Chemistry–A European Journal

Supporting Information

Cata-Annulated Azaacene Bisimides

Maximilian Elter, Lukas Ahrens, Stella M. Luo, Frank Rominger, Jan Freudenberg,* Dennis D. Cao,* and Uwe H. F. Bunz*

Table of Contents

2) SynthesisS33) Cyclic VoltammetryS114) Optical SpectroscopyS125) Geometry and Energy computationS146) FMO DistributionS267) NICS(1)zz calculationsS278) AICD CalculationsS289) NMR SpectroscopyS3110) Infrared SpectroscopyS5511) HRMS SpectraS5912) Crystallographic DataS6513) ReferencesS67	1) General Remarks	S2
3) Cyclic VoltammetryS114) Optical SpectroscopyS125) Geometry and Energy computationS146) FMO DistributionS267) NICS(1)zz calculationsS278) AICD CalculationsS289) NMR SpectroscopyS3110) Infrared SpectroscopyS5511) HRMS SpectraS5912) Crystallographic DataS6513) ReferencesS67	2) Synthesis	S3
4) Optical SpectroscopyS125) Geometry and Energy computationS146) FMO DistributionS267) NICS(1)zz calculationsS278) AICD CalculationsS289) NMR SpectroscopyS3110) Infrared SpectroscopyS5511) HRMS SpectraS5912) Crystallographic DataS6513) ReferencesS67	3) Cyclic Voltammetry	S11
5) Geometry and Energy computation	4) Optical Spectroscopy	S12
6) FMO Distribution	5) Geometry and Energy computation	S14
7) NICS(1)zz calculations	6) FMO Distribution	S26
8) AICD Calculations	7) NICS(1)zz calculations	
9) NMR Spectroscopy	8) AICD Calculations	S28
10) Infrared Spectroscopy S55 11) HRMS Spectra S59 12) Crystallographic Data S65 13) References S67	9) NMR Spectroscopy	S31
11) HRMS Spectra S59 12) Crystallographic Data S65 13) References S67	10) Infrared Spectroscopy	S55
12) Crystallographic Data	11) HRMS Spectra	S59
13) References	12) Crystallographic Data	S65
	13) References	S67

1) General Remarks

TLC was performed using polyester sheets coated with silica gel produced by Macherey-Nagel & Co. Polygram® SIL g/UV254). Column chromatography was performed using silica gel from Macherey, Nagel & Co. (particle size: 0.032-0.062 mm). Preparative GPC was performed on Bio-Beads® (S-X1 Beads, 200-400 Mesh, crosslinked polystyrene), purchased from Bio-Rad Laboratories, Inc., CHROMAFIL® Xtra PTFE-45/25 syringefilters by Macherey-Nagel with a pore size of 0.45 µm and 25 mm diameter were used as syringefilters. IR spectra were recorded at room temperature on a Jasco FT/IR-4100 spectrometer. Melting points were determined in open glass capillaries on a Melting Point Apparatus MEL-TEMP (Electrothermal, Rochford, UK) and are uncorrected. NMR spectra were recorded on Bruker Avance spectrometers using the specified frequency at 295 K. Chemical shifts (δ) are given in parts per million (ppm) relative to internal solvent signals.^[S1] The following abbreviations describe the signal multiplicities: s = singlet, d = doublet, t = triplet, quin = quintet, dd = doublet of doublets, m = multiplet, br = broad signal. High-resolution mass spectra (HRMS) were obtained by matrix-assisted laser desorption/ionization (MALDI) using trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) as matrix, electrospray ionisation (ESI) or direct analysis in real time (DART) experiments. CV measurements were performed on a VersaSTAT 3 potentiostat by Princeton Applied Research. UV-vis spectra were recorded on a Jasco V670. Computational studies were carried out using DFT calculations on Gaussian16 and GaussView 6. Geometry optimizations were performed using the B3LYP functional and def2SVP basis set. At this geometry, the absolute energy and FMO energies were determined by a single-point approach at the B3LYP/def2TZVP level.^[S2]

The diamine-building blocks used were synthesized according to literature procedures:

- 4,5-Dichloro-2,7-dihexylpyrrolo[3,4-*e*]isoindole-1,3,6,8(2*H*,7*H*)-tetraone^[S3]
- 3,6-Bis((triisopropylsilyl)ethynyl)benzene-1,2-diamine,[S4]
- 1,4-bis((triisopropylsilyl)ethynyl)naphthalene-2,3-diamine,^[S5]
- 1,4-bis((triisopropylsilyl)ethynyl)anthracene-2,3-diamine,[S6]
- 1,4-bis((triisopropylsilyl)ethynyl)phenazine-2,3-diamine,[S7]
- 4,7-bis((triisopropylsilyl)ethynyl)-benzo[c][1,2,5]thiadiazole-5,6-diamine,^[S8]
- 9,10-bis((triisopropylsilyl)ethynyl)-anthracene-2,3,6,7-tetraaminiumchloride.^[S9]

2) Synthesis

General Procedure (GP)

The corresponding *ortho*-diamine (1.00 eq), **MDI-Cl**₂ (1.00 eq), cesium carbonate (3.00 eq.) and Pd RuPhos G1 (5 mol%) were placed in a dry Schlenk tube under Argon atmosphere. Then dry and degassed toluene (1 mL per 50 mg diamine) was added and the reaction was stirred at 120 °C for 16 h. The reaction mixture was diluted with dichloromethane and water was added. The phases where separated and the aqueous layer was extracted with methylene chloride (3x10 mL). The combined organic layers were dried over MgSO₄, filtered through filter paper and the solvent was removed under reduced pressure.

2,5-Dihexyl-8,11-bis((triisopropylsilyl)ethynyl)-7,12-dihydrodipyrrolo[3,4-*a*:3',4'*c*]phenazine-1,3,4,6(2*H*,5*H*)-tetraone (1-H₂)

GP was applied to 3,6-bis((triisopropylsilyl)ethynyl)benzene-1,2-diamine **6** (51.7 mg, 110 µmol, 1.00 eq.) and **MDI-Cl**₂ (50.0 mg, 110 µmol, 1.00 eq.), using cesium carbonate (108 mg, 331 µmol, 3.00 eq.) and Pd-RuPhos (G1) (4.50 mg, 5.51 µmol, 5 mol%.). The resulting crude product was purified by column chromatography (SiO₂, PE/DCM 1:1) yielding **1-H**₂ as a red solid (40.2 mg, 47.3 µmol, 43%). *R*_f (DCM:PE) = 0.27, ¹H NMR (400 MHz, CDCl₃) δ = 8.49 (s, 2H), 6.69 (s, 2H), 3.59 (t, *J* = 7.0 Hz, 4H), 1.62 (quin, *J* = 6.6 Hz, 4H), 1.32 - 1.11 (m, 58H), 0.92 - 0.83 (m, 7H). ¹³C NMR (101 MHz, CDCl₃) δ = 167.8, 163.9, 136.6, 131.0, 126.4, 120.8, 110.0, 109.0, 101.9, 99.4, 38.2, 31.5, 28.3, 26.5, 22.6, 18.8, 14.2, 11.4. HRMS (MALDI+, DCTB): m/z calcd. for C₅₀H₇₂N₄O₄Si₂: [M]⁺⁺ 848.5092, found: 848.5085, correct isotope distribution. IR (ATR) \tilde{v} [cm⁻¹] = 3320, 2927, 2859, 2363, 1759, 1691, 1540, 1380, 802, 776, 675, 660, 619, 609, 595, 442, 410. M.p. = 180 °C.

1-H₂ (30.0 mg, 35.3 μg, 1.00 eq.) was dissolved in methylene chloride and an excess of manganese dioxide (>100 eq.) was added. The reaction mixture was stirred at room temperature until TLC showed full consumption of the dihydro species. The mixture was filtered through a filter paper and the solvent was removed under reduced pressure to yield **1a** as a red solid (28.1 mg, 33.2 μmol, 94%). ¹H NMR (600 MHz, CDCl₃) δ = 8.14 (s, 2H), 3.83 (t, *J* = 7.2 Hz, 4H), 1.79 - 1.72 (m, 4H), 1.35 - 1.24 (m, 54H), 0.90 - 0.87 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ = 164.6, 164.5, 145.2, 139.7, 137.9, 134.4, 130.2, 125.6, 103.6, 102.0, 38.7, 31.3, 28.3, 26.4, 22.4, 18.8, 14.1, 11.5. HRMS (MALDI+, DCTB): m/z calcd. for C₅₀H₇₁N4O4Si₂: [M+H]⁺ 847.5008, found: 847.5038, correct isotope distribution. IR (ATR) \tilde{v} [cm⁻¹] = 2923, 2864, 1771, 1722, 1713, 1463, 1398, 1364, 1064, 996, 881, 791, 676, 659, 589, 462, 456, 418. M.p. = 174 °C.

