated genes was mark-

edly different between tissues across

ontogeny, with the onset of expression

observed earliest in BM hematopoiesis

in the second trimester fetus, and then

progressively later in PBM and ABM cells
(Figures 3H and 3I). This included both early lymphoid genes and

later B cell-specific genes, suggesting an accelerated B cell

specification program in fetal and pediatric BM. Myeloid-associ-

ated gene expression occurred earlier in pseudotime for all BM

tissues compared to eFL/FL and was particularly pronounced

in FBM (Figures 3J and 3K). The differences between matched

FL and FBM from the same donors highlight differences in line-

age specification between hematopoietic sites at the same

developmental stage (Figures 3D, 3F, 3H, and 3J).

Developmental stage drives global transcriptional
differences between HSPCs, with enrichment of cell-
cycle genes in eFL and inflammatory pathways in ABM
HSPCs from different developmental stages and hematopoietic

sites showed distinct molecular profiles. A total of 4,094 genes
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was identified as differentially expressed genes (DEGs) upon

pairwise comparison of the 5 tissue types, with the largest num-

ber of DEGs found between eFL and ABM (1,235 DEGs) and the

smallest difference between FL and FBMsamples from the same

developmental stage (54 DEGs), suggesting that developmental

stage is a more significant driver of global transcriptional differ-

ences than is the site of hematopoiesis (Figure S4A). Hallmark

GSEA on DEGs between pairwise comparisons of selected tis-

sues demonstrated the enrichment of cell-cycle-related path-

ways (e.g., E2F target and G2M checkpoint) in eFL versus FL,

heme metabolism in FL versus FBM, and multiple inflammatory

response-related pathways in adult versus pediatric BM

(Figure S4B).

We also identified subsets of specific genes that were differen-

tially expressed in each tissuewhen compared to all of the others

(Figure S4C;Table S5). Unsurprisingly, genes involved in control-

ling the cell cycle (MYC) and erythroid lineage-associated genes

(CNRIP1, TIMP3, and GATA2) together with fetal-specific genes

(LIN28B and IGF2BP3) were highly expressed in eFL and FL

(Copley et al., 2013; McWilliams et al., 2013; Yuan et al., 2012).

DHRS9, a robust marker for regulatory or suppressive macro-

phages (Riquelme et al., 2017), was also specifically expressed

in FL. FBM had a strong expression of chemokine ligands

(CCL3,CCL3L1,CCL4, andCXCL8) as well as B lymphoid genes

(VPREB3 and CD83) (O’Byrne et al., 2019), reflecting the strong

myeloid/lymphoid skew in FBM. The postnatal samples PBM

and ABM had relatively similar transcriptional profiles, with only

193 genes being DEGs (Figure S4A). However, the expression

of LAIR2, a gene encoding an immunoglobulin superfamily re-

ceptor, was very specific for PBM, perhaps associated with its

role in the establishment of the immune system during childhood

(Figure S4C). Other genes expressed more highly in PBM versus

ABM included genes associated with early B-lymphoid develop-

ment (DNTT and FLT3), the transcription factor and proto-onco-

gene (ETV6) that is frequently mutated in hematological malig-

nancies, and genes involved in cell growth, proliferation, and

apoptosis (YPEL3 and AKR1C3; Figure S4C). ABM strongly ex-

pressed kruppel-like factors (KLF3 and KLF9), markers of DNA

stress (DDIT4), a regulator of inflammation (SOCS3), the protein

phosphatase IER5 that regulates cell growth and stress resis-

tance (Kawabata et al., 2015), and myeloid-associated genes

(AREG and CEBPB) compared to other tissues (Figure S4C).

As expected, the switch from fetal to adult hemoglobin was

also evident with the fetal gamma globin geneHBG2 strongly ex-

pressed in FL in contrast to PBMandABM,where the beta globin

gene (HBB) was the most prominently expressed beta globin

cluster gene. A complete list of significantly DEGs compared

across tissues is provided in Table S5, and tissue-specific genes

per each cluster are included in Table S6. The top 6 significantly
Figure 3. Four main differentiation trajectories were identified, and

‘‘pseudotime’’ between tissues

(A–C) Force-directed graph (FDG) showing (A) 21 Louvain clusters, (B) superim

Monocle3 analysis. Dashed arrows represent the 4 main trajectories of differentia

progenitors.

(D, F, H, and J) Expression of canonical lineage-affiliated genes along pseudotime

each tissue.

(E, G, I, and K) Expression of selected erythroid, megakaryocytic, lymphoid, and

6 Cell Reports 36, 109698, September 14, 2021
upregulated genes in each tissue for each cluster are shown for

13 selected clusters (Figure S4D).

Distinct gene regulatory networks (GRNs) in HSC/MPP
underlie differences in lineage specification between
hematopoietic tissues
To examine the molecular regulators that underpin the differ-

ences in lineage priming and cellular heterogeneity between he-

matopoietic tissues, we performed single-cell regulatory

network inference and clustering (SCENIC) to evaluate the

activity of GRNs (Aibar et al., 2017). This method enables identi-

fication of regulons, or genes that are co-expressed with tran-

scription factors, with known direct binding targets based on

cis-regulatory motif analysis. The activity score of each regulon

was quantified in each cell using AUCell (Figure 4A). This enabled

the identification of regulons that were specifically enriched in

HSC/MPP (ZNF467, HOXA9, and HOXB5), lymphoid progenitors

(PAX5, TCF3, and TBX21), myeloid progenitors (SPI1, CEBPD,

andRUNX1), erythroid progenitors specifically (HES6), megakar-

yocytic-erythroid progenitors (STAT5A and GATA1), eo/baso/

mast cell progenitors (FEV and FOXD4L1), and megakaryocytic

progenitors (MEF2C) (Figure 4A).

