

Supplemental Information for:

The impact of indoor residual spraying on *Plasmodium falciparum* microsatellite variation in an area of high seasonal malaria transmission in Ghana, West Africa

Dionne C. Argyropoulos, Shazia Ruybal-Pesántez, Samantha L. Deed, Abraham R. Oduro, Samuel K. Dadzie, Maxwell A. Appawu, Victor Asoala, Mercedes Pascual, Kwadwo A. Koram, Karen P. Day, Kathryn E. Tiedje

Supplemental Tables	
Table S1	Page 2
Table S2	Page 3
Table S3	Page 4
Table S4	Page 5
Table S5	Page 6
Table S6	Page 7
Table S7	Page 8
Table S8	Page 9
Table S9	Page 11
Table S10	Page 12
Table S11	Page 13
Table S12	Page 14
Table S13	Page 15
Supplemental Figures	
Figure S1	Page 16
Figure S2	Page 17
Figure S3	Page 18
Figure S4	Page 19
Figure S5	Page 20
Supplemental Methods	Page 21
References	Page 23

Table of Contents:

SUPPLEMENTAL TABLES

Table S1. Participant reported intervention use pre-IRS (T1, October 2012) and post-IRS (T2, October 2015) for the whole population surveyed and for those participants with microscopic *P. falciparum* infections.

Characteristic	Pre-IRS (T1, Oct 2012)	Post-IRS (T2, Oct 2015)	P-value
Total Population *	1923	2022	
Reported LLIN usage +			0.126
Yes	1713 (89.1)	1831 (90.6)	
No	210 (10.9)	191 (9.4)	
Reported antimalarial usage ‡			< 0.001
Yes	796 (41.4)	298 (14.7)	
No	1127 (58.6)	1724 (85.3)	
Microscopic P. falciparum infections *	808	545	
Reported LLIN usage †			0.857
Yes	712 (88.1)	482 (91.2)	
No	96 (11.9)	63 (8.8)	
Reported antimalarial usage ‡			< 0.001
Yes	322 (39.9)	74 (13.6)	
No	486 (60.1)	471 (86.4)	

LLIN = long-lasting insecticidal nets

* Data reflect No. (% (n/N)) of participants.

+ Participant self-reported LLIN usage the previous night

‡ Participant self-reported antimalarial treatment in the two-weeks prior to being surveyed.

		Genotype Success (%)			
Marker	Chr	Pre-IRS (T1)	Post-IRS (T2)		
POLYA	4	88.9	97.0		
TA81	5	94.0	95.0		
TA42	5	69.9	26.5		
TA1	6	69.0	86.0		
TA109	6	98.1	98.0		
TA87	6	95.8	98.5		
TA40	10	78.2	96.0		
2490	10	85.6	78.5		
ARA2	11	88.9	80.0		
PFG377	12	93.1	89.5		
PFPK2	12	92.6	96.0		
TA60	13	90.3	90.5		
Median		89.6	92.8		

Table S2. Microsatellite genotyping success for pre-IRS (T1, N=200) and post-IRS (T2, N=200).

Table S3. Demographics and parasitological characteristics of the study population in Bongo collected for the pre-IRS (T1, October 2012) and post-IRS (T2, October 2015) surveys.

Characteristic	Pre-IRS (T1, Oct 2012)	Post-IRS (T2, Oct 2015)	P-value
Total Population	1923	2022	
Age Groups *			0.221
1 – 5 years	356 (18.5)	405 (20.0)	
6 – 10 years	395 (20.5)	409 (20.2)	
11 – 20 years	413 (21.5)	467 (23.1)	
21 – 39 years	326 (17.0)	297 (14.7)	
≥ 40 years	433 (22.5)	444 (22.0)	
Sex *			0.781
Female	1031 (53.6)	1093 (54.1)	
Male	892 (46.4)	929 (45.9)	
Catchment Area *			0.295
Vea/Gowrie	919 (47.8)	1000 (49.5)	
Soe	1004 (52.2)	1022 (50.5)	
P. falciparum prevalence **			
All	808 (42.0)	545 (27.0)	<0.001
Age Groups			<0.001
1 – 5 years	173 (48.6)	63 (15.6)	
6 – 10 years	243 (61.5)	167 (40.8)	
11 – 20 years	202 (48.9)	169 (36.2)	
21 – 39 years	84 (25.8)	52 (17.5)	
\geq 40 years	106 (24.5)	94 (21.2)	
Sex			0.376
Female	379 (36.8)	269 (24.6)	
Male	429 (48.1)	276 (29.7)	
Catchment Area			0.165
Vea/Gowrie	356 (35.5)	261 (26.1)	
Soe	452 (45.0)	284 (27.8)	
Plasmodium spp. median density †			
All	520 [160 – 1640]	320 [120 – 1800]	<0.001
Age Groups			<0.001
1 – 5 years	1640 [400 – 9860]	1840 [260 – 19940]	
6 – 10 years	720 [240 – 1840]	520 [200 – 2720]	
11 – 20 years	320 [160 – 760]	280 [120 – 1000]	
21 – 39 years	200 [120 – 720]	200 [80 – 1730]	
\geq 40 years	200 [120 – 670]	120 [40 – 320]	
Sex			0.006
Female	520 [160 - 1640]	320 [80 – 1960]	
Male	480 [160 – 1610]	320 [120 – 1300]	0.001
Catchment			<0.001
Vea/Gowrie	360 [160 - 1190]	240 [80 - 1280]	
Soe	680 [200 – 2180]	400 [120 – 2210]	
P. falciparum median MOI ‡			
All	3 [1-4]	1 [1-2]	<0.001
Age Groups			<0.001
1 – 5 years	3 [2-5]	2 [1-2]	
6 – 10 years	3 [2-5]	2 [1-3]	
11 – 20 years	2 [1-4]	2 [1-2]	
21 – 39 years	2 [1-2.25]	1 [1-2]	
≥ 40 years	1[1-2]	1 [1-1]	-0.001
Sex	2 [1 4]	1 [1]	<0.001
remaie	2 [1-4]	1 [1-2]	
IVIBIE Catabra ant	3 [1-4]	1.5 [1-2]	-0.001
Voa/Gowrio	2 [1 4]	1 [1]	<0.001
	2 [1-4] 2 [2 A]	⊥ [⊥-∠] ⊃ [1 ⊃]	
JUE	J [Z-4]	∠ [1-2]	