2,5-Dihexyl-8,13-bis((triisopropylsilyl)ethynyl)-7,14-dihydrobenzo[*i*]dipyrrolo[3,4-*a*:3',4'*c*]phenazine-1,3,4,6(2*H*,5*H*)-tetraone (2-H₂)

GP was applied to 1,4-bis((triisopropylsilyl)ethynyl)naphthalene-2,3-diamine **7** (57.2 mg, 110 µmol, 1.00 eq.) and **MDI-Cl**₂ (50.0 mg, 110 µmol, 1.00 eq.), using cesium carbonate (108 mg, 331 µmol, 3.00 eq.) and PdRuPhos (G1) (4.50 mg, 5.51 µmol, 5 mol%). The resulting crude product was purified by column chromatography (SiO₂, PE/DCM 1:1) yielding **2-H**₂ as a red solid (78.0 mg, 86.7 µmol, 79%). *R*_f (DCM:PE) = 0.33, ¹H NMR (600 MHz, CDCl₃) δ = 9.02 (s, 2H), 7.96 - 7.93 (m, 2H), 7.38 - 7.33 (m, 2H), 3.63 (t, *J* = 7.0 Hz, 4H), 1.65 (br t, *J* = 6.9 Hz, 4H), 1.38 - 1.19 (m, 54H), 0.93 - 0.82 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ = 167.9, 164.1, 134.6, 131.1, 126.8, 125.6, 120.4, 111.3, 107.1, 103.8, 98.0, 83.4, 38.2, 31.5, 28.3, 26.6, 22.6, 19.0, 14.2, 11.4. HRMS (MALDI+, DCTB): m/z calcd. for C₅₄H₇₄N₄O₄Si₂: [M]⁻⁺ 898.5249, found: 898.5254, correct isotope distribution. IR (ATR) \tilde{v} [cm⁻¹] = 3310, 2921, 2861, 2359, 2359, 1698, 1540, 1508, 1456, 1380, 1352, 756, 670, 508, 410. Melting point: M.p. = 238 °C.

2-H₂ (40.0 mg, 44.5 μmol, 1.00 eq) was dissolved in methylene chloride and an excess of manganese dioxide (>100 eq.) was added. The reaction mixture was stirred at room temperature until TLC showed full consumption of the dihydro species. The mixture was filtered through a paper filter and the solvent was removed under reduced pressure to yield **2a** as a green solid (38.8 mg, 43.2 μmol, 97%). ¹H NMR (600 MHz, CDCl₃) δ = 8.86 - 8.81 (m, 2H), 7.78 - 7.70 (m, 2H), 3.85 (t, *J* = 7.2 Hz, 4H), 1.78 (quin, *J* = 7.3 Hz, 4H), 1.33 (d, *J* = 7.2 Hz, 54H), 0.89 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ = 164.9, 164.8, 142.1, 140.0, 138.0, 134.8, 130.4, 129.9, 128.3, 122.8, 111.9, 101.8, 38.8, 31.5, 28.4, 26.6, 22.6, 19.1, 14.2, 11.8. HRMS (MALDI+, DCTB): m/z calcd. for C₅₄H₇₃N₄O₄Si₂: [M+H]⁺ 897.5179, found: 897.5165, correct isotope distribution. IR (ATR) \tilde{v} [cm⁻¹] = 2940, 2923, 2863, 1771, 1721, 1713, 1435, 1394, 1101, 995, 880, 761, 735, 673, 659, 576, 444, 414, 402. Melting point: M.p. = 209 °C.

2,5-Dihexyl-8,15-bis((triisopropylsilyl)ethynyl)-7,16-dihydronaphtho[2,3-*i*]dipyrrolo[3,4*a*:3',4'-*c*]phenazine-1,3,4,6(2*H*,5*H*)-tetraone (3-H₂)

GP was applied to 1,4-bis((triisopropylsilyl)ethynyl)anthracene-2,3-diamine **8** (62.8 mg, 110 µmol, 1.00 eq.) and **MDI-Cl**₂ (50.0 mg, 110 µmol, 1.00 eq), using cesium carbonate (108 mg, 331 µmol, 3.00 eq.) and PdRuPhos (G1) (4.50 mg, 5.51 µmol, 5 mol%). The resulting crude product was purified by column chromatography (SiO₂, PE/DCM 1:1) yielding **3-H**₂ as a dark-red solid (61.4 mg, 64.7 µmol, 59%). *R*_f (DCM:PE) = 0.33, ¹H NMR (600 MHz, CDCl₃) δ = 9.29 - 9.24 (m, 2H), 8.52 - 8.48 (m, 2H), 7.86 - 7.82 (m, 2H), 7.45 - 7.42 (m, 2H), 3.68 - 3.65 (m, 4H), 1.70 - 1.65 (m, 4H), 1.43 - 1.36 (m, 6H), 1.33 - 1.27 (m, 48H), 0.91 - 0.88 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ = 167.9, 164.0, 133.3, 132.2, 131.0, 128.4, 128.0, 126.0, 124.2, 120.1, 111.9, 107.4, 102.3, 98.2, 38.1, 31.3, 28.1, 26.4, 22.4, 18.9, 14.0, 11.3. HRMS (MALDI+, DCTB): m/z calcd. for C₅₈H₇₆N₄O₄Si₂: [M]⁺ 948.5405, found: 948.5400, correct isotope distribution. IR

(ATR) \tilde{v} [cm⁻¹] = 3314, 2938, 2890, 2861, 2359, 2341, 2138, 1766, 1697, 1577, 1525, 1489, 1455, 1400, 1375, 1361, 1346, 1112, 994, 879, 742, 673, 638, 620, 576, 468. M.p. = 269 °C.

2,5-Dihexyl-8,15-bis((triisopropylsilyl)ethynyl)naphtho[2,3-*i*]dipyrrolo[3,4-*a*:3',4'*c*]phenazine-1,3,4,6(2*H*,5*H*)-tetraone (3a)

3-H₂ (45.0 mg, 47.4 µmol, 1.00 eq) was dissolved in methylene chloride and an excess of manganese dioxide (>100 eq.) was added. The reaction mixture was stirred at 50 °C for 1 d until TLC showed full consumption of the dihydro species. The mixture was filtered through a PTFE filter and the solvent was removed under reduced pressure to yield **3a** as a brown solid (42.3 mg, 44.7 µmol, 94%). ¹H NMR (600 MHz, CDCl₃) δ = 9.56 - 9.52 (m, 2H), 8.03 - 8.00 (m, 2H), 7.57 - 7.53 (m, 2H), 3.91 - 3.82 (m, 4H), 1.83 - 1.76 (m, 4H), 1.53 - 1.46 (m, 6H), 1.43 - 1.32 (m, 48H), 0.92 - 0.89 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ = 164.8, 164.8, 141.2, 139.9, 134.7, 134.6, 134.2, 130.3, 128.8, 128.0, 127.7, 123.0, 113.4, 102.9, 38.7, 31.4, 28.3, 26.5, 22.4, 19.0, 14.1, 11. HRMS (MALDI-, DCTB): m/z calcd. for C₅₈H₇₄N₄O₄Si₂: [M]⁻⁺ 946.5249, found: 946.5251, correct isotope distribution. IR (ATR) \tilde{v} [cm⁻¹] = 2925, 2861, 1779, 1720, 1456, 1436, 1396, 1366, 1011, 694, 673, 576, 458. M.p. = 150 °C dec.

2,5-Dihexyl-8,12-bis((triisopropylsilyl)ethynyl)-7,13-dihydrodipyrrolo[3,4-*a*:3',4'*c*][1,2,5]thiadiazolo[3,4-*i*]phenazine-1,3,4,6(2*H*,5*H*)-tetraone (4-H₂)

GP was applied to 4,7-bis((triisopropylsilyl)ethynyl)benzo[*c*][1,2,5]-thiadiazole-5,6-diamine **9** (58.1 mg, 110 µmol, 1.00 eq.) and **MDI-Cl**₂ (50.0 mg, 110 µmol, 1.00 eq), using cesium carbonate (108 mg, 331 µmol, 3.00 eq.) and PdRuPhos (G1) (4.50 mg, 5.51 µmol, 5 mol%). The resulting crude product was purified by column chromatography (SiO₂, PE/DCM 1:1) yielding **4-H**₂ as an orange-red solid (87.0 mg, 95.9 µmol, 87%). *R*_f (DCM:PE) = 0.29, ¹H NMR (600 MHz, CDCl₃) δ = 9.30 - 9.26 (m, 2H), 3.66 (t, *J* = 7.2 Hz, 4H), 1.70 - 1.62 (m, 4H), 1.36 - 1.28 (m, 18H), 1.25 - 1.19 (m, 36H), 0.90 - 0.86 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ = 167.6, 163.7, 152.0, 134.9, 132.4, 120.8, 113.1, 108.2, 97.7, 95.9, 38.7, 31.6, 28.1, 26.4, 22.4, 18.7, 14.0, 11.2. HRMS (MALDI+, DCTB): m/z calcd. for C₅₀H₇₀N₆O₄SSi₂: [M+H]⁺ 907.4791, found:

907.4771, correct isotope distribution. IR (ATR) \tilde{v} [cm⁻¹] = 3306, 2941, 2863, 2359, 2342, 1765, 1698, 1567, 1513, 1489, 1455, 1431, 1398, 1352, 1310, 1275, 1260, 1111, 1017, 880, 818, 741, 669, 653, 630, 574, 500, 465. M.p. = 151 °C.