The regulon activity was compared across tissue types for

each HSPC subset (Figure 4B). While themain differences in reg-

ulons were driven by the lineage specification of HSPC, there

were tissue-specific differences between tissues within HSC/

MPP and lineage-primed progenitor compartments. HSC/MPP

from eFL had stronger enrichment of MYC, HDAC2, HMGA1,

FLI1, and MEF2C, and the expression of these regulons

decreased substantially during development, suggesting a key

role for these GRNs in promoting erythroid and megakaryocytic

differentiation in eFL versus hematopoietic tissues later in normal

human development (Figure 4B). Fetal HSC/MPP also showed

enrichment for HOXA9 and HOXB5 regulons compared to post-

natal tissues. There was an enrichment of lymphoid-associated

GRNs in HSC/MPP from PBM, and this was accompanied by

the strong enrichment of ZMIZ1, IKZF1, BCL11A, and ETS1 reg-

ulons in PBM lymphoid progenitors. TBX21,WT1, and SOX4 reg-

ulons were enriched in eFL lymphoid progenitors; MEF2D, SPIB,

IRF4, IRF7, IRF8, RUNX1, and CEBPA/D/E in postnatal myeloid

progenitors; andMYC, HDAC2, and HMGA1 in fetal versus post-

natal erythroid progenitors. RAD21 and CTCF targets were spe-

cifically enriched in postnatal versus prenatal HSC/MPP,

erythroid, and eo/baso/mast cell progenitors (Figure 4B).

Differences in the transcriptome of HSC/MPP through
ontogeny
We next sought to investigate differences in the gene expression

patterns of more naive HSPCs (HSC/MPP) through ontogeny, to
onset of lineage-affiliated transcriptional programs varied along

position of gene scores for 4 lineage gene sets, (C) pseudotime score from

tion from HSC/MPP toward lymphoid, erythroid, megakaryocytic, and myeloid

from HSC to erythroid, megakaryocytic, lymphoid, and myeloid trajectories for

myeloid lineage-affiliated genes along pseudotime for each tissue.
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Figure 4. Distinct activity of gene regulatory networks (GRN) underlies differences in lineage specification across ontogeny

(A) UMAP plots superimposed with enrichment scores from SCENIC analysis for regulons specifically enriched in each lineage. HSC/MPP (ZNF467, HOXA9,

HOXB5); lymphoid (PAX5, TCF3, TBX21); myeloid (SPI1, CEBPD, RUNX1); erythroid specific (HES6); mega-erythroid (STAT5, GATA1); eo/baso/mast cell (FEV,

FOXD4L); and megakaryocyte specific (MEF2C).

(B) Heatmap showing selected regulons that showed differential activity between lineages across tissues. The red boxes and names indicate regulons highlighted

in the main article.
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identify possible cell-intrinsic factors underlying the changing

differentiation bias during development. Cells from all of the tis-

sues that were classified as HSC/MPP using an AUCell score

>0.15 were selected for further analysis (Figures 5A and 5B).

This demonstrated four distinct cell clusters: two minor subfrac-

tions that showed low-level enrichment of mega-erythroid and

lympho-myeloid lineage gene signature sets, suggesting early
lineage priming of some HSC/MPP (Figure 5C), and the non-line-

age primed HSC/MPP were separated into two distinct subsets

reflecting proliferative and quiescent cell states (Figures 5D and

5E). After downsampling the data to analyze equal numbers of

HSC/MPP from each tissue type, BM HSC/MPP from all of the

developmental stages (FBM, PBM, and ABM) showed myeloid

priming compared to FL samples, and PBM HSC/MPP were
Cell Reports 36, 109698, September 14, 2021 7



Figure 5. HSC/MPPs show early lineage priming and progression from cycling to quiescence over ontogeny, with differential GRN activity

between tissues

(A) A total of 13,871 cells were identified as HSC/MPP using an AUCell score >0.15 for the HSC gene set and visualized in a FDGwith superimposition of (B) tissue

of origin.

(C) Lineage gene set.

(D) Cell-cycle gene expression scores.

(E) Quiescent gene expression scores.

(F and G) AUCell scores for quiescence and cell-cycle signature gene sets in a total of 6,398 HSC identified from different tissues. Significance level shown as

obtained using a Wilcoxon test (*p % 0.05; **p % 0.01; ***p % 0.001; and ns, not significant).

(H) Violin plots comparing AUCell scores from each selected HALLMARK gene set across tissues.

(I) Differentially active regulons in HSC across tissues. Cells for each tissue were ranked by the quiescence score.
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more lymphoid primed than ABM, similar to our observations in

total Lin�CD34+ HSPCs (Figure S5A).

HSCs show progression from proliferation to
quiescence during ontogeny with enrichment of
inflammatory signatures in ABM
To investigate the transcriptional profile of the most primitive

HSC, cells with the very highest HSC AUCell score (greater

than mean score) within the HSC/MPP compartment were taken

forward for further characterization (6,398 cells; Figure S5B).