IQR = inter quartile range; MOI= multiplicity of infection

* Data reflect No. (% (n/N) participants.

** Data reflect No. (% (n/N)) of participants that were positive for P. falciparum (and mixed P. falciparum/P. malariae) by microscopy.

⁺ Median parasite density for the microscopically positive *P. falciparum* (including mixed P. falciparum/P. malariae infections) (value/ μ L [IQR]) isolates.

‡ Data reflect the median estimated MOI based on var genotyping (see Supplemental Methods).

Table S4. The microscopic *P. falciparum* isolates selected for the microsatellite analyses in the pre-IRS (T1, October 2012) and post-IRS (T2, October 2015) surveys. Statistical analyses were completed to determine if there were any significant differences, with respect to any of the study variables, between those isolates selected based on MOI and those excluded.

Characteristic	Pre-IRS (T1	l, Oct 2012)	Post-IRS (T	2, Oct 2015)
	N *	n **	N *	n **
All P. falciparum infections	808	192 (23.7)	545	200 (36.7)
Age groups				
1 – 5 years	173 (21.4)	36 (20.8)	63 (11.6)	17 (27.0)
6 – 10 years	243 (30.1)	37 (15.2)	167 (30.6)	68 (40.7)
11 – 20 years	202 (25.0)	52 (25.7)	169 (31.0)	58 (34.3)
21 – 39 years	84 (10.4)	27 (32.1)	52 (9.5)	20 (38.5)
\geq 40 years	106 (13.1)	40 (37.7)	94 (17.3)	37 (39.4)
<i>P</i> -value		< 0.001		0.707
Sex				
Female	379 (46.9)	101 (26.6)	269 (49.4)	98 (36.4)
Male	429 (53.1)	91 (21.2)	276 (50.6)	102 (37.0)
<i>P</i> -value		0.155		0.931
Catchment Area				
Vea/Gowrie	356 (44.1)	87 (24.4)	261 (47.9)	103 (39.5)
Soe	452 (55.9)	105 (23.2)	284 (52.1)	97 (34.2)
<i>P</i> -value		0.753		0.382
Plasmodium spp. median density †				
All	520 [160 - 1640]	240 [120 – 2020]	320 [120 - 1800]	320 [120 – 1190]
<i>P</i> -value		0.7841		0.008
Age Groups				
1-5 Years	1640 [400 - 9860]	6480 [230 – 46620]	1840 [260 - 19940]	1640 [320 – 17280]
6-10 Years	720 [240 – 1840]	360 [120 – 1480]	520 [200 – 2720]	360 [160 – 1430]
11-20 Years	320 [160 - 760]	160 [80 - 610]	280 [120 - 1000]	340 [160 - 1060]
21-39 Years	200 [120 – 720]	160 [80 - 740]	200 [80 - 1730]	320 [120 – 2200]
40+ Years	200 [120 - 670]	220 [110 – 1150]	120 [40 - 320]	120 [80 - 480]
Sex				
Female	520 [160 - 1640]	240 [120 – 1560]	320 [80 - 1960]	320 [120 – 1520]
Male	480 [160 - 1610]	240 [120 – 2940]	320 [120 - 1300]	360 [160 - 1080]
Catchment Areas				
Vea/Gowrie	360 [160 - 1190]	200 [120 - 1140]	240 [80 - 1280]	360 [160 – 1120]
Soe	680 [200 – 2180]	400 [120 - 2400]	400 [120 - 2210]	320 [120 – 1280]

* Data reflect No. (% N/Total number microscopically positive *P. falciparum* isolates in T1 or T2) of microscopically positive *P. falciparum* isolates.