2,5-Dihexyl-8,12-bis((triisopropylsilyl)ethynyl)dipyrrolo[3,4-*a*:3',4'*c*][1,2,5]thiadiazolo[3,4-*i*]phenazine-1,3,4,6(2*H*,5*H*)-tetraone (4a)

4-H₂ (45.0 mg, 49.6 μmol, 1.00 eq) was dissolved in chloroform (10 mL) and an excess of PbO₂ (>100 eq.) was added. The reaction was then stirred at 65 °C for 2 d until NMR spectroscopy showed full consumption of the dihydro species. The reaction mixture was filtered through a PTFE filter to yield **4a** as a dark-green solid (41.3 mg, 45.6 μmol, 92%). ¹H NMR (600 MHz, CDCl₃) δ = 3.85 (t, *J* = 7.2 Hz, 4H), 1.79 (quin, *J* = 7.3 Hz, 4H), 1.46 - 1.30 (m, 54H), 0.90 (br t, *J* = 7.2 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ = 164.8, 164.7, 157.1, 143.0, 140.7, 135.1, 131.6, 116.8, 101.8, 39.1, 31.6, 28.6, 26.7, 22.7, 19.2, 14.4, 11.9. HRMS (MALDI-, DCTB): m/z calcd. for C₅₀H₆₈N₆O₄SSi₂: [M]⁺ 904.4561, found: 904.4560, correct isotope distribution. IR (ATR) \tilde{v} [cm⁻¹] = 2922, 2863, 1781, 1773, 1721, 1714, 1462, 1444, 1398, 1364, 1194, 1062, 1014, 996, 921, 880, 801, 734, 670, 656, 579, 503, 445, 406. M.p. = 206 °C.

2,5-Dihexyl-8,15-bis((triisopropylsilyl)ethynyl)-7,16-dihydrodipyrrolo[3,4-*a*:3',4'*c*]quinoxalino[2,3-*i*]phenazine-1,3,4,6(2*H*,5*H*)-tetraone (5-H₂)

In a dry Schlenk tube bis((triisopropylsilyl)ethynyl)phenazine-2,3-diamine **10** (75.6 mg, 132 μ mol, 1.20 eq.), **MDI-Cl**₂ (50.0 mg, 110 μ mol, 1.00 eq), Pd₂(dba)₃ (5.05 mg, 5.51 μ mol, 5 mol%) and RuPhos (5.15 mg, 11.0 μ mol, 10 mol%) were placed under argon atmosphere. Then degassed Hünig's base (2 mL) was added and the reaction was stirred at 120 °C for 16 h. The reaction mixture was diluted with methylene chloride and water was added. The phases where separated and the aqueous layer was extracted with methylene chloride (3x10 mL). The combined organic layers were dried over MgSO₄, filtered through a paper filter and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (SiO₂, PE/DCM 1:1) to yield **5-H**₂ as a pink-red solid (63.3 mg, 66.5 μ mol,

60%). $R_{\rm f}$ (DCM:PE) = 0.31, ¹H NMR (301 MHz, CDCl₃) δ = 9.48 (s, 2H), 8.05 - 7.95 (m, 2H), 7.72 - 7.63 (m, 2H), 3.67 (t, *J* = 7.0 Hz, 4H), 1.76 - 1.61 (m, 4H), 1.44 - 1.17 (m, 54H), 0.95 - 0.82 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ = 167.8, 164.0, 143.0, 135.7, 132.4, 130.0, 129.6, 128.1, 121.0, 113.4, 108.8, 103.4, 97.3, 38.4, 31.4, 29.9, 26.5, 22.6, 19.0, 14.2, 11.5. HRMS (MALDI+, DCTB): m/z calcd. for C₅₆H₇₅N₆O₄Si₂: [M+H]⁺ 951.5383, found: 951.5391, correct isotope distribution. IR (ATR) \tilde{v} [cm⁻¹] = 3303, 2940, 2924, 2861, 2359, 2341, 1760, 1698, 1577, 1518, 1350, 1254, 1215, 1095, 1019, 881, 749, 722, 697, 660, 628, 590, 470. M.p. = 261 °C.

2,5-Dihexyl-8,15-bis((triisopropylsilyl)ethynyl)dipyrrolo[3,4-*a*:3',4'-*c*]quinoxalino[2,3*i*]phenazine-1,3,4,6(2*H*,5*H*)-tetraone (5a)

5-H₂ (22.0 mg, 23.1 μmol, 1.00 eq.) was dissolved in methylene chloride (1 mL) in a glove box. Then an excess of PbO₂ (>100 eq.) was added. The reaction was stirred at rt for 3 d. The reaction mixture was filtered through a PTFE filter to yield **5a** as a brown solid (20.2 mg, 21.3 μmol, 92%) ¹H NMR (600 MHz, CDCl₃) δ = 8.25 - 8.16 (m, 2H), 7.97 - 7.89 (m, 2H), 3.85 (t, *J* = 7.2 Hz, 4H), 1.80 (quin, *J* = 7.2 Hz, 4H), 1.48 - 1.33 (m, 55H), 0.94 - 0.90 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ = 165.0, 164.8, 146.8, 145.1, 143.2, 140.8, 135.2, 133.9, 131.7, 130.7, 125.1, 116.7, 103.1, 38.9, 31.6, 28.6, 26.7, 22.8, 19.0, 14.1, 12.0. HRMS (MALDI-, DCTB): m/z calcd. for C₅₄H₇₄N₆O₄Si₂: [M]⁻⁻ 948.5159, found: 948.5152, correct isotope distribution. IR (ATR) \tilde{v} [cm⁻¹] = 2926, 2861, 1778, 1722, 1523, 1442, 1388, 1361, 1127, 1062, 1016, 880, 765, 745, 736, 673, 594, 447. M.p. = 185 °C dec.

2,5,13,16-Tetrahexyl-9,20-bis([tri(propan-2-yl)silyl]ethynyl)-7,11,18,22tetrahydrotetrapyrrolo[3,4-*h*:3,4-*h*':3,4-*j*']benzo[1,2-*b*:4,5-*b*']diphenazine-1,3,4,6,12,14,15,17(2*H*,5*H*,13*H*,16*H*)-octone (12-H₄)

GP was applied to 9,10-bis((triisopropylsilyl)ethynyl)anthracene-2,3,6,7-tetraaminiumchloride **11** (100 mg, 134 µmol, 1.00 eq.) and **MDI-Cl**₂ (137 mg, 302 µmol, 2.25 eq), using cesium carbonate (875 mg, 2.69 mmol, 20.0 eq.) and PdRuPhos (G1) (11.0 mg, 13.4 µmol, 10 mol%). The resulting crude product was purified via column chromatography (SiO₂, PE/EE 5:1) then washed with methanol and PE and subsequently purified via preparative GPC (CHCl₃) yielding **12-H**₄ as a dark purple solid (59.3 mg, 42.9 µmol, 32%). *R*_f (DCM:PE) = 0. ¹H NMR (600 MHz, CD₂Cl₂) δ = 8.46 (s, 4H), 7.36 - 7.34 (m, 4H), 3.63 (br t, *J* = 7.2 Hz, 8H), 1.68 - 1.63 (m, 8H), 1.34 - 1.29 (m, 66H), 0.90 (br t, *J* = 6.9 Hz, 12H). ¹³C NMR (151 MHz, CD₂Cl₂) δ = 168.8, 164.0, 134.4, 131.3, 129.6, 120.00, 114.7, 111.4, 108.9, 102.9, 31.7, 28.7, 26.8, 22.8, 19.0, 14.1, 11.9. HRMS (MALDI+, DCTB): m/z calcd. for C₈₀H₁₀₃N₈O₈Si₂: [M+H]⁺ 1359.7432, found: 1359.7429, correct isotope distribution. IR (ATR) \tilde{v} [cm⁻¹] = 3345, 2924, 2854, 2362, 2341, 2331, 1769, 1698, 1685, 1570, 1498, 1465, 1364, 1278, 778, 758, 733, 691, 678, 550. M.p. = >330 °C.

Butterfly-Dimer (13)

12-H₄ (2.00 mg, 1.47 μmol, 1.00 eq) was dissolved in methylene chloride (500 μL) in a glove box. Then an excess of PbO₂ (>100 eq.) was added. The reaction was stirred at rt for 1 d. The reaction mixture was filtered through a PTFE filter to yield **13** as a green solid (2.60 mg, 960 nmol, 65%). ¹H NMR (600 MHz, CD₂Cl₂) δ = 9.51 (s, 4H), 6.64 - 6.47 (m, 4H), 3.81 (br t, J = 7.3 Hz, 8H), 3.70 - 3.61 (m, 8H), 1.80 - 1.73 (m, 8H), 1.70 - 1.46 (m, 126H), 1.45 - 1.39 (m, 14H), 0.91 - 0.87 (m, 24H). ¹³C NMR (151 MHz, CD₂Cl₂) δ = 165.7, 165.0, 164.3, 164.1, 159.6,

142.3, 141.3, 139.6, 139.0, 135.2, 135.1, 133.6, 131.1, 131.0, 129.8, 122.3, 110.5, 101.1, 57.8, 39.2, 39.0, 32.0, 31.8, 29.0, 28.8, 27.1, 27.0, 23.1, 23.0, 19.6, 19.5, 14.4, 12.3. HRMS (MALDI+, DCTB): m/z calcd. for $C_{160}H_{196}N_{16}O_{16}Si_4$: [M/2]⁺ 1354.7046, found: 1354.7027, correct isotope distribution. IR (ATR) \tilde{v} [cm⁻¹] = 2955, 2922, 2853, 2359, .2341, 1773, 1725, 1458, 1391, 1376, 1365, 1259, 1083, 1014, 880, 702, 679, 670, 661, 403. One constitutional isomer selectively formed, but as we did not obtain a single crystal suitable for crystal structure analysis, we cannot distinguish between the head-to-tail and the head-to-head dimer (see Figure S1).