Quiescence and proliferation gene signatures (Table S4) showed

opposite changes through ontogeny, with ABM HSC showing

the highest quiescence score and eFL HSC being the most pro-
8 Cell Reports 36, 109698, September 14, 2021
liferative (Figures 5F and 5G). Notably, this temporal pattern in

cell cycling was only observed in HSCs, and cell-cycle scores

in other lineage-affiliated progenitor clusters did not show the

same progression across ontogeny (Figure S5C). The decrease

in cell-cycle score through ontogeny correlated with the

decreasing expression of MYC and E2F targets, oxidative phos-

phorylation, and DNA repair pathways. In contrast, increasing

HSC quiescence correlated with inflammatory response, activa-

tion of P53 response, and cell death-associated pathways

(Figure 5H).

We next sought to determine whether cell-intrinsic drivers of

lineage priming and cell cycling were detectable in the most

primitive HSCs. We therefore examined the regulons that were
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actively enriched in the 6,398 HSCs with the highest HSC AUCell

score at different stages of ontogeny. eFL and FL HSC showed

evidence of erythroid- and megakaryocyte-specific regulons

such as KLF1, GATA2, FLI1, and MEF2C (Figure 5I). The FBM

regulon was enriched for calcineurin-regulated nuclear factor

of activated T cells (NFAT)-dependent transcription networks

(FOSL1, JUNB, EGR3, EGR4, and MAFB) that are usually seen

in lymphocytes, which may represent early lymphoid priming.

PBM HSC showed a predominance of B lymphoid-specific reg-

ulons, such as BCL11A, IKZF1, PAX5, and IRF8 compared to

other tissues. The regulons specifically expressed in ABM

HSCs were predominantly mediating inflammatory programs

(e.g., interferon pathway [ELF1 and IRF1], NFKB, and acute

phase response [CEBPB], as well as genes previously reported

as deregulated in agedHSCs [FOSL2 and JUND]; Figure 5I) (Lav-

rovsky et al., 2000; Schäfer et al., 2018).

Leveraging single-cell transcriptomics to understand
abnormal hematopoiesis
Finally, to demonstrate the utility of the dataset for understand-

ing transcriptional perturbations in hematological diseases, we

compared the normal ontogeny dataset to previously published

single-cell datasets from two disease states. We chose datasets

from hematological neoplasms that occur specifically in either

early life (JMML; Louka et al., 2021) or in adulthood (primary

MF; Psaila et al., 2020). We integrated the 57,489 Lin�CD34+

cells sampled from tissues across normal human ontogeny

with 19,524 Lin�CD34+ cells from JMML patients (n = 2) and

19,524 Lin�CD34+ cells fromMF patients (n = 15). The total data-

set of 96,537 cells was then interrogated for lineage specification

as for Figure 2A. Compared to its normal counterpart (PBM),

JMML HSPC had fewer lymphoid, erythroid, and megakaryo-

cytic progenitors (Figure 6A), with themajority of the HSPC being

defined as HSC/MPP or myeloid progenitors (Figure 6B). This is

in keeping with JMML being a myeloid neoplasm that originates

in the earliest HSC compartment with an expansion of an

abnormal CD38�CD90+ primitive HSPC population; with a

reduced or abnormal erythroid, megakaryocytic, and lymphoid

output from JMML HSC in vitro; and a myeloid-biased reconsti-

tution in vivo (Louka et al., 2021). When compared to normal

ABM, MF HSPCs showed a dramatic expansion of megakaryo-

cyte progenitors with an almost complete absence of lymphoid

progenitors (Figures 6A and 6B), as previously reported (Psaila

et al., 2020).

The developmentally regulated molecular features of the pro-

genitors in which blood cancers originate may drive the distinct

biology of the disease at different ages. To understand whether

the abnormal HSPC compartments in JMML and MF share fea-

tures with normal counterparts from a particular developmental

stage, we compared HSC/MPP and lineage-specific progenitors

from disease states to their counterparts from all tissue types

through ontogeny. Hierarchical clustering of the number of differ-

ential genes revealed that HSC/MPP, myeloid, and erythroid

progenitors in childhood JMML clustered with fetal counterparts

rather than postnatal PBM, whereas MF HSPC clustered with

postnatal counterparts (Figure 6C).

Differential gene expression analysis was performed to

compare cells from JMML and MF to normal ontogeny in each
lineage (Table S7). JMMLHSC/MPP showed a higher expression

of stem cell genes (e.g., HOPX, SPINK2, CLEC9A) compared to

normal counterparts, and this ‘‘stemness’’ signature was re-

tained in JMML myeloid progenitors when compared to normal

counterparts (Figure 6D). Concomitantly, more mature myeloid

genes such as ELANE and CEBPD were downregulated in the

JMML myeloid progenitors compared to normal counterparts,

suggesting a block in differentiation along the granulocytic/

neutrophil lineage. Gene regulatory network analysis showed

similarities of JMML HSC/MPP regulons with fetal HSC/MPP

(FLI1, MEF2C, MECOM, and GATA2), which were also enriched

in JMML myeloid progenitors (Figure 6E).