** Data reflect No. (% (n/N)) of microscopically positive P. falciparum isolates selected for T1 and T2.

P-values reflect chi-squared test comparison of the P. falciparum positive population N=808 (T1) and N=545 (T2) to the N=192 (T1) and N=200 (T2) microsatellite-selected population.

⁺ Median parasite density for the microscopically positive *P. falciparum* (including mixed P. falciparum/P. malariae infections) (value/ μ L [IQR]) isolates. *P-values* reflect Kruskal-Wallis test comparison of the *P. falciparum* positive population N=808 (T1) and N=545 (T2) to the N=192 (T1) and N=200 (T2) microsatellite-selected population.

Table S5. Patterns of genetic diversity for the *P. falciparum* populations from Bongo for the "all infections" dataset in the pre-IRS (T1, October 2012) and post-IRS (T2, October 2015) surveys.

		n		h		Α			R _s			He	
Population	T1	T2	T1	T2	T1	T2	P-value*	T1	T2	P-value*	T1	Т2	P-value**
Vea/Gowrie	87	104	87	103	10.5	11.4	0.89	8.9	10.6	0.96	0.78	0.81	0.01
Soe	105	96	105	96	10.8	11.0	0.98	8.6	10.3	0.98	0.78	0.80	0.12
Total	192	200	192	199	12.0	12.9	0.90	10.8	12.4	0.94	0.78	0.81	0.01

n = number of isolates; *h* = number of haplotypes; *A* = mean number of alleles per locus;

 R_s = allelic richness estimate; H_e = expected heterozygosity.

P-value = T1 and T2 comparison. *P-values calculated by chi-square test. **P-value calculated by "Hs.test" function.

			N	Allele Range		Alleles per locus		Private Alleles		Allele Frequency
Marker	Chr	T1	T2	T1	T2	T1	T2	T1	T2	P-value
POLYA	4	173	194	133 - 184	112 - 190	18	22	1	5	0.310
TA81	5	185	190	104 - 134	104 – 137	11	12	0	1	0.680
TA109	6	190	196	148 - 199	148 - 217	17	17	2	2	0.870
TA87	6	188	197	74 – 116	71 – 122	11	14	1	4	0.200
TA40	10	152	192	203 – 290	209 – 266	20	18	5	3	0.900
2490	10	167	157	74 – 89	74 – 89	5	5	0	0	0.660
ARA2	11	172	160	60 - 84	60 - 87	9	10	0	1	0.014*
PFG377	12	182	179	89 - 104	89 – 104	6	6	0	0	<0.001***
PFPK2	12	181	192	152 - 188	152 – 197	13	14	0	1	0.860
TA60	13	176	181	68 – 95	65 – 98	10	11	1	2	<0.001***

Table S6. Allelic size range, number of alleles, private alleles and allele frequency for the "all infections" dataset for the 10 microsatellite loci in the pre-IRS (T1, October 2012) and post-IRS (T2, October 2015) surveys.

Genetic characteristics of 392 infections ("all infections" dataset) using 10 microsatellite loci from T1 (N = 192) and T2 (N = 200).

N = number of isolates.

Private Allele comparisons are between T1 to T2. Allele Frequency comparison by Mann-Whitney U Test. *** P < 0.001, * P < 0.05.

		I	V	Allele Range Alleles per le		per locus	ocus Private Alleles		Allele Frequency	
Marker	Chr	T1	T2	T1	T2	T1	T2	T1	T2	P-value
POLYA	4	115	151	136 - 184	112 – 190	17	21	1	5	0.190
TA81	5	123	149	104 - 154	107 – 137	11	11	1	1	0.340
TA109	6	126	153	148 – 199	154 – 217	17	15	3	2	0.850
TA87	6	124	153	74 – 116	71 – 122	11	14	1	4	0.050*
TA40	10	109	150	203 – 290	215 – 266	19	17	5	3	0.800
2490	10	110	127	74 – 89	74 – 89	5	5	0	0	0.200
ARA2	11	112	123	60-81	60 - 87	8	10	0	2	0.040*
PFG377	12	119	143	89 - 104	89 - 104	6	6	0	0	<0.001***
PFPK2	12	121	151	152 – 188	152 – 197	13	14	0	1	0.740
TA60	13	117	140	71 – 95	65 – 98	8	11	0	3	0.030*

Table S7. Allelic size range, number of alleles, private alleles and allele frequency for the "dominant infections" dataset for the 10 microsatellite loci in the pre-IRS (T1, October 2012) and post-IRS (T2, October 2015) surveys.

