
 

 

 

Peer Review File 

Manuscript Title: Rare variant contribution to human disease in 281,104 UK Biobank exomes 

Editorial Notes:  

Reviewer Comments & Author Rebuttals 

Reviewer Reports on the Initial Version: 

Referee #1 (Remarks to the Author): 
 
This is an important paper with very interesting findings for the genetics of human disease. It is 
the largest yet rare variant 'protein coding variant' wide association study (or exWAS as the 
authors describe it) for very many multiple phenotypes. With various other studies/analyses 
following on from this. 
 
Previous manuscripts described the exome sequencing and analyses of the first 50k of UK BioBank 
(refs 11,12 and the authors nicely describe the differences in Supp Methods page 8). Now the 
authors analyse ~250k and show there is much more to find. 
 
While this may well eventually get published in Nature, it is not there yet and has multiple flaws. 
 
Major Comments: 
1. There is an enormous amount of multiple testing, inevitable with the study of 17361 binary and 
1419 quant phenotypes * protein coding variants. The authors do attempt some control for this 
e.g. with permutation methods. 
 
2. However REPLICATION in an independent dataset is the gold standard for GWAS, and for its 
friend here protein coding-exWAS. This must be done for at least some of the results. 
- There are already 500+k exomes sequenced from UK Biobank (being presented for a few traits 
at ASHG 2020 last month). Whilst I do not know the deal for who writes which paper from which 
company for UKBB sequencing, it should be possible to look at doing some limited replication in 
the next 250k! 
- There are other cohorts with sequencing e.g. DeCode. 
- There are other cohorts with chip data and imputation e.g. Finngen, MVP that might enable 
testing of low freq variants (TOPMED will impute to MAF 0.01%) and traits. 
 
3. The association test used has not properly controlled for population/ethnic stratification. Yes, 
the authors have been careful to pick a very white European group based on genetics. But 
association tests MUST include principal components in the regression analyses. Recently groups 
have been using 20 PCs derived from PCA using common variants, and another 20 PCs derived 
from PCA just using rare variants. As far as I can see just a Fishers Exact Test was used here. 
 
As a consequence of 2 and 3 there are some spurious looking unbelievable odds ratios in Fig 1c. 
 
4. I would like to see a bigger analysis/table/supp table of 'known truths' for rare variant 
associations. Some of this is in Table1, Fig 1e. 
 
5. page 6 line 170. Most researchers are not very interested in common frequency PTV as these 
are all in olfactory genes etc (MacArthur et al Science 2012). Instead much more interested in rare 
PTV, please provide breakdowns for rare. 
 
 
Minor 



 

 

 

6. I am a bit sad that related individuals have been discarded. There are methods (e.g. bolt-lmm, 
gcta64, SAIGE/REGENIE) that will use these individuals. But what the authors have done is not 
incorrect, it has just lost a bit of power. Perhaps they can discuss this? Can they also state 
'predominantly unrelated' or some similar words, as they have gone down to 8% relatedness - 
there will be third cousins etc in their analysis. 
 
7. The various models in Supp Table 5 are quite carefully chosen. More discussion of this in the 
main paper please. 
 
8. I disagree re MAF >0.5% for microarray technology. this may be true for affymetrix UKBB 
genotypes but is not true for Illumina. please remove. also p17 lines 427,428 
 
Other comments 
- It is also a bit sad that only white people have been used. This gives a cleaner dataset. But does 
lose a lot of power that cross-ethnicity analysis brings. The authors do discuss this a bit in the 
Discussion, but this is a very topical subject. 
 
 
With best wishes and look forward to seeing a revised manuscript, David van Heel. 
 