MF HSC/MPP showed a high expression of immune and

inflammatory pathways (HLA genes, GBP4, and IFITM1), a

matrix- and collagen-degrading enzyme (MMP2), and genes

with oncogenic function (MYCN, KRT8, and KRT18) that

have been correlated with cancer progression and poor sur-

vival (Fortier et al., 2013; Lai et al., 2017). Megakaryocyte pro-

genitors from MF showed markedly increased expression of a

subset of genes involved in cell-matrix interactions and cell

adhesion (CD9 and MPIG6B) when compared to the megakar-

yocyte progenitors from healthy control tissues. Similar to MF

HSC/MPP, megakaryocyte progenitors in MF also showed an

increased expression of oncogenes (RAB6B), interferon-induc-

ible genes (IFITM3), and the cell-cycle regulator CDK2AP1

(Figure 6F). GRN analysis highlighted the activation of inflam-

matory signaling pathways (IRF9, IRF1, ELF1, and STAT1

regulons) and cell cycle (CUX1) in MF HSC/MPP and megakar-

yocyte progenitors, as well as the resurgence of megakaryo-

cyte-associated regulons (MEF2C, FLI1) that were most

prominent in eFL HSC/MPP in the normal ontogeny dataset

(Figures 5I and 6G).

DISCUSSION

Single-cell approaches have been extensively applied to under-

stand normal and perturbed hematopoiesis and to define human

prenatal blood and immune cells (Park et al., 2020; Popescu

et al., 2019; Ranzoni et al., 2021). These studies, together with

other observations, have highlighted the predominance of

erythroid lineage cells in human FL (Popescu et al., 2019) and

B lymphoid cells in FBM (O’Byrne et al., 2019). Differences in

the proliferative capacity of fetal and postnatal HSPC have

been described using functional studies (Bowie et al., 2006;

Copley et al., 2013; Lansdorp et al., 1993; Muench et al.,

1994). A switch from multipotent to largely oligo/unipotent

stem cells has also been documented between fetal and adult

life (Notta et al., 2016). However, HSPCs sampled from multiple

time points over human ontogeny from first trimester to adult-

hood at single-cell resolution have not previously been reported.

In this study, we sought to define how hematopoiesis evolves

during the human lifespan by interrogating a comprehensive

transcriptomic dataset of HSPCs sampled from five hematopoi-

etic tissues over four stages of ontogeny. Our data clearly

demonstrate the changing frequencies of lineage-specific sub-

sets that exist within the HSPC compartment, and suggest that

the molecular programs that drive these changes are likely to

originate in the HSC compartment. Notably, directly comparing
Cell Reports 36, 109698, September 14, 2021 9



A

D

E

F

G

B C

Figure 6. Concordance in gene expression between juvenile myelomonocytic leukemia (JMML) HSPCs and normal fetal HSPCs, and

increased inflammatory signaling seen in myelofibrosis (MF) and ABM in HSPCs

Data were derived from JMML (n = 2, total cells = 19,524) and MF (n = 15, total cells = 19,524) HSPCs.

(A) UMAP plots showing lineage progenitors as identified by AUCell score >0.15 for downsampled datasets to show 5,600 cells per tissue type.

(B) The proportion of HSPCs (from all of the cells within each tissue), classified as HSC/MPP or lineage progenitors in JMML, MF, and their normal counterparts.

(C) Hierarchical clustering of the number of differentially expressed genes (DEGs) from pairwise comparisons of tissues from normal ontogeny and JMML andMF

for HSC/MPP, myeloid and erythroid compartments (adjusted p < 0.05, absolute log2FC > 1.5, and expressing cell frequency >0.3 per tissue).

(D and E) Top DEGs and regulons, respectively, between JMML HSPCs and those from normal human ontogeny tissues for HSC/MPP and myeloid progenitors.

(F and G) Comparison of top DEGs and regulons, respectively, between MF HSPCs and those from normal human tissues through ontogeny for HSC/MPP and

myeloid, erythroid, and megakaryocyte lineage progenitors.
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FL and FBM HSPCs isolated from the same second trimester

fetuses showed that while more than half of HSPCs in second

trimester FLs are HSC/MPP, >80% of HSPCs in the matched

FBM are lineage primed, with dramatic expansion of myelo-lym-

phopoiesis in FBM. This enrichment of oligo/unipotent progeni-

tors and switch in lineage output is likely to be driven by micro-
10 Cell Reports 36, 109698, September 14, 2021
environmental cues, as hematopoiesis migrates from FL to BM

during the second trimester, although this could also be ex-

plained by selective engraftment and the subsequent expansion

of lympho-myeloid progenitors in the BMmicroenvironment. We

also found key differences in the gene regulatory pathways be-

tween tissues, supporting previous studies indicating that a
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complex interplay between cell-intrinsic (Dykstra et al., 2011;

Grover et al., 2016) and cell-extrinsic factors (Ho et al., 2019)

alter hematopoiesis and lineage specification during postnatal

life. A marked and progressive increase in HSC quiescence

was evident during postnatal development. As the cell cycle

may play a role in determining the fate ofmultipotent progenitors,

at least for erythro-megakaryocytic lineage specification (Lu

et al., 2018; Tusi et al., 2018), it is possible that this may also

play an instructive role in the myeloid-biased hematopoiesis

that is observed with increasing age.

Finally, mapping of two hematological malignancies onto

normal hematopoiesis datasets allowed us to identify the similar-

ities and differences in lineage specification and GRNs between

these diseases and normal hematopoiesis through ontogeny.