Genetic characteristics of 284 infections ("dominant infections" dataset) using 10 microsatellite loci from T1 (N = 128) and T2 (N = 156).

N = number of isolates.

Private Allele comparisons are between T1 to T2. Allele Frequency comparison by Mann-Whitney U Test. ***P < 0.001, **P < 0.01, *P < 0.05.

	()	All Int	fections	Domina	nt Infections		154	0.011	0.005	0.016	0.007
Marker	bp	Pre-IRS (T1)	Post-IRS (T2)	Pre-IRS (T1)	Post-IRS (T2)		157	0.005	-	0.008	-
POLYA	•	N=173	N=194	N=115	N=151		160	0.216	0.235	0.198	0.216
	112	-	0.005	-	0.007		163	0.127	0.143	0.143	0.150
	115	-	0.010	-	0.013		166	0.005	0.026	0.008	0.033
	130	-	0.010	-	0.013		169	0.011	0.010	0.016	0.007
	133	0.006	-	-	-		172	0.184	0.153	0.206	0.163
	136	0.017	0.036	0.017	0.033		175	0.247	0.281	0.230	0.275
	139	0.023	0.021	0.017	0.013		178	0.032	0.015	0.032	0.020
	142	0.029	0.026	0.026	0.026		181	0.005	0.020	0.008	0.026
	145	0.035	0.046	0.035	0.046		184	0.016	-	0.024	-
	148	0.069	0.067	0.070	0.066		187	0.011	0.026	0.016	0.026
	151	0.168	0.196	0.148	0.185		190	0.011	0.005	0.016	-
	154	0.179	0.113	0.174	0.113		193	0.005	0.055	0.008	0.007
	157	0.075	0.103	0.104	0.113		196	0.074	0.051	0.048	0.046
	160	0.087	0.088	0.061	0.099		199	0.021	0.010	0.016	0.013
	163	0.110	0.093	0.122	0.079		208	-	-	-	-
	166	0.052	0.031	0.052	0.033		214	-	0.005	-	0.007
	169	0.029	0.052	0.035	0.040		217	-	0.005	-	0.007
	172	0.040	0.031	0.026	0.046	TA87		N=188	N=197	N=124	N=153
	175	0.023	0.031	0.035	0.026		71	-	0.005	-	0.007
	178	0.029	0.005	0.035	-		74	0.011	-	0.016	-
	181	0.012	0.010	0.017	0.013		80	-	-	-	-
	184	0.017	0.005	0.026	0.007		83	-	-	-	-
	187	-	0.015	-	0.020		86	-	0.011	-	0.007
	190	-	0.005	-	0.007		89	0.032	0.051	0.040	0.052
TA81		N=185	N=190	N=123	N=149		92	0.043	0.020	0.048	0.026
	104	0.005	0.0053	0.008	-		95	0.202	0.127	0.226	0.118
	107	0.011	0.005	0.008	0.007		98	0.133	0.1422	0.161	0.131
	110	0.022	0.005	0.024	0.007		101	0.202	0.228	0.161	0.229
	113	0.032	0.047	0.033	0.047		104	0.165	0.173	0.121	0.190
	116	0.168	0.226	0.197	0.242		107	0.138	0.142	0.153	0.144
	119	0.222	0.211	0.195	0.228		110	0.053	0.051	0.048	0.039
	122	0.324	0.247	0.341	0.248		113	0.011	0.025	0.016	0.026
	125	0.059	0.074	0.065	0.081		116	0.011	0.015	0.008	0.020
	128	0.103	0.137	0.081	0.107		119	-	0.005	-	0.007
	131	0.038	0.032	0.041	0.020		122	-	0.005	-	0.007
	134	0.016	0.005	0.024	0.007		125	-	-	-	-
	137	-	0.005	-	0.007	IA40		N=152	N=192	N=109	N=150
TA109		N=190	N=196	N=126	N=153		203	0.007	-	0.009	-
	148	0.021	0.005	0.008	-		206	-	-	-	-
	151	-	-	-	-		209	0.007	0.016	-	-
							212	0.007	-	0.009	-

Table S8. Allele frequencies at 10 microsatellite loci for "all infections" and "dominant infections" datasets in the pre-IRS (T1, October 2012) and post-IRS (T2, October 2015) surveys.

Continued next page.