3) Cyclic Voltammetry

Figure S2. Cyclic voltammograms of 1a (black), 2a (red), 3a (blue), 4a (green), 5a (purple) in CH_2Cl_2 using Bu_4NPF_6 as electrolyte and Fc/Fc^+ as internal standard at 0.2 Vs⁻¹.

Compound	E _(0/-) [V] ^[a]	E _A [eV] ^[b]	E _{LUMO, DFT} [eV] ^[c]	IP [eV] ^[d]	Е _{НОМО, DFT} [eV] ^[c]	gap _{DFT} [eV]	λ _{max, abs} [nm]	opt. gap [eV] ^[e]
1a	-0.82	-4.28	-3.92	-6.32	-6.27	2.35	550	2.05
1b ^[f]	-1.68	-3.42	-3.08	-6.12	-5.97	2.88	440	2.67
2a	-0.67	-4.43	-4.04	-5.99	-5.83	1.79	733	1.56
2b ^[f]	-1.23	-3.87	-3.35	-5.99	-5.54	2.20	570	2.09
3a	-0.62	-4.48	-4.10	-5.87	-5.50	1.40	908	1.31
3b ^[f]	-1.05	-4.15	-3.50	-5.80	-5.25	1.75	692	1.74
4a	-0.36	-4.74	-4.37	-6.29	-6.03	1.66	766	1.55
4b ^[g]	-0.83	-4.27	-3.85	-6.13	-5.77	1.82	642	1.86
5a	-0.35	-4.75	-4.30	-6.19	-5.80	1.50	813	1.44
5b ^[h]	-0.79	-4.07	-3.43	-5.89	-5.29	1.86	680	1.82

Table S1. Optical, electrochemical and quantum-chemical data of the azaacenebisimides and their parent compounds.

^[a]First reduction potentials measured by cyclic voltammetry (CV) in dichloromethane with Bu₄NPF₆ as the electrolyte against Fc/Fc⁺ as an internal standard (-5.10 eV) at 0.2 V s⁻¹.^[b]Calculated from CV measurements (EA = $-5.10 \text{ eV} - \text{E}^{(0-)})^{[S10]}$ ^[c]Obtained from quantum-chemical calculations with DFT/B3LYP/def2-TZVP ^[d]IP = E_A – Opt.Gap ^[e]Calculated from $\lambda_{\text{onset, abs.}}$ ^[I]CV data and quantum-chemical calculations taken from reference [S11] and adjusted for Fc/Fc⁺ = -5.10 eV ^[g]CV data and quantum-chemical calculations taken from reference [S13] and adjusted for Fc/Fc⁺ = -5.10 eV.

4) Optical Spectroscopy

Figure S3. Absorption spectra of the a) diazaanthracenes, b) diazatetracenes, c) diazapentacenes and their respective dihydro-species. The absorption spectra of the diazaacenebisimides in relation to each other are shown in d).

Figure S4. Absorption spectra of the a) thiadiazolacenes and b) tetraazapentacenes and their respective dihydro species.

5) Geometry and Energy computation

Geometry optimizations were performed using the B3LYP functional and def2SVP basis set. At this geometry, the absolute energy and FMO energies were determined by a single-point approach at the B3LYP/def2TZVP level.

Energy and cartesian coordinates for **1a**:

Total Energy = -2575.53647331 Hartree

No imaginary frequencies.

Table S2: Cartesian coordinates 1a.

Tag	Symbol	Х	Y	Z
1	С	0.6910653	-5.2798054	0.1287146
2	С	-0.6931087	-5.2791317	-0.1377764
3	С	-1.4146702	-4.1128656	-0.2743909
4	С	-0.7109664	-2.8598083	-0.1361797
5	С	0.7093228	-2.8605142	0.1355012
6	С	1.412858	-4.1141696	0.2691364
7	Ν	-1.3824399	-1.7216624	-0.2616131
8	С	-0.7106923	-0.5770617	-0.1319007
9	С	0.7103041	-0.5778145	0.1370352
10	Ν	1.3812957	-1.7230869	0.2643715
11	С	-1.3662919	0.6791263	-0.2543101
12	С	-0.6909994	1.8698034	-0.1275511
13	С	0.6935143	1.869033	0.1329435
14	С	1.3672217	0.6775588	0.260407
15	С	1.6794044	2.9914907	0.3218598
16	Ν	2.9068864	2.3702997	0.5512149
17	С	2.8154535	0.9778197	0.5340157
18	С	-2.8142222	0.9812382	-0.5274903
19	Ν	-2.9034421	2.3738156	-0.5473509
20	С	-1.6751581	2.9934679	-0.3181023
21	0	-3.7387018	0.2298584	-0.7037104
22	0	-1.493649	4.1822031	-0.2948866
23	0	1.4996739	4.1804697	0.2973429
24	0	3.7384644	0.2252671	0.7129991
25	С	2.8030407	-4.1214821	0.536656
26	С	-2.8045941	-4.1196381	-0.5433733
27	С	-3.9949944	-4.1130358	-0.7751292
28	С	3.9938364	-4.1138265	0.7663205
29	С	-9.0593673	5.5855131	2.5332758
30	С	-8.283559	5.265147	1.2571004
31	С	-6.9846818	4.5012573	1.5158737
32	С	-6.2019569	4.1769353	0.2432096
33	С	-4.9056857	3.4125363	0.5101348

	34	С	-4.1433692	3.1030985	-0.7785944
	35	С	9.0590262	5.5745204	-2.5439965
	36	С	8.2862929	5.2549129	-1.2657629
	37	С	6.9853491	4.4934424	-1.5212516
	38	С	6.2056964	4.1696536	-0.2465636
	39	С	4.9074688	3.4075346	-0.5104746
	40	С	4.1481843	3.0980254	0.7800416
	41	Si	5.7965477	-3.9527731	1.1190762
	42	С	6.6354223	-5.5828521	0.7068987
	43	С	5.9945583	-3.5522638	2.9433046
	44	С	6.4634606	-2.5604767	0.0545651
	45	Si	-5.7990497	-3.9571675	-1.1234386
	46	С	-6.4053575	-5.5708666	-1.8713302
	47	С	-6.0285382	-2.5299628	-2.3176548
	48	С	-6.6741589	-3.6156133	0.5030824
	49	Н	1.2051071	-6.2265085	0.2261983
	50	Н	-1.2073561	-6.2253509	-0.2388068
	51	Н	-9.9798846	6.1300556	2.3140766
	52	Н	-9.3333397	4.672932	3.068649
	53	Н	-8.4643695	6.2002602	3.2133198
	54	Н	-8.0543721	6.1953557	0.7264799
	55	Н	-8.9172019	4.6797266	0.5823481
	56	Н	-7.213577	3.5700994	2.046766
	57	Н	-6.3501738	5.0868891	2.1908059
	58	Н	-5.9713422	5.1084455	-0.2859476
	59	Н	-6.8365241	3.5912062	-0.4316034
	60	Н	-5.1286004	2.473516	1.0249179
	61	Н	-4.2605363	3.997497	1.1718181
	62	Н	-3.8784995	4.0261972	-1.2951042
	63	Н	-4.7527003	2.4918707	-1.4449724
	64	Н	9.9811529	6.1172958	-2.3271791
	65	H	9.3297973	4.6616971	-3.0805782
	66	Н	8.4631887	6.1906671	-3.2220383
	67	H	8.0602954	6.1852693	-0.7340241
	68	H	8.9208186	4.6679986	-0.5931416
	69	Н	7.2110903	3.5621991	-2.0533058
	70	Н	6.3499188	5.0805972	-2.193993
	71	Н	5.9781225	5.1011983	0.2838605
_	72	Н	6.8412062	3.5823677	0.4260037
	73	H	5.1275259	2.4686924	-1.0267789
	74	H	4.2613736	3.9941273	-1.1697782
	75	H	3.8858919	4.0210067	1.298091
	76	Н	4.7583922	2.4852674	1.4442164
	77	Н	6.4991778	-5.8422758	-0.3450696
	78	Н	7.7096294	-5.5244484	0.900847

COMMUNICATION

79	Н	6.2308936	-6.3997791	1.3082465
80	Н	5.4862553	-2.6187869	3.1921877
81	Н	7.0511471	-3.441152	3.2010774
82	Н	5.5764525	-4.341589	3.5713214
83	Н	6.3642927	-2.7947263	-1.0074493
84	Н	5.9154504	-1.6359809	0.2469715
85	Н	7.5221615	-2.3848811	0.2634583
86	Н	-6.2508013	-6.4077858	-1.1870045
87	Н	-7.473643	-5.515112	-2.0963049
88	Н	-5.8792763	-5.7971624	-2.8011276
89	Н	-5.5987497	-1.6139889	-1.9074799
90	Н	-7.0896369	-2.356096	-2.515573
91	Н	-5.5372272	-2.732562	-3.2716751
92	Н	-6.5159036	-4.4261531	1.2173914
93	Н	-6.306655	-2.6921447	0.9545981
94	Н	-7.7509941	-3.5102886	0.3465776

Energy and cartesian coordinates for 2a:

Total Energy = -2729.22455736 Hartree

No imaginary frequencies.

