ChemSusChem

Supporting Information

Internal Illumination to Overcome the Cell Density Limitation in the Scale-up of Whole-Cell Photobiocatalysis

Markus Hobisch⁺, Jelena Spasic⁺, Lenny Malihan-Yap, Giovanni Davide Barone, Kathrin Castiglione, Paula Tamagnini, Selin Kara,^{*} and Robert Kourist^{*}© 2021 The Authors. ChemSusChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Contents
List of Abbreviations
Supporting Tables and Figures4
Table S1. Strains utilized in this work4
Table S2. Gas Chromatography Flame Ionization Detector Method4
Figure S1. Light Intensity Measurements inside BCR6
Figure S2. a) Schematic illustration of the Bubble Column Reactor7
Table S3. Average light intensity in BCR 7
Figure S3. a) Cultivation of <i>Synechocystis</i> in gas washing tubes in an aquarium
Figure S4. ¹ H NMR of 2-MS obtained after whole-cell biotransformation10
Figure S5. ¹³ C NMR of 2-MS obtained after whole-cell biotransformation10
Figure S6. Consumption of 2-MM substrate over time by Synechocystis sp. PCC 6803 WT11
Figure S7. External illumination of BCR provided by LED strips11
Figure S8. Example GC-Chromatogram12
Figure S9. Emission spectrum of a white WLE12
References

List of Abbreviations

In alphabetical order

2-MM	2-Methylmaleimide
2-MS	2-Methylsuccinimide
BCR	Bubble Column Reactor
chl <i>a</i>	Chlorophyll a
DCW	Dry Cell Weight
GC-FID	Gas Chromatography Flame Ionization Detector
LED	Light Emitting Diode
NADPH	Nicotinamide Adenine Dinucleotide Phosphate
NMR	Nuclear Magnetic Resonance
OD ₇₅₀	Optical Density at 750 nm
PAM	Pulse Amplitude Modulation
Synechocystis	Synechocystis sp. PCC 6803
WLE	Wireless Light Emitters
WT	Wild Type

Supporting Tables and Figures

Strains	Description	Reference
Synechocystis sp. PCC 6803 WT	Wild type cyanobacterium Synechocystis	[1]
	<i>sp.</i> PCC 6803	
Synechocystis sp. PCC 6803	Transgenic Synechocystis sp. PCC 6803	[2]
$P_{cpcB::}yqjM$	constructed in WT background harboring	
	the gene yqjM from Bacillus subtilis under	
	the control of the P_{cpcB} promoter in the	
	genome locus slr0168	
Synechocystis sp. PCC 6803	Transgenic Synechocystis sp. PCC 6803	[2]
$\mathbf{P}_{psbA2::}\mathbf{y}q\mathbf{j}M$	constructed in WT background harboring	
	the gene yqjM from Bacillus subtilis under	
	the control of the promoter P_{psbA2} in the	
	genome locus slr0168	

 Table S1. Strains utilized in this work.

Table S2. Gas Chromatography	Flame Ionization Detector Method.
------------------------------	-----------------------------------

Column	Phase	ZB-5 (5% phenyl, 95% dimethyl polysiloxane)
	Dimension	Length = 30 m; Film Thickness = 0.25μ m; Inner
		Diameter = 0.32 mm
	Temperature	100 °C
FID Detector	Temperature	320 °C
	Air flowrate	400 mL min ⁻¹
	H ₂ flowrate	40 mL min ⁻¹
Injection port	Volume	1.0 µL
	Carrier Gas	$N_2 (1.5 \text{ mL min}^{-1})$
	Temperature	230 °C
	Split Ratio	20
Temperature	Program	1) 80 °C for 1 min; 2) 80-160 °C (50 °C min ⁻
		¹); 3) 160-220 (15 °C min ⁻¹); 4) 220-300 °C (50
		°C min ⁻¹) and 5) 300 °C for 3.8 min

Achiral GC-FID (GC-2010 Plus, Shimadzu, Japan)

The percent enantiomeric excess (% ee) was determined using Chiral GC-FID as detailed below:

Column	Phase	β-6TBDAc (Column ID: 23254-3)
	Dimension	Length = 50 m; Film Thickness = 0.25μ m; Inner
		Diameter $= 0.25 \text{ mm}$
	Temperature	180 °C
FID Detector	Temperature	250 °C
	Air flowrate	200 mL min ⁻¹
	H ₂ flowrate	32 mL min^{-1}
Injection port	Volume	1.0 μL
	Carrier Gas	N ₂ (24 mL min ⁻¹)
	Temperature	230
	Split Ratio	100
Temperature	Program	1) 180 °C (2 min); 2) 220 °C (5 °C min ⁻¹ for
		3min)

Chiral GC-FID (GC-2030 Plus, Shimadzu, Japan)

Figure S1. Light Intensity Measurements inside BCR with a) internal illumination at cell density 1.2 g L^{-1} ; b) internal illumination at cell density 2.4 g L^{-1} ; c) external illumination provided by LED strips.

The light intensity of the cyanobacterial mixture was determined using an LI-250A light meter (LI-COR Biosciences UK Ltd, Cambridge, United Kingdom) with a US-SQS/L light sensor (Waltz, Effeltrich, Germany) submerged at a depth of 5 cm from the surface in the center of the reactor.