	215	0.026	0.016	0.009	0.020
	218	-	0.005	-	0.007
	221	0.059	0.104	0.073	0.087
	224	0.053	0.031	0.064	0.033
	227	0.079	0.099	0.083	0.107
	230	0.007	0.016	0.009	0.007
	233	0.013	0.016	0.018	0.013
	236	0.020	0.010	0.009	0.013
	239	0.039	0.042	0.037	0.053
	242	0.224	0.172	0.211	0.173
	245	0.263	0.177	0.257	0.193
	248	0.046	0.172	0.046	0.167
	251	0.026	0.031	0.018	0.033
	254	0.072	0.047	0.083	0.040
	257	-	0.021	-	0.027
	260	0.026	0.021	0.028	0.020
	263	0.013	-	0.018	-
	266	-	0.005	-	0.007
	272	-	-	-	-
	281	0.007	-	0.009	-
	287	-	-	-	-
	290	0.007	-	0.009	-
2490		N=167	N=157	N=110	N=127
	74	0.024	0.045	0.018	0.039
	80	0.240	0.261	0.291	0.244
	83	0.689	0.055	0.636	0.559
	86	0.018	0.121	0.027	0.126
	89	0.030	0.025	0.027	0.031
ARA2		N=172	N=160	N=112	N=123
	60	0.105	0.081	0.134	0.089
	63	0.076	0.069	0.080	0.089
	66	0.302	0.250	0.304	0.252
	69	0.186	0.138	0.188	0.163
	72	0.163	0.163	0.161	0.138
	75	0.105	0.138	0.080	0.114
	78	0.029	0.088	0.018	0.089
	81	0.029	0.031	0.038	0.033
	84	0.006	0.025	-	0.024
	87	-	0.019	-	0.008

PFG377		N=182	N=179	N=119	N=143
	89	0.027	0.006	0.034	0.007
	92	0.099	0.034	0.101	0.028
	95	0.264	0.218	0.277	0.189
	98	0.549	0.553	0.513	0.587
	101	0.038	0.078	0.042	0.077
	104	0.022	0.112	0.034	0.112
PFPK2		N=181	N=192	N=121	N=151
	152	0.006	0.010	0.008	0.013
	155	0.017	0.016	0.008	0.013
	158	0.105	0.120	0.107	0.132
	161	0.166	0.182	0.140	0.152
	164	0.309	0.245	0.331	0.238
	167	0.133	0.151	0.116	0.172
	170	0.088	0.104	0.091	0.106
	173	0.050	0.057	0.066	0.060
	176	0.033	0.026	0.041	0.033
	179	0.033	0.042	0.025	0.040
	182	0.022	0.021	0.025	0.020
	185	0.022	0.016	0.025	0.007
	188	0.017	0.005	0.017	0.007
	191	-	-	-	-
	194	-	-	-	-
	197	-	0.005	-	0.007
TA60		N=176	N=181	N=117	N=140
	65	-	0.028	-	0.029
	68	0.017	-	-	-
	71	0.244	0.127	0.231	0.136
	74	0.233	0.149	0.222	0.157
	77	0.028	0.055	0.034	0.043
	80	0.239	0.298	0.231	0.279
	83	0.176	0.177	0.222	0.186
	86	0.028	0.110	0.017	0.107
	89	0.017	0.017	0.026	0.021
	92	0.006	0.011	-	0.007
	95	0.011	0.011	0.017	0.014
	98	-	0.017	-	0.021

Table S9. Patterns of genetic diversity for the *P. falciparum* populations per catchment area for the "dominant infections" dataset by locus in the pre-IRS (T1, October 2012) and post-IRS (T2, October 2015) surveys.

Locus	Pre-IRS (T1, October 2012) <i>H</i> e		Post-I (T2, Octobe <i>H_e</i>	RS er 2015)
_	Vea/Gowrie	Soe	Vea/Gowrie	Soe
POLYA	0.916	0.902	0.918	0.898
TA81	0.825	0.782	0.797	0.821
TA109	0.813	0.865	0.836	0.788
TA87	0.855	0.835	0.861	0.842
TA40	0.865	0.845	0.849	0.888
2490	0.446	0.542	0.656	0.553
ARA2	0.832	0.807	0.873	0.830
PFG377	0.697	0.611	0.570	0.631
PFPK2	0.819	0.841	0.866	0.849
TA60	0.772	0.801	0.807	0.847
Overall	0.784	0.783	0.803	0.794

 H_e = expected heterozygosity.

Genetic characteristics of 284 infections ("dominant infections" dataset) using 10 microsatellite loci from T1 (N = 128) and T2 (N = 156). The "overall" row refers to the total H_e for the catchment area. See Figure 1A for location of Vea/Gowrie and Soe catchment areas.

		Pre-IRS (T1)			Post-IRS (T2)		
Locus	Model	He	SMM		He	SMM	
POLYA	SMM	0.907	0.468	E	0.912	0.174	D
TA81	IAM	0.802	0.092	D	0.810	0.105	D
TA109	SMM	0.843	0.005	D	0.826	0.012	D
TA87	IAM	0.855	0.470	E	0.857	0.130	D
TA40	SMM	0.864	0.001	D	0.880	0.109	D
2490	IAM	0.511	0.072	D	0.612	0.256	D
ARA2	IAM	0.818	0.300	E	0.856	0.245	E
PFG377	IAM	0.649	0.165	D	0.602	0.085	D
PFPK2	IAM	0.833	0.064	D	0.857	0.123	D
TA60	IAM	0.796	0.479	E	0.832	0.283	D
Overall			0.984			0.999	

Table S10. Population bottleneck analysis by locus for the two survey time points using the Stepwise-Mutation Model (SMM) in the pre-IRS (T1, October 2012) and post-IRS (T2, October 2015) surveys.