Table S3: Cartesian coordinates 2a.

Tag	Symbol	X	Y	Z
1	С	0.722562	-4.8785541	0.4042501
2	С	-0.7217658	-4.8786708	0.4042337
3	С	-1.4398909	-3.6900192	0.171278
4	С	-0.7233643	-2.480537	-0.0640191
5	С	0.7237921	-2.4804201	-0.0640196
6	С	1.4405061	-3.6897888	0.171304
7	С	-2.8530206	-3.6627077	0.1637051
8	С	2.8536342	-3.6622765	0.1637779
9	С	1.4008074	-6.1104163	0.6455988
10	С	0.7112402	-7.2622702	0.8712648
11	C	-0.7100756	-7.262386	0.8712403
12	С	-1.3998212	-6.1106432	0.6455542
13	С	4.0666757	-3.6189471	0.152335
14	С	-4.0660634	-3.6194518	0.1521663
15	Ν	-1.4073295	-1.3528443	-0.2832274
16	N	1.4075696	-1.3526194	-0.2832777
17	С	0.7266841	-0.2366105	-0.4996456
18	С	-0.7266323	-0.2367242	-0.499599
19	С	-1.3930177	1.0013808	-0.7386378
20	С	-0.7066349	2.16788	-0.9646453
21	С	0.7062615	2.1679866	-0.9647261

	22	С	1.3928518	1.0015963	-0.7387778
	23	С	1.707049	3.2720922	-1.1789542
	24	N	2.9576159	2.6658316	-1.0599921
	25	С	2.8662481	1.2987543	-0.7961191
	26	С	-2.8664679	1.2983092	-0.7957874
	27	Ν	-2.9580796	2.6653531	-1.0597468
	28	С	-1.7076202	3.2718311	-1.1787473
	29	0	-1.5242185	4.4378545	-1.4103753
	30	0	-3.8080667	0.5598129	-0.6577914
	31	0	1.5234367	4.4381031	-1.4104797
	32	0	3.8079792	0.5604277	-0.6581219
	33	Si	5.8952976	-3.3904124	0.0976353
	34	С	6.7115282	-4.9025702	0.8594506
	35	С	6.3072762	-1.8398757	1.0681156
	36	С	6.4002809	-3.2053533	-1.7016297
	37	Si	-5.8946762	-3.3908972	0.0972912
	38	С	-6.3069008	-1.8414166	1.0693661
	39	С	-6.7110601	-4.9038965	0.8572643
	40	С	-6.3992297	-3.2038083	-1.7018784
	41	С	8.4265097	6.623893	2.4231791
	42	С	7.9020607	6.0418191	1.1119881
	43	С	6.5790395	5.2920947	1.2705552
	44	С	6.0475684	4.7063144	-0.0378095
	45	С	4.7252996	3.9581202	0.1285933
	46	С	4.2179267	3.3838673	-1.1944755
	47	С	-8.4276696	6.6224649	2.4234079
	48	С	-7.9031235	6.0404682	1.1122214
	49	С	-6.5799588	5.2909971	1.2707881
	50	С	-6.0483915	4.7052928	-0.0375717
	51	С	-4.7259811	3.9573489	0.1288306
	52	С	-4.2185195	3.3831618	-1.1942326
	53	Н	2.4818503	-6.1041923	0.6446891
	54	Н	1.2452217	-8.1863501	1.0525005
	55	H	-1.2439128	-8.1865531	1.0524559
	56	Н	-2.480865	-6.104593	0.6446088
	57	Н	6.4572828	-5.8108936	0.3088792
	58	Н	7.7997713	-4.7998342	0.8492683
	59	Н	6.3989691	-5.0403448	1.8967266
	60	Н	5.7754818	-0.9808567	0.6544426
	61	Н	7.3802711	-1.6331437	1.0313728
	62	H	6.0197163	-1.9422868	2.1166049
	63	Н	6.1328761	-4.0898885	-2.2832758
-	64	Н	5.9071785	-2.3425483	-2.1532501
	65	Н	7.4806586	-3.0606792	-1.7858361
	66	Н	-5.7750304	-0.9819573	0.6567035
I					1

COMMUNICATION

67	Н	-7.3798868	-1.6346486	1.0325791
68	Н	-6.0195938	-1.9449276	2.1178157
69	Н	-6.4566944	-5.8116089	0.3057421
70	Н	-7.7993017	-4.8011577	0.8469722
71	Н	-6.3987147	-5.0428145	1.8944525
72	Н	-5.9060384	-2.3404575	-2.1523577
73	Н	-6.1316423	-4.0876564	-2.2844831
74	Н	-7.4795918	-3.0590773	-1.7861877
75	Н	9.3705951	7.1519676	2.2755571
76	Н	7.7141791	7.3321771	2.8536733
77	Н	8.5980909	5.8383688	3.1634535
78	Н	8.6511454	5.364436	0.6882455
79	Н	7.7739473	6.8471586	0.3809447
80	Н	5.8289471	5.96973	1.6939834
81	Н	6.7066692	4.4859507	2.0020745
82	Н	6.7976728	4.0283484	-0.4607539
83	Н	5.9184225	5.5129799	-0.768258
84	Н	3.9669761	4.6326894	0.5361555
85	Н	4.84926	3.1416881	0.8459047
86	Н	4.9420149	2.6811458	-1.6078669
87	Н	4.0541272	4.1831352	-1.9179886
88	Н	-9.3718564	7.1503583	2.2757864
89	Н	-8.5990947	5.8369208	3.1636972
90	Н	-7.715469	7.3308912	2.853883
91	Н	-7.7751702	6.8458195	0.381163
92	Н	-8.6520841	5.3629359	0.6884981
93	Н	-6.7074281	4.4848425	2.0023237
94	Н	-5.82999	5.968782	1.6941956
95	Н	-5.919405	5.5119689	-0.7680365
96	Н	-6.7983734	4.0271783	-0.4604957
97	Н	-4.8497805	3.1409095	0.8461612
98	H	-3.967778	4.6320681	0.5363686
99	Н	-4.0548688	4.182445	-1.9177622
		1 0 10 100	0 000050	1 0070000

Energy and cartesian coordinates for 3a:

Total Energy = -2882.91176840 Hartree

No imaginary frequencies.

Table S4: Cartesian coordinates 3a.

Tag	Symbol	Х	Y	Z
1	С	-0.7048999	9.1602884	0.1322162
2	C	0.6985044	9.1607783	-0.132186
3	С	1.3797354	7.9910001	-0.2605806

4	С	0.7080929	6.73462	-0.1340459	
5	С	-0.7127956	6.7341239	0.1340733	
6	С	-1.3853145	7.9900348	0.2606091	
7	С	1.3729525	5.5268745	-0.2597616	
8	С	0.7115604	4.2918717	-0.134953	
9	С	-0.7145584	4.2913725	0.1349735	
10	С	-1.3768122	5.5259138	0.2597858	
11	С	1.4161938	3.0681753	-0.2684171	
12	С	0.7119694	1.8443828	-0.1345562	r
13	С	-0.7132603	1.843882	0.1345682	
14	С	-1.41834	3.0671834	0.2684284	
15	N	1.3840554	0.6905807	-0.2601754	
16	С	0.7162982	-0.4427055	-0.1339302	
17	С	-0.7159748	-0.4432107	0.1339524	
18	N	-1.3845324	0.6896057	0.2601933	
19	С	1.3711246	-1.7059619	-0.2550272	
20	С	0.6966311	-2.8929087	-0.1294617	
21	С	-0.6945678	-2.8934018	0.1294975	
22	С	-1.369904	-1.7069323	0.2550584	
23	С	-1.6763072	-4.0190331	0.3169453	
24	N	-2.9070869	-3.4027387	0.5431501	
25	С	-2.8182837	-2.0104576	0.5252109	
26	С	2.8197205	-2.0084579	-0.525177	
27	N	2.9095121	-3.4006759	-0.5431117	
28	С	1.6791706	-4.0178429	-0.3169021	
29	0	1.496286	-5.2066017	-0.2941492	
30	0	-1.4925793	-5.2076616	0.2941921	
31	0	-3.7438708	-1.2598668	0.7013835	
32	0	3.7447756	-1.2572089	-0.7013388	
33	С	-2.8049976	3.0380801	0.5323411	
34	С	2.8028705	3.0400313	-0.5323297	
35	C	3.9949733	3.0006708	-0.7602841	
36	С	-3.9970775	2.9979486	0.7602836	
37	С	-9.0392647	-6.6416604	-2.5564548	
38	С	-8.2706744	-6.3147196	-1.277561	
39	С	-6.9722598	-5.5487786	-1.5325722	
40	С	-6.1967743	-5.2176498	-0.2572282	
41	С	-4.9009918	-4.4511724	-0.5204584	
42	С	-4.1459252	-4.13435	0.7707641	
43	С	9.04393	-6.6353468	2.5565012	
44	С	8.2751304	-6.3089111	1.2776042	
45	С	6.9761644	-5.5439063	1.5326172	
46	С	6.2004669	-5.2132872	0.2572699	
47	С	4.9041358	-4.4477385	0.5205011	
48	С	4.1488692	-4.1314085	-0.7707251	