Such comparisons showed a persistence of fetal-like gene

expression programs in the childhood disease JMML, support-

ing a fetal origin for this disease (Helsmoortel et al., 2016). Myelo-

fibrosis, a cancer that typically presents in later adulthood,

showed further exacerbation of inflammatory signaling path-

ways initiated in adult BM, together with altered cell-matrix inter-

actions and activation of oncogenic programs, and resurgence

of megakaryocyte-associated transcriptional signatures that

were prominent in FL, but subsequently downregulated in later

physiological development.

In conclusion, defining the key similarities and differences be-

tween hematopoietic tissues across normal human ontogeny

has provided a key resource to study how the characteristics

of the most primitive HSPCs and their lineage fates change

through the human lifetime. These results pave the way for a bet-

ter understanding of hematopoiesis in normal human develop-

ment, necessary to indicate the composition and likely long-

term reconstitution ability of HSPCs selected from donors of

different ages for cell-based therapies, including gene editing

and stem cell transplantation (Harrison et al., 1997; Holyoake

et al., 1999; Hua et al., 2019; Muench et al., 1994; Nicolini

et al., 1999), as well as the cellular and molecular underpinnings

of age-specific vulnerabilities to the origin and evolution of

certain disease states.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Supat

Thongjuea (supat.thongjuea@imm.ox.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d All raw and processed sequencing data generated in this study were deposited in the NCBI Gene Expression Omnibus (GEO:

GSE155259) and Mendeley Data: https://doi.org/10.17632/phfgms85x2.1. Accession numbers and DOI are also listed in the

Key resources table.

d SingCellaR open-source codes are available and maintained on GitHub and Zenodo listed in the Key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Donated fetal tissue (1st trimester FL and matched 2nd trimester FL and FBM) was provided by the Human Developmental Biology

Resource (HDBR, https://www.hdbr.org). Fetal tissues were transported to the laboratory at 4�C and processed immediately as

described previously (O’Byrne et al., 2019; Roy et al., 2012). Adult BM mononuclear cells were purchased from StemCell Technol-

ogies, Canada (cat no. 17001). Normal pediatric bonemarrowwas prospectively collected in accordance with the Declaration of Hel-

sinki for sample collection and use in research. After filtering through a 70micron cell strainer, samples were red cell and granulocyte

depleted by density gradient separation using Ficoll-Paque PLUS (GE Healthcare Life Sciences, cat. no. 17-5442-03) and CD34
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enrichment was carried out on freshly isolated mononuclear cells (MNC) from some of the samples using aMiltenyi CD34MicroBead

kit and MACS system (Miltenyi Biotech, cat. no. 130- 046-703). Developmental stage (age) and sex can be found in Table S1.

METHOD DETAILS

Fluorescent activated cell sorting (FACS) staining, analysis and cell isolation
Cells were stained with fluorophore-conjugated monoclonal antibodies (mAb; see Key resources table) in PBS with 2% FBS and

1mM EDTA for 30 minutes followed by two washes. FACS-sorting was performed using a Becton Dickinson Aria III or Fusion 2 as

previously described (Psaila et al., 2020).

High-throughput single-cell RNA-sequencing (10x Chromium)
Cells were thawed, stained with FACS antibodies and sorted on a Becton Dickinson Aria III or Fusion 2 as described above and as per

recommendations in the 10x Genomics single cell protocols. 15,000-24,000 Lin-CD34+ cells were FACS sorted from each sample, and

processed as described in (Psaila et al., 2020). Samples were processed according to the 10x Genomics protocol using the Chromium

Single Cell 30 library and Gel Bead Kits v3 (10x Genomics). Cells and reagents were prepared and loaded onto the chip and into the

Chromium Controller for droplet generation. RT was conducted in the droplets and cDNA recovered through demulsification and

bead purification. Pre-amplified cDNA was used for library preparation, multiplexed and sequenced on a HiSeq 2500.

10x Genomics single-cell RNA sequencing
Demultiplexed FASTQ files were aligned to the human reference genome (GRCh38/hg38) using Cell Ranger software (version 3.0.1)

from 10x Genomics. The Cell Ranger ‘‘count’’ standard pipeline was used to obtain the expression matrix of Unique Molecular Iden-

tifier (UMI) for each individual sample.

Data processing and filtering of HSPC dataset
We used SingCellaR (https://zenodo.org/record/5153387; https://github.com/supatt-lab/SingCellaR) to process each sample indi-

vidually. The function ‘load_matrices_from_cellranger’ was used to read in data matrices from the Cell Ranger output. Cell and gene

filtering was performed by assessing QC plots using the ‘plot_cells_annotation’ function. Cells meeting the following QC parameters

were included in analyses (Table S1): UMI counts > 1,000 and%maximum UMIs; number of detected genes > 500 and%maximum

number of detected genes; the percentage ofmitochondrial gene expression% limited percentage of mitochondrial gene expression

(10% or 20% depending on an individual sample). Genes expressed in at least 10 cells were included. After filtering according to

these criteria, 57,489 cells passed quality control (Table S1) and were included in downstream analyses.