Figure S2. a) Schematic illustration of the Bubble Column Reactor with a working volume of 200 mL cyanobacterial mixture, air was delivered using a pump at a flowrate of 0.6 L min⁻¹; b) Wireless Light Emitters (WLEs) utilized for internal illumination in the BCR.^[3]

Table	S3.	Average	light	intensity	in	BCR
	~ • •					

Conditions	Average light intensity [µE m ⁻² s ⁻¹]
BG11 WLE 40	302.3
BG11 external LED stripes	300.5
0.48 g L ⁻¹ WLE 20	145.1
0.48 g L ⁻¹ WLE 30	238.1
0.48 g L ⁻¹ WLE 40	268.4
1.2 g L ⁻¹ WLE 20	76.3
1.2 g L ⁻¹ WLE 40	142.3
2.4 g L ⁻¹ WLE 40	60.7
1.2 g L ⁻¹ external LED stripes	3.01
2.4 g L ⁻¹ external LED stripes	1.66

Synechocystis was maintained in an aquarium-type reactor at 30 °C using a heater (Thermo Fisher Scientific, Waltham, USA). Each gas washing tube contains 200 mL of cell culture supplemented with 50 μ g mL⁻¹ of kanamycin as a selectable marker. The cells were allowed to grow to an OD₇₅₀ of 1-3, harvested, centrifuged (24 °C, 15min, 3500 rpm) and subsequently

utilized in whole-cell light driven biotransformations. The OD_{750} 10 corresponded to 2.4 g L⁻¹ of cell density as previously determined.^[2] For this cell density, measured chlorophyll a content was

Figure S3. a) Cultivation of *Synechocystis* in gas washing tubes in an aquarium maintained at 30 °C, air was delivered using a pump and passed through 0.2 μ m filters; b) Light intensity measurements for each tube (measured in water).

Synthesis of 2-Methylmaleimide

2-Methylmaleimide was synthesized as described elsewhere.^[4] In a typical reaction, citranoic anhydride (89 mmol) and ammonium acetate (178 mmol) were reacted in acetic acid (40 mL). The mixture was allowed to heat under reflux for 2.5 h. After the reaction, the solvent was partially removed in vacuo. The remaining solution was mixed with 100 mL of saturated NaCl and 40 mL of water. The solution was then extracted with ethyl acetate (8 x 25 mL). The crude product was purified by silica column chromatography using a mobile phase of 5:1 (Cyclohexane: Ethyl acetate) obtaining a white solid product (3.5 g, 35.3% yield).

¹H NMR (300 MHz, DMSO-*d*6) δ 10.73 (s, br, 1H, NH), δ 6.54-6.56 (m, 1H, =CH-), δ 1.94 (J_{HH}=1.5 Hz, d, 3H, CH₃,)

¹³C NMR (300 MHz, CDCl₃) δ 10.377, δ 128.166, δ 146.129, δ 172.422, δ 173.310

2-MS Extraction and characterization

Optically pure (> 99% ee) 2-MS was isolated as a solid powder (157.4 mg, 71% yield). The product was analyzed by 1 H and 13 C NMR.

¹H NMR (300 MHz, CDCl₃) δ 7.86 (s, br, 1H, NH), δ 3.02–2.81 (m, 2H, –CH₂-), δ 2.46-2.23 (m, 1H, -CH-), δ 1.41–1.28 (m, 3H, –CH₃)

¹³C NMR (300 MHz, CDCl₃) δ 17.098, δ 36.768, δ 38.194, δ 176.618, δ 180.920

Figure S4. ¹H NMR of 2-MS obtained after whole-cell biotransformation.

Figure S5. ¹³C NMR of 2-MS obtained after whole-cell biotransformation.

Figure S6. Consumption of 2-MM substrate over time by *Synechocystis* sp. PCC 6803 WT (1.2 g L^{-1} , 200 mL, 10 mM 2-methylmaleimide, 0.6 L min⁻¹ airflow, 40 WLEs).

Figure S7. External illumination of BCR provided by LED strips (BOXXX)

Figure S8. Example GC-Chromatogram with 2-MM substrate (ret. time 5.660 min) and 2-MS product (ret. time 6.262 min). *n*-decanol (ret. time 7.229 min) was used as an internal standard.

Measurement of emission spectrum

The emission spectrum of a white WLE was measured with a MSC15 spectrometer (Gigahertz-Optik, Türkenfeld, Germany).

Figure S9. Emission spectrum of a white WLE.

uV

References

- [1] R. Y. Stanier, R. Kunisawa, M. Mandel, G. Cohen-Bazire, *Bacteriol. Rev.* 1971, 35, 171–205.
- L. Assil-Companioni, H. C. Buchsenschutz, D. Solymosi, N. G. Dyczmons-Nowaczyk, K. K. F. Bauer,
 S. Wallner, P. Macheroux, Y. Allahverdiyeva, M. M. Nowaczyk, R. Kourist, ACS Catal. 2020, 10, 11864-11877.
- [3] M. Heining, R. Buchholz, *Biotechnol. J.* **2015**, *10*, 1131-1137.
- [4] K. Koninger, A. Gomez Baraibar, C. Mugge, C. E. Paul, F. Hollmann, M. M. Nowaczyk, R. Kourist, *Angew. Chem. Int. Ed.* **2016**, *55*, 5582-5585; *Angew. Chem.* **2016**, *128*, 5672-5675.