 
Referee #2 (Remarks to the Author): 
 
Wang et al provide results from analyses of largest tranche of UK Biobank Exome Sequencing data 
to date. They provide two primary analyses after a general description of the dataset : variant and 
gene-level association tests for protein coding variation. This is primarily a descriptive paper 
providing the top association results from these analyses, but represent an enormous undertaking 
to perform several billion association tests. There don’t seem to be any technical faults with the 
manuscript and it provides a hugely important resource for research labs unable to process the 
UKB exome dataset on their own. However, I strongly hold that for publication of this manuscript 
in any journal, full summary statistics from all traits and genes should be made public. There is no 
barrier to this - there are no legitimate privacy concerns and the hosting burden is not major 
(about 20,000 files with no more than 10 columns and 20,000 rows). In the reporting summary 
that data availability is merely stated as the availability of raw UKB data. This does not provide 
any ability for independently validating and replicating these analyses. To give examples of other 
Nature publications - gnomAD hosts terabytes of data to aid the community and the INTERVAL 
study has made their summary statistics public. Researchers will no doubt want to know if their 
favorite gene had enough variants to be tested, and the p values for those tests, and the 
supplementary tables provided here, while useful, do not show the full extent of the analyses. That 
is my major concern with the manuscript. 
 
Major comments : 
 
• The number of genes with heterozygous and homozygous PTVs reported in the UKB exome 
dataset seems disparate than some literature numbers. In the UKB main paper on medRxiv 
(https://www.medrxiv.org/content/10.1101/2020.11.02.20222232v1), page 6 includes a 
discussion of the number of genes with PTVs. In Van Hout et al, with 50k individuals, there are 
17,718 and 789 genes with het and hom PTVs, respectively. In the results from 200k individuals, 
there are 18,011 and 1,492 genes with at least one het and hom PTV. In Wang et al, in 287k 
individuals, there are 18,011 and 3,752 genes with het and hom PTVs (based on 96% and 20% of 
18,762 genes evaluated, lines 168 and 170). 
 
It is striking that the number of genes harboring heterozygous PTVs is remarkably consistent 
between the 200k and 280k datasets, but Wang et al report over double the number of 
homozygous PTVs. The sample size is different (~100k more individuals in this dataset) and 



 

 

 

ancestry make-up might also be different. However this still shouldn’t account for doubling of 
number of genes with homozygous PTVs in mostly the same data. Can the authors report their 
own numbers for the European subset and clarify the discrepancy? Many of the variant and sample 
QC filters are standard practice, therefore it’s surprising such a large difference exists. From the 
methods section, I don’t see any clarity as to what would result in *more* hom PTVs per individual 
in this dataset. While the supplemental methods section laying out differences in the burden 
testing analyses between UKB papers is interesting, it does not get at this disparity. 
 
• Could the authors provide clarity on processing times and prices for the AstraZeneca CGR 
Bioinformatics pipeline? Running all associations seems like a gargantuan effort, and would be 
useful information to know approximate CPU cost and run-time to appreciate this. 
 
Related to this point, could the authors clarify reasoning for processing FASTQs vs starting from a 
functionally equivalent VCF? Most researchers reading this manuscript will be working off the UKB-
provided pVCF or plink files, and it is unclear how this dataset differs and how significant that 
difference is. 
 
• While the authors provided the percent of associations identified in the rare variant collapsing 
analysis that were not identified with the ExWAS, I wasn’t clear on the inverse relationship. 
Intuitively I’d expect virtually all associations identified via ExWAS to show up in the collapsing 
analysis - unless non-functional non-synonymous variant drown the signal. How many ExWAS 
significant associations were re-identified with the rare variant collapsing analysis? 
 
• The analysis of enrichment of approved drug targets needs a little more clarity. Prior publications 
showing the enrichment matched for phenotype similarity of the tested trait and the approved 
drug. Could the authors perform a similar analysis to add detail here? (especially given the github 
repository for King et al is relatively detailed : https://github.com/AbbVie-
ComputationalGenomics/genetic-evidence-approval) . 
 
At minimum it would be helpful to contextualize whether success of drug targets from 
ExWAS/collapsing analyses from exomes is more informative than GWAS or OMIM genes. 
 