Data integration
To perform data integration, the ‘SingCellaR_int’ R object was created. R object file names from individual samples were required as

the input for the object. The function ‘preprocess_integration’ was performed to combine all of UMIs from all samples and cluster

together with marker gene information into a single integrated R object. Using the function ‘get_variable_genes_by_fitting_GLM_

model’ as previously described (Psaila et al., 2020), 949 highly variable genes, after removing ribosomal and mitochondrial

genes, were identified and used for PCA analysis of the integrated dataset. Data normalization (using scaled UMI counts by

normalizing each library size to 10,000 and transforming to the log scale) and dimensional reduction were performed using the

function ‘normalize_UMI’ and ‘runPCA’, with the fast PCA analysis from the IRLBA package. To perform integration, the function

‘runSupervised_Harmony’ (implemented in SingCellaR) was run by using 40 principal components (PCs) as determined by the

PCA elbow plot generated using the ‘plot_PCA_Elbowplot’ function.

runSupervised_Harmony function automatically selects marker genes derived from differentially expressed genes for all clusters in

all samples, to build up a gene set database for GSEA analysis. A gene set name in the built database is assigned with a cluster id and

a sample id. The pre-ranked differentially expressed genes for each cluster are used as the input for GSEA. To quantify the enrich-

ment of gene sets for each cluster per sample, GSEA is then performed using the fgsea package. GSEA is sequentially performed,

starting from the first cluster of the first sample through to the last cluster of the last sample, to determine the significance level and the

positive enrichment scores for the whole gene sets for each cluster. The enrichment scores fromGSEA for each cluster from all sam-

ples are then transformed to a matrix of ‘cluster matching’ scores. The matrix is used as the input for an automated hierarchical clus-

tering with the ‘cutree’ function to identify similarity of clusters across samples. This is used to estimate the number of likely matched

and unmatched clusters fromall samples. Common and unique clusters across samples are then identified from the hierarchical clus-

tering tree. A matrix is created containing the prior probability for each single cell belonging to the common and unique clusters.

Finally, the probability matrix is used as the input ‘cluster_prior’ together with the ‘donor’ and ‘batch’ as the covariates for the

subsequent Harmony analysis (Korsunsky et al., 2019).

Benchmarking distinct integrative methods for HSPC dataset
Weperformed kBET and LISImethods (B€uttner et al., 2019; Korsunsky et al., 2019) on our HSPCdataset (Figure S1) to benchmark the

SingCellaR integrative method against previously published methods for integrating datasets. To run kBET, we annotated clusters of
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HSPCs using AUCell score (Aibar et al., 2017). We selected cells with a high AUCell score (> 0.15) of HSC/MPP, myeloid, lymphoid,

erythroid, megakaryocyte, eosinophil/basophil/mast and endothelial progenitor cell gene signatures (Table S4) and classified them

into 7 groups. Due to strong AUCell score, indicating strong expression of signature genes per each selected lineage progenitor, we

would expect that each group of cells should be aggregated well together when applied integrative methods. We next performed

each data integration method and UMAP analysis. UMAP 2D-coordinates for all methods were used as the input matrices for

kBET analysis. kBET analysis was run for each group of annotated lineage progenitor cells by subsampling 1,000 cells/group and

donor information was used as the batch of interest. kBET average acceptance rate per group of HSPCs was calculated and plotted

for each integration method (Figure S1D). For LISI, the function ‘‘compute_lisi’’ was performed with the input UMAP 2D-coordinates

together with donor and annotated lineage information. iLISI and cLISI scores were calculated and plotted for each integration

method (Figure S1E).

Data visualization with lineage signature gene sets
After data integration, data embedding methods were performed for visualization using SingCellaR. These included UMAP, force-

directed graph, and diffusion map using functions ‘runUMAP’, ‘runFA2_ForceDirectedGraph’, and ‘runDiffusionMap’. We investi-

gated the expression of lineage signature gene sets superimposed on top of those embeddings. Lineage signature gene sets

were collated by curating known canonical lineage markers selected from multiple published hematopoiesis datasets (Table S4).

SingCellaR calculates a lineage gene score for each cell based on the average gene expression of each gene set. Represented

colors for gene sets can be assigned automatically or by user-defined colors. Transparency factors for selected colors are calculated

from normalized expression values across cell types. SingCellaR uses ‘ggplot20 functionality for adding the dynamic alpha parameter

values to ‘‘geom_point’’ to control the transparency of colors.

Clustering analysis, marker gene identification, and cell type annotation
Clustering analysis was performed using the function ‘identifyClusters’ in SingCellaR with the integrative embeddings as the input

together with the ‘cosine’ as a distantmetric and local k-nearest neighbor (KNN) equal to 30. SingCellaR clusters cells using k-nearest

neighbor approach implemented by a fast KNN algorithm from ‘RcppAnnoy’ package. After nearest neighbors are identified, the

weighted graph is createdwithweight values calculated from normalized shared number of the nearest neighbors. The ‘louvain’ com-

munity detection method implemented by igraph package was applied to identify clusters. To identify genes differentially expressed

in each cluster, the function ‘findMarkerGenes’ was performed. SingCellaR uses a standard nonparametric Wilcoxon test on log-

transformed, normalized UMIs to compare expression level. Fisher’s exact test was used to compare the expressing cell frequency

of each gene as previously described (Giustacchini et al., 2017). P-values generated from both tests were then combined using

Fisher’s method and adjusted using the Benjamini-Hochberg (BH) correction. Genes expressed by each individual cluster are

compared to all other clusters and differential genes defined as an absolute log2 fold change of R 1.5 and adjusted P-value of <

0.05, with the fraction of expressing cell frequency of > 0.3. Differentially expressed genes were ranked using P-values and log2FC

to select the top differential genes per cluster.

