
 

 
Supplementary Materials for 

 
A paradigm shift fully self-powered long-distance wireless sensing  

solution enabled by discharge-induced displacement current 
 

Haoyu Wang, Jiaqi Wang, Kuanming Yao, Jingjing Fu, Xin Xia, Ruirui Zhang, Jiyu Li, Guoqiang Xu, 
Lingyun Wang, Jingchao Yang, Jie Lai, Yuan Dai*, Zhengyou Zhang, Anyin Li, Yuyan Zhu,  

Xinge Yu, Zhong Lin Wang*, Yunlong Zi* 
 

*Corresponding author. Email: jessiedai@tencent.com (Y.D.); zhong.wang@mse.gatech.edu (Z.L.W.);  
ylzi@cuhk.edu.hk (Y.Z.) 

 
Published 22 September 2021, Sci. Adv. 7, eabi6751 (2021) 

DOI: 10.1126/sciadv.abi6751 
 

The PDF file includes: 
 

Figs. S1 to S13 
Table S1 
Notes S1 to S3 
Legends for movies S1 to S5 
References 

 
Other Supplementary Material for this manuscript includes the following: 
 

Movies S1 to S5 



 

 

Fig. S1. The whole process of breakdown discharge. 

 

 

Fig. S2. The structure, fabrication process, and working process of the SWISE. (A) 

The structure and photograph of the SWISE, where the gap structure and sealed cavity 

was shown by microscope. (B) The non-lithography fabrication process of the SWISE. 

The electron beam evaporation process was used to fabricate the metal layer on the FEP 

layer. (C) The flexible SWISE has the characteristics of (I) thin, (II) small, and (III) 

deformable. (D) The working process of the SWISE.  

 

 



 

Fig. S3. The simultaneously measurement result of the transmitted signal (dark 

blue) and the current in the SWISE (dark orange). 

 

 

Fig. S4. The illustration of FS-TENG. (a) The structure of the FS-TENG. (b) The 

output characteristic of FS-TENG with a load of 10 pF capacitor in zero pressure force 

condition.  

 

 

Fig. S5. The photograph of the group of breakdown dischargers. Photo Credit: 

Haoyu Wang, The Chinese University of Hong Kong. 



 

 

Fig. S6. The measured SWISE-induced signal of ten consecutive sliding tests in 

time domain. 

 

 

Fig. S7. The measured SWISE-induced signal of ten consecutive sliding tests in 

frequency domain. 

 



 

Fig. S8. The systematic study of the SWISE-induced signal. (A) The received signal 

with different gap distances between electrodes of breakdown discharger in frequency 

domain. (B) The received signal with different voltage drops on the breakdown 

discharger in frequency domain. (C) The relationship between the peak-to-peak voltage 

of the received signal and the voltage drops on breakdown discharger. (D) (E) The 

received signal with different motion directions in FS-TENG in frequency domain and 

time domain. 

 



 

Fig. S9. The long-distance experiment platform of SWISE. Photo Credit: Haoyu 

Wang, The Chinese University of Hong Kong. 

 



 

Fig. S10. The process flow of the gas environment experiment. 

 



 

Fig. S11. 2D plots of the breakdown discharger outputs responding to different gas 

environments (as listed in the table inset of Fig. 3C). environments (as listed in the table inset of Fig. 3C). 



 

 

Fig. S12. Schematic diagram of the demonstration systems. (A) The electronic skin 

motion sensing system. (B) The self-powered wireless soft keyboard. 

 

 

Fig. S13. The adjustable of the amplitude and spectrum of the wireless signal 

generated by the SWISE. (A) Driven by the identical mechanical motion, the larger 

gap distance can generate stronger signal with larger amplitude. (B) By adding the metal 

film or positioning the SWISE surrounded by external conductors, the signal spectrum 

changed, where the LC resonant signal was filtered by band block filter to highlight the 

signal.  



 

Table S1. The major influential factors to the transmitted signal. 

Influential factor Symbol 

Voltage drop on breakdown discharger U 

Gap distance between electrodes of 

breakdown discharger 

d 

Motion direction in FS-TENG - 

Wire length connecting FS-TENG and 

breakdown discharger 

l 

Space conductor distribution - 

Distance between the breakdown discharger 

and the receiver (transmission distance) 

D 

Gas type N 

Gas pressure P 

Temperature T 

Humidity H 

 



 

Note S1. The details of charged particles induced wireless EM signal. 

The charged particles with an accelerated motion can generate the electric field E 

and magnetic field B as described below (43):  
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where the charge, vacuum permittivity, light speed, direction vector of the charged 

particle and distance between the observation point and charged particle can be denoted 

as q, 0 , c, er and r, respectively. Therefore, the varying electric and magnetic fields 

can generate EM waves for omnidirectional propagation which were eventually 

received by the receiving part. 

 

Note S2. The detailed different cases in Fig. 2H. 

Case 1: The two wires were placed above the optical platform (around 6 cm) separately, 

with the distance around 20 cm. 

Case 2: The two wires got closer with each other than case 1, with the distance around 

10 cm. 

Case 3: The two wires got closer with each other than case 2, with the distance around 

5 cm. 

Case 4: One wire was overlapped with another one. 

Case 5: The two wires twisted with each other. 

Case 6: The two wires were directly placed on the optical platform. 

 

Note S3. The detailed model of the electrical model of the SWISE. 

The SWISE can be simply concluded to an electrical model, as shown in Fig. 2J, 

where the Vi presented the output voltage of TENG, while Ci presented the capacitance 

of TENG. R, C and L presented the transmit system’s resistor, capacitor and inductor, 



respectively. The transmit system and spatial conductors’ distribution nearby existed 

resistor, capacitor, inductor, parasitic capacitor and parasitic inductor, which can be 

considered as a second-order system. Similarly, the receiver system can also be 

considered as a second-order system with a load of oscilloscope.  

Then, the breakdown signal has the relationship with 
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where i is the current passing through the gap, tr is the pulse current rise time, τ is the 

constant which is relevant to the medium characteristic, P is the gas pressure, U is the 

applied voltage, d is the gap distance, G(s) is the transmit system characteristic, ABD is 

the amplitude of the discharge-induced signal, and fBD is the frequency of the discharge-

induced signal (44-46). 

 

Movie S1. The detection of the sub-finger-nail size SWISE’s signal. 

Movie S2. The long-distance detection of SWISE’s signal. 

Movie S3. The SWISE based self-powered wireless motion sensing electronic skin 

system. 

Movie S4. The SWISE based self-powered wireless soft keyboard system. 

Movie S5. The SWISE based smart wristband system. 
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