 H_e : Heterozygosity; H_e excess (*E*) is the transient increase in the expected heterozygosity compared to that observed for the population, while H_e deficiency (*D*) is a lower expected heterozygosity than observed. *P* value tests an excess of H_e via a Wilcoxon signed-rank test calculated by BOTTLENECK v. 1.2.02.

Table S11. Number of loci with excess or deficiency in the heterozygosity (H_e) relative to the heterozygosity at mutation-drift equilibrium (H_{eq}) in the *P. falciparum* populations in the Bongo catchment areas in the pre-IRS (T1, October 2012) and post-IRS (T2, October 2015) surveys.

Population	H _e excess	<i>H_e</i> deficiency	P-value	Mode shift
Pre-IRS (T1, October 2012)				
Vea/Gowrie	4	6	0.862	Normal
Soe	4	6	0.947	Normal
Post-IRS (T1, October 2015)				
Vea/Gowrie	2	8	0.947	Normal
Soe	4	6	0.947	Normal

P-value test as an excess of H_e calculated as a Wilcoxon sign-rank test; Normal: L-shaped distribution = non-bottlenecked population, Shifted: shifted mode = bottlenecked population.

NOTE: H_e excess is the transient increase in H_{eq} compared to H_e observed for the population, while H_e deficiency is a lower H_{exp} than H_e observed. These data were subject to mutation drift equilibrium via SMM and mode-shift analyses (BOTTLENECK v. 1.2.02).

P _{AS} score	Pre-IRS (T1)	Post-IRS (T2)	Pre- vs. Post-IRS (T1 vs. T2)
Number of pairwise comparisons	3,240	3,486	6,804
0.0	295 (9.1)	370 (10.6)	669 (9.8)
0.1	831 (25.6)	979 (28.1)	1835 (27.0)
0.2	992 (30.6)	1106 (31.7)	2141 (31.5)
0.3	726 (22.4)	665 (19.1)	1428 (21.0)
0.4	298 (9.2)	273 (7.8)	559 (8.2)
0.5	68 (2.1)	78 (2.2)	135 (2.0)
0.6	25 (0.8)	12 (0.3)	34 (0.5)
0.7	3 (0.09)	1 (0.02)	3 (0.04)
0.8	2 (0.06)	1 (0.02)	-
0.9	-	-	-
1.0	-	1 (0.02)	-
Median P _{AS} [min – max]	0.2 [0.0 – 0.8]	0.2 [0.0 - 1.0]	0.2 [0.0 - 0.7]

Table S12. Number of Pairwise Allele Sharing (P_{AS}) comparisons within (i.e., pre- and post-IRS) and between (i.e., pre- vs. post-IRS) the time point surveys investigated for the "dominant infections" with complete haplotypes.

* Data reflect No. (% (n/N)) of pairwise comparisons within each group, i.e., T1, T2 and T1 vs. T2.

		Pre- to Post-IRS (T1 to T2)				
Locus	Chr	G _{ST}	<i>P</i> -value	Jost's D	P-value	
POLA	4	0.0014	0.542	0.0291	0.519	
TA81	5	0.0031	0.236	0.0258	0.244	
TA109	6	0.0002	0.770	0.0016	0.790	
TA87	6	0.0050	0.081	0.0595	0.073	
TA40	10	0.0054	0.057	0.0739	0.054	
2490	10	0.0060	0.131	0.0155	0.130	
ARA2	11	0.0017	0.503	0.0172	0.510	
PFG377	12	0.0087	0.041*	0.0293	0.036*	
PFPK2	12	0.0021	0.376	0.0235	0.355	
TA60	13	0.0061	0.076	0.0539	0.067	
Mean		0.00397 [0.0026 – 0.0058]	0.021*	0.0329 [0.0209 – 0.0473]	0.034*	

Table S13. Genetic differentiation (G_{ST} and Jost's *D*) of *P. falciparum* populations from Bongo in in the pre-IRS (T1, October 2012) and post-IRS (T2, October 2015) surveys by locus for the "dominant infections" dataset.

[]: 95% confidence interval; *P<0.05

SUPPLEMENTAL FIGURES.

Figure S1. Data used for epidemiological and population genetics analysis.

*Selected N = 200 isolates with an MOI = 1 or 2 based on var genotyping (see Supplemental Methods).

A Multilocus haplotypes with greater than or equal to three alleles at the 10 microsatellite loci with > 75% genotype success.

‡MOI based on the number of clones detected by microsatellite genotyping.

 \propto Haplotypes were considered "complete" if there was an allele at each of the 10 microsatellite loci.