To annotate clusters, the function ‘identifyGSEAPrerankedGenes’ was used to pre-rank genes obtained from differential gene

expression analysis comparing each individual clusterwith all other clusters.Gene ranking scoreswere calculated as the log2of expres-

sion fold-change multiplied by -log10 of the adjusted P-value. To run GSEA, the function ‘Run_fGSEA_for_multiple_comparisons’ was

performed using the fgsea package (Korotkevich et al., 2019). The function ‘plot_heatmap_for_fGSEA_all_clusters’ was used to perform

hierarchical clustering and to visualize GSEA positive enrichment scores from all clusters on the heatmap. This cell annotation heatmap

(Figure 1C) together with the identified top marker genes (Table S2) and manual curation was used to identify cell clusters.

Gene set enrichment analysis
SingCellaR provides functions for GSEA analysis. These functions include: ‘Run_fGSEA_analysis’ used to compare two groups of

cells; ‘Run_fGSEA_for_a_selected_cluster_vs_the_rest_of_clusters’ to compare any selected cluster against all other clusters;

‘Run_fGSEA_for_multiple_comparisons’ function to performing GSEA on multiple comparisons. Curated lineage signature gene

sets used here are listed in Table S3. The HALLMARK gene set was downloaded from MSigDB (http://software.broadinstitute.

org/gsea/msigdb/collections.jsp). Genes were pre-ranked using the function ‘identifyGSEAPrerankedGenes’.

Lineage progenitor quantification
AUCell (Aibar et al., 2017) was used to quantify the number of cells affiliated to each lineage (HSC/MPP, myeloid, lymphoid, erythroid,

megakaryocyte, and eosinophil/basophil/mast) among all HSPCs). To run AUCell, the function ‘Build_AUCell_Rankings’ was per-

formed followed by ‘Run_AUCell’ with the gene matrix transposed (GMT) file of lineage gene sets. We manually inspected different

AUCell thresholds per each lineage.We selected cells with AUCell score > 0.15 for each lineage and calculated the proportion of cells

in each lineage progenitor subset and between tissues.

Pseudotime trajectory analysis
We used Monocle3 (version: 0.2.3.0) combining with the SingCellaR results to identify trajectories of the entire dataset. Raw

UMI count data and clustering annotations were extracted from SingCellaR object to build a Monocle ‘cds’ object. We first used
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‘preprocess_cds’ function to normalize the data. The UMAP and forced-directed graph dimensional reduction and clustering results

slots were obtained from SingCellaR analyses. The trajectory was identified using ‘‘learn_graph’’ function on the UMAP reduction

embeddings, representing paths along different lineages. ‘‘Order_cells’’ function was used to calculate pseudotime and the root

node was defined using function ‘‘get_earliest_principal_node’’ on the UMAP reduction embeddings. The trajectory was defined

from the graph plot as: 1) HSC – Ery: cl1-cl4-cl3-cl9; 2) HSC – Lym: cl1-cl12-cl6-cl10-cl8; 3) HSC – MKE: cl1-cl4-cl13; 4) HSC –

Mye: cl1-cl7-cl5-cl2. Cluster 10 was confirmed as an intermediate proliferative state by repeating analyses after removal of cell cycle

effect. We further downsampled the number of cells to control for differences in numbers of cells captured from each tissue (HSC –

Ery: 1,650 cells per tissue; HSC – Lym: 1,648 cells per tissue; HSC – MKE: 1,363 cells per tissue; and HSC – Mye: 2,715 cells per

tissue). Selectedmarker genes for each lineagewere presented in heatmaps using the ComplexHeatmap package and line plot using

ggplot2.

Single-cell regulatory network inference and clustering (SCENIC) analysis
We used pyscenic (version 0.10.4) to perform single-cell regulatory network analysis. We performed the analysis by following

the protocol steps described in SCENIC workflow (Van de Sande et al., 2020). We analyzed the cells corresponding to HSC/

MPP and main lineage progenitor sub-types described as the AUCell score of > 0.15 (Figure 2A). We first run the python script

‘arboreto_with_multiprocessing.py’ using the ‘grnboost20 method followed by running the ‘pyscenic’ using default parameters

with the database file ‘hg38__refseq-r80__10kb_up_and_down_tss.mc9nr.feather’ and the motif information file ‘motifs-v9-

nr.hgnc-m0.001-o0.0.tbl’. The AUCell analysis was further performed using ‘pyscenic aucell’ function with parameters ‘rank_

threshold’ 5000, ‘auc_threshold’ 0.05 and ‘nes_threshold’ 3. Identified regulons from pyscenic were further selected based on the

average AUCell score across cells > 0.02 and the number of genes in each regulon > 10. Differential regulons were selected using

the visual inspection on the heatmap plot of normalized AUCell scores across tissues or lineages.