	49	Si	-5.7919163	2.7632956	1.1080513	
	50	С	-6.677328	4.3963068	0.8192599	
	51	С	-5.9683547	2.2268198	2.8991142	
	52	С	-6.4308234	1.434945	-0.0508313	
	53	Si	5.789903	2.7668881	-1.1081619	
	54	С	6.6744374	4.4005019	-0.8200967	
	55	С	5.966431	2.2297904	-2.8990266	
	56	С	6.4296792	1.4393452	0.0511704	
	57	Н	-1.2243641	10.105077	0.2299211	
	58	Н	1.2173092	10.1059294	-0.2298898	
	59	Н	2.4441957	7.9898306	-0.4610328	
	60	Н	-2.4497741	7.9881222	0.4610602	
	61	Н	2.4361564	5.5219843	-0.4604396	
	62	Н	-2.4400126	5.5202801	0.4604616	
	63	Н	-9.9596698	-7.1875098	-2.3399515	
	64	Н	-9.3125271	-5.7316961	-3.0966319	
	65	Н	-8.4393739	-7.2575482	-3.2311534	
	66	Н	-8.0420887	-7.2424166	-0.7422875	
	67	Н	-8.9091159	-5.7282362	-0.6082602	
	68	Н	-7.2005745	-4.6202112	-2.0682057	
	69	Н	-6.3329224	-6.1355153	-2.201965	
	70	Н	-5.9666959	-6.1465566	0.2767538	
	71	Н	-6.8362523	-4.6308248	0.4120131	
	72	Н	-5.1234931	-3.5149457	-1.0404855	
	73	Н	-4.2509313	-5.037267	-1.1762871	
	74	Н	-3.881831	-5.0547937	1.2925045	
	75	Н	-4.7603534	-3.5220144	1.431491	
	76	Н	9.9647288	-7.1805311	2.3399966	
	77	Н	9.3165321	-5.725206	3.0967146	
	78	Н	8.4444664	-7.251686	3.2311675	
	79	Н	8.0472176	-7.2367528	0.7422945	
	80	H	8.9131655	-5.7219489	0.6083356	
	81	Н	7.2038061	-4.6151944	2.0682869	
	82	Н	6.3372333	-6.131122	2.2019777	
	83	Н	5.9710583	-6.14234	-0.2767461	
	84	Н	6.8395404	-4.6259868	-0.4119411	
	85	Н	5.1259631	-3.511371	1.0405631	
	86	Н	4.254479	-5.0343153	1.1762984	
_	87	Н	3.8854353	-5.0520217	-1.2925003	
	88	Н	4.7628768	-3.5186175	-1.4314207	
	89	H	-6.5519923	4.737348	-0.2106083	
	90	Н	-7.7489331	4.293244	1.0089051	
	91	Н	-6.2955181	5.1771765	1.4805817	
	92	Н	-5.4341264	1.2913166	3.0751374	
	93	Н	-7.0201648	2.0693168	3.1523968	

94	Н	-5.5667114	2.9785875	3.5815729
95	Н	-7.4858491	1.2246682	0.1443847
96	Н	-6.3359844	1.7421581	-1.09444
97	Н	-5.8640787	0.5113696	0.0821243
98	Н	6.5490809	4.7418311	0.2096742
99	Н	7.7460694	4.2979802	-1.0098831
100	Н	6.2920745	5.1809238	-1.4816266
101	Н	5.4326533	1.293946	-3.0746032
102	Н	7.0182926	2.0727133	-3.1523598
103	Н	5.5643333	2.9810759	-3.5817483
104	Н	7.4848627	1.2297444	-0.1439161
105	Н	6.3345601	1.7468111	1.0946793
106	Н	5.86359	0.5153316	-0.0815364

Energy and cartesian coordinates for ${\bf 4a}:$

Total Energy = -3082.06806549 Hartree

No imaginary frequencies.

Table S5: Cartesian coordinates 4a.

Tag	Symbol	Х	Y	Z
1	С	-0.7110375	4.782355	0.1328502
2	С	0.7157244	4.7813478	-0.1404463
3	С	1.4489797	3.5871631	-0.2794503
4	С	0.7178336	2.3736084	-0.1369755
5	С	-0.715047	2.3746522	0.1357439
6	С	-1.4453895	3.5891728	0.274172
7	Ν	-1.219322	6.0305927	0.2290769
8	S	0.0034279	7.0347704	-0.0062103
9	N	1.2251925	6.0288945	-0.239355
10	Ν	1.3830149	1.2165666	-0.2605938
11	C	0.7154577	0.0836412	-0.1325702
12	С	-0.715142	0.0847338	0.13643
13	Ν	-1.3813695	1.2186409	0.2623605
14	С	1.3698742	-1.180048	-0.2540272
15	С	0.6936456	-2.3653778	-0.1284056
16	С	-0.6975649	-2.3642709	0.1316163
17	С	-1.371533	-1.1778247	0.2586024
18	С	-1.6815104	-3.4895307	0.3189986
19	N	-2.9105043	-2.8716476	0.5471368
20	С	-2.8202241	-1.4794038	0.530543
21	С	2.8182062	-1.4841417	-0.5250974
22	Ν	2.9054674	-2.8765446	-0.545145
23	С	1.6752832	-3.4923017	-0.3177787
24	С	-2.8265477	3.5881631	0.5381108

25	С	-4.018671	3.5710913	0.7666097	
26	С	2.8297213	3.5849789	-0.5456449	
27	С	4.0213453	3.5685962	-0.7767911	
28	0	-1.4977564	-4.6778175	0.2942143	
29	0	-3.7430544	-0.7266466	0.7087333	
30	0	1.4890838	-4.680251	-0.294914	
31	0	3.743051	-0.7329918	-0.6994286	
32	Si	-5.8226081	3.4200327	1.1207122	
33	С	-6.0150271	3.0173713	2.9452064	
34	С	-6.4966378	2.0309181	0.0561966	
35	С	-6.6499309	5.0553555	0.711244	
36	Si	5.8277049	3.4230909	-1.1208522	
37	С	6.4244678	5.0411634	-1.8641164	
38	С	6.0671605	1.996947	-2.3146539	
39	С	6.6948309	3.0833033	0.5104371	
40	С	-9.0546821	-6.0834444	-2.5563216	
41	С	-8.2837649	-5.7634757	-1.2770889	
42	С	-6.9836933	-4.9999203	-1.5308079	
43	С	-6.2058483	-4.675761	-0.2551056	
44	С	-4.9085126	-3.9114902	-0.5172654	
45	С	-4.1510078	-3.6016515	0.7741511	
46	С	9.0482752	-6.1035866	2.5458823	
47	С	8.2755975	-5.7810979	1.2683486	
48	С	6.9780514	-5.0142162	1.5249492	
49	С	6.1984532	-4.6877382	0.2509107	
50	С	4.9034741	-3.9203864	0.5157122	
51	С	4.1442794	-3.6087458	-0.7742627	
52	Н	-5.5904791	3.8039294	3.5722157	
53	Н	-7.0715639	2.9121771	3.2057447	
54	Н	-5.5113805	2.0806455	3.1911258	
55	н	-6.3989248	2.2656316	-1.0058149	
56	H	-7.5557044	1.8601932	0.2672812	
57	H	-5.9524976	1.1038704	0.2470665	
58	Н	-6.2336036	5.8689799	1.3086905	
59	Н	-6.5165204	5.312273	-0.3415997	
60	Н	-7.7234736	5.0059565	0.911353	
 61	H	6.254808	5.8759906	-1.1810939	
62	H	7.4950032	4.9953152	-2.0805383	
63	Н	5.9029061	5.2622655	-2.797589	
64	Н	5.641109	1.0785874	-1.9060189	
65	H	7.1298201	1.8289733	-2.5092628	
66	Н	5.5780146	2.1974184	-3.2701966	
67	Н	6.5288774	3.8927358	1.2241128	
68	Н	6.3298315	2.1574994	0.9590823	
69	Н	7.7728797	2.9837064	0.3584759	

COMMUNICATION

70	Н	-9.9762162	-6.6276999	-2.3407556
71	Н	-9.3262662	-5.1707071	-3.0926269
72	Н	-8.4572519	-6.6983207	-3.2341101
73	Н	-8.0569296	-6.6938114	-0.7456763
74	Н	-8.9198468	-5.1778959	-0.6047839
75	Н	-7.2102791	-4.0686901	-2.062516
76	Н	-6.3467041	-5.5857288	-2.2032466
77	Н	-5.9773897	-5.607279	0.2749735
78	Н	-6.8429212	-4.089854	0.417173
79	Н	-5.1295219	-2.9726902	-1.0332527
80	Н	-4.2609085	-4.4966842	-1.1763484
81	Н	-3.8877257	-4.5244531	1.2920091
82	Н	-4.7627575	-2.990419	1.4383125
83	Н	9.9678958	-6.6502325	2.3282172
84	Н	9.3234295	-5.1917906	3.0819751
85	Н	8.4505959	-6.7171123	3.2246717
86	Н	8.045193	-6.7106311	0.7370786
87	Н	8.9118531	-5.1969976	0.5949212
88	Н	7.2081651	-4.0837338	2.0564899
89	Н	6.3409242	-5.5985289	2.1985538
90	Н	5.9666303	-5.6185533	-0.2789293
91	Н	6.8356154	-4.1033032	-0.4225646
92	Н	5.1276599	-2.982086	1.0312721
93	Н	4.2557869	-4.5040645	1.1760623
94	Н	3.8782499	-4.5309371	-1.2917868
95	Н	4.7561378	-2.9987573	-1.4394562

Energy and cartesian coordinates for 5a:

Total Energy = -2914.99176313 Hartree

No imaginary frequencies.