Figure S2. Pairwise linkage disequilibrium (\bar{r}_d) for dominant infections with complete haplotypes in (A) Pre-IRS (T1, October 2012) (N = 81) and (B) Post-IRS (T2, October 2015) (N = 84). The colour key provided corresponds to the *P* value for each pairwise comparison where grey indicates a non-significant *P* value (*P* > 0.05) and red represents significant *P* values (*P* < 0.05).

Figure S3. Distribution of the pairwise allele sharing (P_{AS}) scores between the dominant infections with complete haplotypes in **(A)** Pre-IRS (T1, October 2012) and **(B)** Post-IRS (T2, October 2015). The P_{AS} score is represented as a proportion (in %) of the number of alleles shared between two haplotypes divided by the total number of loci considered (i.e., 10) (see Materials and Methods). The median was $P_{AS} = 0.2$ in both pre- and post-IRS survey and is represented by the black dotted line. The P_{AS} scores between 0.7 to 1.0 are shown in the upper right insert. Pre-IRS (T1) there were 81 haplotypes and 3,240 pairwise comparisons, and post-IRS (T2) there were 84 haplotypes and 3,486 pairwise comparisons.

Figure S4. ΔK values generated from STRUCTURE Harvester v. 0.6.94 (Earl and vonHoldt, 2012). The highest ΔK value from the pre- to post-IRS time points (T1 to T2) and spatial levels (1. Bongo and 2. Catchment Area) were used to plot the optimal *K* clusters in Figure S5.

Figure S5. Bayesian cluster analysis of the *P. falciparum* microsatellite haplotypes from Bongo over time. STRUCTURE v. 2.3.4 software (Pritchard et al., 2000) was used to find and cluster populations within the dominant *P. falciparum* infections with complete haplotypes pre-IRS (T1, October 2012) and post-IRS (T2, October 2015). The analyses were run for *K* genetic clusters and 100,000 Markov chain Monte Carlo (MCMC) iterations, after a burn-in period of 100,000 using the admixture model and correlated allele frequencies. *P. falciparum* haplotypes were assigned to a defined number of genetic clusters (*K*) based on genetic distance, where the optimal *K* found by the Evanno *et al.* (2005) (Evanno, Regnaut, & Goudet, 2005) method is represented on the left-hand side. Vertical bars represent individual *P. falciparum* haplotypes, and the colours represent the ancestry co-efficient (Q) for each genetic cluster.

SUPPLEMENTAL METHODS

Entomology. Monthly entomological surveys were undertaken during the wet and dry seasons between February 2013 and September 2015 to monitor the impacts of IRS on the vector population and change in transmission. The main vector in Bongo was *Anopheles gambiae* s.I with limited transmission from *Anopheles funest*us. Pre-IRS, at the peak of the wet-season in August 2013, the daily human biting-rates (HBR; bites/person/night (b/p/n))) were 39.5 b/p/n and 11.4 b/p/n in Vea/Gowrie and Soe, respectively. Post-IRS in August 2015, the daily HBR declined by ~91% and ~99% in Vea/Gowrie (3.5 b/p/n) and Soe (0.1 b/p/n), respectively. The pre-IRS entomological inoculation rates (EIR) (i.e., infective bites/person/month) in August 2013 were 5.9 and 10.7 in Vea/Gowrie and Soe, respectively. After the three-rounds of IRS in August 2015, EIR decreased by ~99% and ~93% in Vea/Gowrie (0 ib/p/n) and Soe (0.8 ib/p/n), respectively (S. Dadzie, M. Appawu, personal communication). These substantial drops in HBR and EIR can be most likely be attributed to the three-rounds of IRS with organophosphates as no other vector control interventions were implemented in Bongo besides long-lasting insecticidal nets (LLINs), which were already widely available prior to the start of this study.

Var genotyping and estimated multiplicity of infection (MOI). The hyper-diverse multi-copy *var* gene family encodes the major variant surface antigen of the *P. falciparum* blood stage, called *P. falciparum* erythrocyte membrane protein (*Pf*EMP1). *Pf*EMP1 is the target of naturally acquired immunity to *P. falciparum* and is encoded by ~50-60 *var* genes per genome (Biggs et al., 1991; Gardner et al., 2002; Kyes, Kraemer, & Smith, 2007; Miller, Baruch, Marsh, & Doumbo, 2002; Scherf, Lopez-Rubio, & Riviere, 2008; Smith et al., 1995). The conserved DBL α domain of *var* genes was amplified from gDNA of the pre-IRS (T1) and post-IRS (T2) isolates as described by He et al., (2019) (He et al., 2018) with modifications as described by Ruybal-

Pesántez et al., (2017) (Ruybal-Pesántez et al., 2017). *Var* genotyping was used to infer MOI based on a conservative threshold of 60 unique *var* DBL α types per genome (i.e., isolates with \leq 60 DBL α types were considered single-clone infections). The DBL α sequences and MOI data for the pre- and post-IRS isolates is published in Pilosof et al., (2019) (Pilosof et al., 2019). This *var* genotyping procedure provided a higher resolution to discern and select those asymptomatic *P. falciparum* isolates with an MOI \leq 2.

