Supplementary information

Supplementary materials and methods

Cell-based binding assay:

Recombinant S100 proteins, anti-SIRL-1, and anti-LAIR-1 antibodies were dissolved in PBS to a final concentration of 10 µg/ml. Collagen I was dissolved in PBS with 2 mM acetic acid to a final concentration of 25 µg/ml. 150 µl of the solutions were incubated in wells of a MaxiSorp 96-well plate at 4°C overnight to allow immobilization. The next day, wells were washed three times with PBS and incubated with 1% (w/v) BSA solution in PBS for 60 min at RT, and the plate was again washed three times with PBS. K562 is a human lymphoblast cell line, which we transduced with full-length SIRL-1 analogous to the LAIR-1-overexpressing K562 cells, described previously [1]. K562 cells (wt, LAIR-1-overexpressing, and SIRL-1-overexpressing) were concentrated to $5x10^6$ cells/ml and incubated with the fluorescent dye calcein dissolved in PBS for 30 min at 37°C in a cell culture incubator. Cells were then washed three times with RPMI 1640 + 1% fetal bovine serum (FBS), and $1.5x10^5$ cells in 100 µl RPMI 1640 + 1% FBS were added to the microtiter plate and incubated for 6 h at 37°C in a cell culture incubator to allow adherence to the plate-coated proteins. After incubation, cells were washed 15 times with RPMI 1640 + 1% FBS, and calcein fluorescence was recorded (Ex/Em = 485/527 nm) in a plate reader before every wash step to measure the decrease in calcein fluorescence intensity as a consequence of cell detachment. Results are shown in supplementary figure 2.

ELISA-based binding assay:

Recombinant S100 proteins were dissolved in PBS to a final concentration of 10 μ g/ml. Anti-SIRL-1 (clone 1A5, own production) and anti-LAIR-1 (clone 8A8, own production) antibodies and bovine serum albumin (BSA) were dissolved in PBS to a final concentration of 5 μ g/ml. 100 μ l of the solutions were incubated in wells of a MaxiSorp 96-well plate at 4°C overnight to allow immobilization. The next day, wells were washed three times with PBS and incubated with 3% (w/v) BSA solution in PBS for 60 min at RT. The plate was then washed five times with PBS. Fusion proteins containing ectodomains of SIRL-1 or LAIR-1 and the Fc dimerization tag, respectively SIRL-1-Fc or LAIR-1-Fc, were added to the wells to a concentration of 10 μ g/ml in PBS + 1% BSA and incubated for 2 h at RT. Wells were washed five times with PBS. Anti-human-IgG-HPR Ab was added to 0.2 μ g/ml in PBS + 1% BSA and incubated for 1 h at 4°C. Wells were washed five times with PBS, and ELISA was developed with TMB substrate and stopped with 1 M H₂SO₄. Absorbance was measured at 450 nm. Results are shown in supplementary figure 3.

Supplementary figures

Supplementary figure 1: EF-hand motifs of selected S100 proteins were tested for induction of ROS in human neutrophils. The S100-specific EF-hand of S100 protein A6 was the only one that induced ROS. Representative traces of one experiment.

Supplementary figure 2: SIRL-1 overexpressing and control K562 cells were incubated with plate-coated S100 proteins as well as control antibodies and ligands. LAIR-1 overexpressing cells bound plate-coated collagen I and anti-LAIR-1 antibody. SIRL-1 overexpressing cells bound to plate-coated anti-SIRL-1 antibody, but no binding was observed to S100 proteins A5, A6, A8, and A9. A representative experiment is shown.

Supplementary figure 3: Recombinant SIRL-1-Fc fusion protein selectively bound to anti-SIRL-1, but not to platecoated S100 proteins A6, A8, A8/9 heterodimer, A9, A12, or B. Recombinant LAIR-1-Fc fusion protein selectively bound to anti-LAIR-1, and was used as a control. Mean and SEM of one representative experiment are shown.

Supplementary references

 Lebbink, R. J., de Ruiter, T., Adelmeijer, J., Brenkman, A. B., van Helvoort, J. M., Koch, M., Farndale, R.
W. et al., Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1. *J Exp Med* 2006. 203: 1419-1425.