Mapping fetal liver cells to the reference dataset
We applied Symphony (Kang et al., 2020) to map fetal liver cells from our dataset to the reference dataset (Popescu et al., 2019). For

mapping, we used the pre-built reference ‘atlas of human fetal liver hematopoiesis’ provided by Symphony package. The ‘mapQuery’

function was performed using the gene expression data and cell metadata from our dataset. We further applied the ‘knnPredict’

(k = 30) function to transfer the cell types from the reference dataset to the clusters identified in our data. We plotted cells from

our fetal liver dataset overlaid on top of the reference dataset (Figure S2D).

Differential abundance analysis
DA-Seq (Zhao et al., 2020) analysis for pairwise comparisons of tissues across ontogeny was performed using 40 dimensions from

PCA analysis, cell metadata, and UMAP derived from the SingCellaR object as the input. The parameter ‘k.vector’ was equal to

30-500 with steps of 30. We set the threshold for logistic classifier prediction at the absolute value of 0.85 to indicate differentially

abundant cells.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in R statistical computing software. SingCellaR package was used to perform the differential

gene expression analysis shown in Tables S2, S5, S6, and S7, and Figure S4. For the comparison of single-cell expression levels, a

nonparametric Wilcoxon test was used, and Fisher’s exact test was used to compare expression frequencies between defined pop-

ulations. P-values generated fromboth tests were combined using Fisher’smethod and adjusted using the Benjamini-Hochberg (BH)

correction. AUCell scores in different lineages across tissues (Figures 5F, 5G, and S5C) were compared using a Wilcoxon test and

how significance was defined can be found in the legends.
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Supplemental Figure 1. Optimal resolution of lineage progenitor clusters was obtained using a ‘supervised Harmony’ integration approach, 

implemented in SingCellaR (related to Figure 1). UMAP plots of selected integration methods (Seurat, Harmony and SingCellaR) that performed well for this 

HSPC dataset. Lineage signature gene scores for (A) myeloid, (B), erythroid and (C) eosinophil/basophil/mast progenitors are superimposed on the UMAP plots, 

with a dashed circle highlighting the cluster of eosinophil/basophil/mast progenitor cells that is resolved only using SingCellaR. (D and E) Objective measures of 

integration for each method (D) Boxplot of kBET average acceptance rate score and (E) iLISI and cLISI scores. X-axis represents cLISI score. Y-axis represents 

iLISI score. A higher kBET (D) and iLISI score (E) indicates better data integration, and accurate integration should result in a higher iLISI score and cLISI score 

close to 1.
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Supplemental Figure 2. Identification of cell clusters using differentially expressed genes (related to Figure 1). (A) Heatmap showing relative expression of the top 8 differentially 

expressed genes for each cluster. Cluster IDs are ranked from left (Cluster 1) to right (Cluster 21). (B) UMAP plots displaying the expression of canonical lineage marker genes. (C) 

Bubble plots showing the expression of lineage marker genes for each cluster. The size of the dot represents the percentage of cells expressing each gene (with the actual % shown inside 

the dot), and the colour represents the expression level. (D) Left panel – UMAP-plot displaying the mapping of fetal liver cells (from both 1st and 2nd trimester samples) from this study 

(Roy et al., blue dots) overlaid on top of the fetal liver reference dataset from Popescu et al. (grey dots) using the Symphony algorithm; Right panel – UMAP-plot displaying the annotated 

cell types in the Popescu et al. dataset. (E) Bar chart showing the mapping of fetal liver cells from this study on the annotated cell clusters from the Popescu et al. dataset.  
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cellular trajectories. Right panel, UMAP-plot with clusters and identified trajectory paths based on the monocle analysis.
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Supplemental Figure 4. Dynamic changes in HSPC gene expression programs across human ontogeny (related to Figure 2 and STAR 

Methods – Quantification and Statistical Analysis). (A) The number of differentially expressed genes between tissues in pairwise comparisons. 

(B) Heatmap of gene set enrichment scores for HALLMARK gene sets for the comparison of 5 selected pairs of tissues – eFL vs. FL, FL vs. FBM, 

FBM vs. PBM, FBM vs. ABM, and PBM vs. ABM. The gradient of colors represents the normalised enrichment score (NES) provided by GSEA. 

Red – gene sets enriched in the first tissue of the pair (positive values); blue – enrichment score for the second tissue of the pair (negative values). 

Yellow – no significant difference (‘ns’). (C) Selected tissue-specific genes that are highly expressed in each tissue. (D) The top 6 significantly 

upregulated genes for selected lineage clusters for each tissue compared to all other tissues. 



A

B

C

Supplemental Figure 5. Selection of primitive HSCs and comparison of AUCell scores for selected gene sets across tissues (related to Figure 5). (A) Force-directed 

graph trajectory analysis of selected HSC/MPPs across tissues following ‘down-sampling’ to 1,000 cells per tissue. Lineage signature gene expression is superimposed on 

top of the graph. Red - erythroid; yellow - lymphoid; cyan -myeloid; purple – megakaryocyte progenitors. (B) Left panel, the AUCell score distribution calculated from 

10 curated HSC genes. 6,398 cells had higher HSC score than the average (>0.25) and were selected for downstream analyses. Right panel, force-directed graph 

represents selected HSC (black and red cells) in the trajectory of HSC/MPP compartment. (C) Violin plots comparing cell cycle AUCell scores in different lineages across 

tissues. Significance level shown as obtained using a Wilcoxon test (* = P ≤ 0.05; ** = P ≤ 0.01; *** = P ≤ 0.001; and ‘ns’ = not significant). 
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