Genetic differentiation. G_{ST} was historically thought to be indicative of genetic differentiation, but recent studies have supported that Jost's *D* values are a more accurate and robust measure (Gerlach, Jueterbock, Kraemer, Deppermann, & Harmand, 2010; Hedrick, 2005; Jost, 2008) (Jost 2008; Hedrick 2005; Gerlach et al., 2010). In fact, Jost et al. (2018) (Jost et al., 2018) posited that G_{ST} is a measure of the extent an allele is fixed between population; while Jost's *D* can be used for more than one allele per locus and calculates the allelic differentiation between populations. Jost's *D* varies from locus to locus as its value depends on the mutation rate of that locus. Jost's *D* weighs alleles according to the square of their relative frequencies and therefore measures the differentiation of the most common alleles. Jost's *D* is independent of within-group diversity and is more robust to variations in population size. A high value of Jost's *D* indicates that the most common alleles are not shared.

REFERENCES.

- Biggs, B. A., Gooze, L., Wycherley, K., Wollish, W., Southwell, B., Leech, J. H., & Brown, G. V. (1991). Antigenic variation in Plasmodium falciparum. *PNAS*, *88*, 9171–9174.
- Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Molecular Ecology*, *14*, 2611–2620.
- Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., ... Barrell, B. (2002). Genome sequence of the human malaria parasite Plasmodium falciparum. *Nature*, *419*(6906), 498–511. https://doi.org/10.1038/nature01097
- Gerlach, G., Jueterbock, A., Kraemer, P., Deppermann, J., & Harmand, P. (2010). Calculations of population differentiation based on GST and D: Forget GST but not all of statistics! *Molecular Ecology*, 19(18), 3845–3852. https://doi.org/10.1111/j.1365-294X.2010.04784.x
- He, Q., Pilosof, S., Tiedje, K. E., Ruybal-Pesántez, S., Artzy-Randrup, Y., Baskerville, E. B., ...
 Pascual, M. (2018). Networks of genetic similarity reveal non-neutral processes shape strain structure in Plasmodium falciparum. *Nature Communications*, 9(1), 1817. https://doi.org/10.1038/s41467-018-04219-3
- Hedrick, P. W. (2005). A standardized genetic differentiation measure. *Evolution; International Journal of Organic Evolution, 59*(8), 1633–1638. https://doi.org/Doi 10.1554/05-076.1
- Jost, L. (2008). G(ST) and its relatives do not measure differentiation. *Molecular Ecology*, *17*(18), 4015–4026. https://doi.org/10.1111/j.1365-294X.2008.03887.x
- Jost, L., Archer, F., Flanagan, S., Gaggiotti, O., Hoban, S., & Latch, E. (2018). Differentiation measures for conservation genetics. *Evolutionary Applications*, *11*(7), 1139–1148. https://doi.org/10.1111/eva.12590
- Kyes, S. A., Kraemer, S. M., & Smith, J. D. (2007). Antigenic variation in Plasmodium falciparum: Gene organization and regulation of the var multigene family. *Eukaryotic Cell*, *6*, 1511–1520. https://doi.org/10.1128/EC.00173-07
- Miller, L. H., Baruch, D. I., Marsh, K., & Doumbo, O. K. (2002). The pathogenic basis of malaria. *Nature*, *415*(6872), 673–679. https://doi.org/10.1038/415673a
- Pilosof, S., He, Q., Tiedje, K. E., Ruybal-Pesántez, S., Day, K. P., & Pascual, M. (2019). Competition for hosts modulates vast antigenic diversity to generate persistent strain structure in Plasmodium falciparum. *PLOS Biology*, *17*(6), e3000336. https://doi.org/10.1371/journal.pbio.3000336
- Ruybal-Pesántez, S., Tiedje, K. E., Tonkin-Hill, G., Rask, T. S., Kamya, M. R., Greenhouse, B., ... Day, K. P. (2017). Population genomics of virulence genes of Plasmodium falciparum in clinical isolates from Uganda. *Scientific Reports*, 7(1), 11810. https://doi.org/10.1038/s41598-017-11814-9
- Scherf, A., Lopez-Rubio, J. J., & Riviere, L. (2008). Antigenic variation in Plasmodium falciparum. Annual Review of Microbiology, 62(2), 445–470. https://doi.org/10.1146/annurev.micro.61.080706.093134
- Smith, J. D., Chitnis, C. E., Craig, A. G., Roberts, D. J., Hudson-Taylor, D. E., Peterson, D. S., ... Miller, L. H. (1995). Switches in expression of plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. *Cell*, 82(1), 101–110. https://doi.org/10.1016/0092-8674(95)90056-X