Table S6: Cartesian coordinates 5a.

Tag	Symbol	X	Y	Z
1	C	0.7275597	4.3171816	0.1835591
2	С	-0.7225276	4.318064	0.1835311
3	С	-1.4502291	3.1173057	-0.0101388
4	С	-0.7248449	1.9110942	-0.2031517
5	С	0.7269864	1.9102133	-0.2031172
6	С	1.4538183	3.115543	-0.0100671
7	С	-2.8584622	3.1050555	-0.0141162
8	С	2.8620356	3.1016224	-0.0139867
9	Ν	1.4127314	5.4609681	0.3679759
10	C	0.7297863	6.5773279	0.5482906
11	С	-0.7220139	6.5782132	0.5482611
	Tag 1 2 3 4 5 6 7 8 9 10 11	Tag Symbol 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 N 10 C 11 C	TagSymbolX1C0.72755972C-0.72252763C-1.45022914C-0.72484495C0.72698646C1.45381837C-2.85846228C2.86203569N1.412731410C0.729786311C-0.7220139	TagSymbolXY1C0.72755974.31718162C-0.72252764.3180643C-1.45022913.11730574C-0.72484491.91109425C0.72698641.91021336C1.45381833.1155437C-2.85846223.10505558C2.86203563.10162249N1.41273145.460968110C0.72978636.577327911C-0.72201396.5782132

12	N	-1.4063142	5.4626845	0.3679243
13	С	4.074521	3.0459115	-0.0255923
14	С	-4.0710114	3.0507371	-0.0257734
15	N	-1.4073071	0.7712863	-0.385497
16	N	1.4080811	0.7695871	-0.3854484
17	С	0.7279345	-0.3489693	-0.5639115
18	С	-0.728506	-0.348091	-0.5639278
19	С	-1.3954928	-1.5954771	-0.7619292
20	С	-0.7093528	-2.7672303	-0.9482079
21	С	0.7058674	-2.7680845	-0.9481932
22	С	1.3934148	-1.5971544	-0.7619099
23	С	1.7054496	-3.880798	-1.1254713
24	N	2.9564317	-3.272832	-1.0276531
25	С	2.8668634	-1.8974468	-0.8098648
26	С	-2.8692949	-1.894001	-0.8098499
27	N	-2.9605165	-3.2692828	-1.0276448
28	С	-1.7102647	-3.8787373	-1.1255139
29	0	-1.5249637	-5.0515542	-1.3174886
30	0	-3.8100836	-1.1508132	-0.6974153
31	0	1.5187503	-5.0533961	-1.3174216
32	0	3.8085447	-1.155392	-0.6974128
33	С	1.4222491	7.8124177	0.7479703
34	C	0.7213013	8.9615589	0.9335795
35	C	-0.7106066	8.9624341	0.9335526
36	C	-1.4129617	7.8141541	0.7479206
37	Si	5,9047681	2.8442405	-0.0704578
38	С	6.6971316	4.3861897	0.6541734
39	C	6.4149759	2.6210327	-1.8646186
40	C	6.3408445	1.3235056	0.9375142
41	Si	-5.9015054	2.8512281	-0.0707553
42	С	-6.4120296	2.6302149	-1.865096
43	С	-6.692041	4.3934669	0.6552654
44	С	-6.3393008	1.3301761	0.9359901
45	C	8.4295344	-7.1042885	2.5879482
46	C	7.9026046	-6.570989	1.2571398
47	C	6.5804455	-5.8148604	1.3906705
48	C	6.0467309	-5.2773959	0.0626114
49	C	4.7251759	-4.5227671	0.2040168
50	Ċ	4.2162158	-3.9963504	-1.1381677
51	C	-8.4368692	-7.0954426	2.5885787
52	C	-7.9097677	-6.5623967	1.2577368
53	C	-6.5868127	-5.8076257	1.3910667
54	C	-6.05287	-5.2704827	0.06297
55	C	-4.7305011	-4.5172468	0.2042003
56	C	-4.2211432	-3.9913495	-1.1380382
			0.0010.00	

57	Н	2.5037792	7.7886023	0.7445174	
58	Н	1.2445764	9.8971508	1.0849438	
59	Н	-1.2327432	9.8986648	1.0849003	
60	Н	-2.4945198	7.7916696	0.7444344	
61	Н	6.3817373	4.5425556	1.6878406	
62	Н	7.7870783	4.3027491	0.6444102	
63	Н	6.4228527	5.2755699	0.0830519	
64	Н	5.9368147	1.7392451	-2.2951846	
65	Н	7.4977585	2.4923409	-1.9440321	,
66	Н	6.1334389	3.4864395	-2.4678999	
67	Н	6.0510858	1.4471003	1.9831387	
68	Н	5.8229606	0.4460072	0.5455014	
69	Н	7.4169892	1.1328193	0.9063405	
70	Н	-5.9349835	1.7482253	-2.2964816	
71	Н	-7.4949738	2.5029473	-1.944585	
72	Н	-6.1294357	3.4958174	-2.4676037	
73	Н	-6.376324	4.5485753	1.689023	
74	Н	-7.7820842	4.3113017	0.645575	
75	Н	-6.4168091	5.2830229	0.0848741	
76	Н	-5.8220244	0.4524715	0.5436393	
77	Н	-6.0498748	1.4528802	1.9818134	
78	Н	-7.4156003	1.140449	0.9042564	
79	Н	9.3729626	-7.6381367	2.4579952	
80	Н	8.6032279	-6.2918937	3.2981011	
81	Н	7.7177104	-7.7955863	3.0460103	
82	Н	7.7723261	-7.4028608	0.5568423	
83	Н	8.6511837	-5.9103674	0.806908	
84	Н	6.710242	-4.9823123	2.0915596	
85	Н	5.8307662	-6.4757961	1.8404095	
86	Н	5.915708	-6.1103206	-0.6373836	
87	Н	6.7963071	-4.6158471	-0.3863986	
88	H	4.8508783	-3.6810112	0.8910851	
89	Н	3.9670985	-5.1816667	0.6369153	
90	ΛH	4.0505593	-4.8208682	-1.8322867	
91	Н	4.940052	-3.3094516	-1.5777394	
92	Н	-9.3808651	-7.6283216	2.4587728	
93	Н	-7.7256104	-7.7875461	3.0463029	
94	Н	-8.6095555	-6.2830212	3.2989466	
95	Н	-8.6578052	-5.9009313	0.8078443	
96	Н	-7.7805117	-7.3942538	0.5572322	
97	H	-5.8376925	-6.4693996	1.8405054	
98	Н	-6.715589	-4.9750685	2.0921329	
99	Н	-6.8018686	-4.6080868	-0.3857537	
100	Н	-5.9228662	-6.1034262	-0.6371934	
101	Н	-3.9730638	-5.1769714	0.6369656	
			A CONTRACT OF		

COMMUNICATION

102	Н	-4.8552053	-3.6753871	0.8913217
103	Н	-4.9442544	-3.3036291	-1.577517
104	Н	-4.0564956	-4.816048	-1.8321826

6) FMO Distribution

Figure S6. Distribution of FMOs of TMS-substituted model compounds calculated using Gaussian16 B3LYP/def2SVP//Gaussian16 B3LYP/def2TZVP, TIPS-substituents were replaced with TMS groups.

7) NICS(1)zz calculations

Figure S7. NICS(1)zz values calculated using Gaussian16 B3LYP/def2SVP//Gaussian16 B3LYP/def2TZVP, TIPS-substituents were replaced with TMS groups. Cartesian axes were adjusted from the geometry optimization reported in chapter 5) with Avogadro 1.2.0 to orient the Z-axis perpendicular to the acene XY-plane.

COMMUNICATION

8) AICD Calculations

Figure S9: AICD plot for 2a.

Figure S13. ¹H NMR spectrum (400.3 MHz, CDCl₃, 295 K) of 1-H₂.

Figure S14. $^{\rm 13}{\rm C}$ NMR spectrum (100.7 MHz, CDCl_3, 295 K) of 1-H_2.

Figure S15. ¹H NMR spectrum (600.2 MHz, CDCl₃, 295 K) of 1a.

COMMUNICATION

Figure S16. $^{\rm 13}C$ NMR spectrum (150.9 MHz, CDCl_3, 295 K) of 1a.

Figure S17 ^1H NMR spectrum (600.2 MHz, CDCl₃, 295 K) of $\text{2-H}_2.$

Figure S18. ¹³C NMR spectrum (150.9 MHz, CDCl₃, 295 K) of 2-H₂.

Figure S19. ¹H NMR spectrum (600.2 MHz, CDCI₃, 295 K) of 2a.

Figure S3. ¹³C NMR spectrum (150.9 MHz, CDCl₃, 295 K) of 2a.

Figure S21. ¹H NMR spectrum (600.2 MHz, CDCl₃, 295 K) of 3-H₂.

COMMUNICATION

Figure S422. ¹³C NMR spectrum (150.9 MHz, CDCl₃, 295 K) of 3-H₂.

Figure S23. ¹H NMR spectrum (600.2 MHz, CDCI₃, 295 K) of 3a.

Figure S24. ^{13}C NMR spectrum (150.9 MHz, CDCl₃, 295 K) of 3a.

Figure S25. ¹H NMR spectrum (600.2 MHz, CDCl₃, 295 K) of 4-H₂.

Figure S26. ¹³C NMR spectrum (150.9 MHz, CDCl₃, 295 K) of 4-H₂.

Figure S27. ¹H NMR spectrum (300.5 MHz, CDCl₃, 295 K) of 4a.

Figure S28. ¹³C NMR spectrum (150.9 MHz, CDCl₃, 295 K) of 4a.

COMMUNICATION

Figure S29. ¹H NMR spectrum (300.5 MHz, CDCl₃, 300 K) of 5-H₂.

Figure S30. ¹³C NMR spectrum (150.9 MHz, CDCl₃, 295 K) of 5-H₂.

Figure S531. ¹H NMR spectrum (600.2 MHz, CD₂Cl₂, 295 K) of 5a.

Figure S32. ¹³C NMR spectrum (150.9 MHz, CD₂Cl₂, 295 K) of 5a.

Figure S633. ¹H NMR spectrum (600.2 MHz, CD₂Cl₂, 295 K) of 12-H₄.

Figure S34. ^{13}C NMR spectrum (150.9 MHz, CD_2Cl_2, 295 K) of 12-H_4.

Figure S35. ¹H NMR spectrum (600.2 MHz, CD₂Cl₂, 295 K) of 13.

Figure S36. ¹³C NMR spectrum (150.9 MHz, CD₂Cl₂, 295 K) of 13.

10) Infrared Spectroscopy

Figure S37. IR spectrum of 1-H₂.

Figure S38. IR spectrum of 1a.

Figure S39. IR spectrum of 2-H₂.

Figure S41. IR spectrum of 3-H₂.

Figure S42. IR spectrum of 3a.

Figure S44. IR spectrum of 4a.

Figure S45. IR spectrum of 5-H₂.

COMMUNICATION

Figure S47. IR spectrum of 12-H₄.

Figure S48. IR spectrum of 13.

11) HRMS Spectra

Figure S50: HRMS Spectrum of 1a.

Spectrum Display Report

8/16/2019

printed:

11:13:35 AM

Page 1 of 1

Bruker Compass DataAnalysis 4.3

COMMUNICATION

Figure S51: HRMS Spectrum of 2-H₂.

Figure S527: HRMS Spectrum of 2a.

SmartFormula

Formula	Mass	Error	mSigma	DblEq	N rule	Electron
						Configuration
C 58 H 76 N 4 O 4 Si 2	948.5400	0.4355	69.2529	25.00	ok	odd

and Stof / 12015 Kalit PEG 1000

Figure S53: HRMS Spectrum of 3-H₂ and attached HRMS Value.

Figure S54: HRMS Spectrum of 3a.

COMMUNICATION

Figure S56: HRMS Spectrum of 4a.

COMMUNICATION

Figure S58: HRMS Spectrum of 5a.

COMMUNICATION

Figure S60: HRMS Spectrum of 13.

12) Crystallographic Data

Table S7. Crystal data and structure of 2a.

CCDC: Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	2080832 mel2 C ₅₄ H ₇₂ N ₄ O ₄ Si ₂ 897.33 200(2) K 1.54178 Å trigonal P3 ₂ 3	
Unit cell dimensions	a = 22.6826(14) Å	α = 90 deg.
	b = 22.6826(14) Å	$\beta = 90 \text{ deg.}$
Malana	c = 8.7800(7) A	γ = 120 deg.
Volume	$3912.1(6) A^{3}$	
Absorption coofficient	1.14 g/cm^2	
Absorption coefficient	0.90 mm	
		mm ³
Crystal colour	0.141 X 0.021 X 0.021	11111-
Theta range for data collection	3 9 to 53 4 deg	
Index ranges	-23 < h < 23 $-23 < h < 23$ $-23 < k < 23$	5<1<9
Beflections collected	18747	02120
Independent reflections	4432 (R(int) $- 0.1362$)	
Observed reflections	$3094 (l > 2\sigma(l))$	
Absorption correction	Semi-empirical from e	quivalents
Max, and min, transmission	1.39 and 0.76	quiraiente
Refinement method	Full-matrix least-square	res on F ²
Data/restraints/parameters	4432 / 498 / 592	
Goodness-of-fit on F ²	1.17	
Final R indices (I>2sigma(I))	R1 = 0.069, wR2 = 0.7	129
Absolute structure parameter	0.22(11)	
Largest diff. peak and hole	0.37 and -0.31 eÅ ⁻³	

Table S8. Crystal data and structure of $3-H_2$.

CCDC:	2080833
Identification code	mel4sq
Empirical formula	C ₅₈ H ₇₆ N ₄ O ₄ Si ₂
Formula weight	949.40
Temperature	200(2) K
Wavelength	1.54178 Å
Crystal system	triclinic
Space group	P $\overline{1}$
Z	2
Unit cell dimensions	a = 12.4181(10) Å α = 106.780(5) deg.
Volume Density (calculated) Absorption coefficient Crystal shape Crystal size Crystal colour Theta range for data collection Index ranges Reflections collected	$\begin{array}{lll} b = 16.2442(12) \beta = 100.328(6) \mbox{ deg.} \\ c = 17.1559(11) \gamma = 105.110(6) \mbox{ deg.} \\ 3075.1(4) \Lambda^3 \\ 1.02 \mbox{ g/cm}^3 \\ 0.85 \mbox{ mm}^1 \\ brick \\ 0.170 0.035 0.031 \mbox{ mm}^3 \\ orange \\ 3.0 \mbox{ to } 60.0 \mbox{ deg.} \\ -13 \leq h \leq 12, \ -18 \leq k \leq 15, \ -18 \leq l \leq 19 \\ 23780 \end{array}$
Independent reflections	9042 (R(int) = 0.0625)
Observed reflections	4643 (I > $2\sigma(I)$)
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.59 and 0.62
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	9042 / 2003 / 727
Goodness-of-fit on F ²	1.02
Final R indices (I>2sigma(I))	R1 = 0.078, wR2 = 0.199
Largest diff. peak and hole	0.39 and -0.29 eÅ ⁻³

13) References

- [S1] H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515.
- [S2] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Wallingford, *CT*, **2016**.
- [S3] S. M. Luo, K. A. Stellmach, S. M. Ikuzwe, D. D. Cao, J. Org. Chem. 2019, 84, 10362-10370.
- [S4] B. D. Lindner, J. U. Engelhart, M. Märken, O. Tverskoy, A. L. Appleton, F. Rominger, K. I. Hardcastle, M. Enders, U. H. F. Bunz, *Chem. Eur. J.* **2012**, *18*, 4627-4633.
- [S5] S. Miao, S. M. Brombosz, P. v. R. Schleyer, J. I. Wu, S. Barlow, S. R. Marder, K. I. Hardcastle, U. H. F. Bunz, *J. Am. Chem. Soc.* **2008**, *130*, 7339-7344.
- [S6] A. L. Appleton, S. M. Brombosz, S. Barlow, J. S. Sears, J.-L. Bredas, S. R. Marder, U. H. F. Bunz, Nat. Commun. 2010, 1, 91.
- [S7] B. D. Lindner, J. U. Engelhart, O. Tverskoy, A. L. Appleton, F. Rominger, A. Peters, H.-J. Himmel, U. H. F. Bunz, Angew. Chem. Int. Ed. 2011, 50, 8588-8591; Angew. Chem. 2011, 123, 8747-8750.
- [S8] C. An, X. Guo, M. Baumgarten, *Cryst. Growth Des.* **2015**, *15*, 5240-5245.
- [S9] D. Xia, X. Guo, L. Chen, M. Baumgarten, A. Keerthi, K. Müllen, Angew. Chem. Int. Ed. 2016, 55, 941-944; Angew. Chem. 2016, 128, 953-956.
- [S10] C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale, G. C. Bazan, Adv. Mater. 2011, 23, 2367-2371.
- [S11] P. Biegger, S. Stolz, S. N. Intorp, Y. Zhang, J. U. Engelhart, F. Rominger, K. I. Hardcastle, U. Lemmer, X. Qian, M. Hamburger, U. H. F. Bunz, *J. Org. Chem.* 2015, *80*, 582-589.
- [S12] B. D. Lindner, F. Paulus, A. L. Appleton, M. Schaffroth, J. U. Engelhart, K. M. Schelkle, O. Tverskoy, F. Rominger, M. Hamburger, U. H. F. Bunz, J. Mater. Chem. C 2014, 2, 9609-9612.
- [S13] S. Miao, A. L. Appleton, N. Berger, S. Barlow, S. R. Marder, K. I. Hardcastle, U. H. F. Bunz, *Chem. Eur. J.* 2009, 15, 4990-4993.