• On line 178 the authors point to the methods section when stating “Adopting a p value threshold 
of 1 x 10-8…”. In the methods section for the ExWAS analysis on line 605, they simply state “we 
adopted a significance cutoff of 1 x 10-8” which hardly provides reasoning for the cutoff using 3 
models on 2 million variants and ~20,000 traits. Can the authors add reasoning for the p value 
cutoff threshold for the ExWAS? 
 
• Even thought there were three models in the ExWAS analysis, very little time was spent 
discussing results from the different models. For example, how many variants showing recessive 
effects also showed dominant effects? 
 
• I found the statement on line 192 “it is uncommon to observe both negatively and positively 
associated rare variants for a given gene-phenotype relationship” a bit severe. Breaking the 
function of a gene seems more probable than increasing its function with a PTV or missense 
variant. If looking at rare non-coding variation, does this same effect hold? At least one GTEx 
paper looking at expression outliers enriched for rare variants has shown when calling expression 
outliers, there are equal number of genes that are over-expresed and under-expressed in 
individuals attributable to underlying rare variants https://www.nature.com/articles/nature24267 
 
• I don’t follow why a synonymous model was not implemented for the collapsing analysis for each 
nonsynonymous allele frequency threshold. Different allele frequencies will have different error 
modes, and rare variants with higher allele frequencies are likely to include systematic errors that 
might potentially throw false positives. In SuppTable 5, there is only a synonymous variant model 
for MAF 0.05%, which is a driver of the p value threshold for the analysis. Why not implement a 



 

 

 

0.1% MAF, 5% MAF, 0.025% MAF and 0.005% MAF synonymous model (or at least the first two). 
 
• Could the authors compare rare variant burden collapsing results between the raredmg and 
raredmgmtr or the or flexnonsyn and flexnonsynmtr models? That is to say, the additional value of 
the MTR metric for burden test associations. They describe it’s use but mention nothing in the 
results on its value, which would be informative for researchers. 
 
• I find it weird to only provide the tail of the synonymous p value distributions and not the full 
distribution. Allowing full access to summary statistics would better allow evaluation of pvalue 
distributions and visualization of qq plots per trait (since most of the binary trait analyses are 
underpowered, I don’t think we’d expect a large overall lambda skew anyway). 
 
• Can the authors detail on their penetrance estimates beginning on line 302? They acknowledge 
the importance of comparable prevalence to accurately calculate penetrance, but is the prevalence 
of asthma and dermatitis in UKB comparable to population prevalence in the UK? There is a 
conflation of genetic effect size and accuracy of diagnoses in the argument, and the point made 
here was not clear to me. 
 
 
Minor points : 
 
• Line 87 –I think clinical genomics suffices, clinico-genomics isn’t’ quite a commonplace word. 
• On line 339 – demonstrable complementarity just sounds like a euphemism for disparity ϑ I think 
it’s ok to just say that. 
 
 
Referee #3 (Remarks to the Author): 
 
A. Summary of the key results 
 
In this work, Wang et al. leverage Whole-Exome Sequencing to perform single-point and collapsing 
rare variant analyses on 269,171 European participants of UK Biobank. They consider a wide 
variety of primary and derived phenotypes, both binary and quantitative, from the Biobank in a 
pheWAS setting. They also highlight one particular novel association between rare variants in 
HMCN1 and a lung function phenotype, where functional evidence from existing studies points 
towards putative regulatory mechanisms in pulmonary disease. 
 
B. Originality and significance: if not novel, please include reference 
 
The main value added of this article is the size of the cohort being studied. It is the first GWAS-
type paper to study such a large number of exomes, and therefore the first to be able to examine 
rare variants' effects on phenotypes in such detail. It builds upon existing papers [ref 11,12] for 
the methodology and approach taken. 
 
C. Data & methodology: validity of approach, quality of data, quality of presentation 
 
0. The methods used for alignment, variant calling and quality control are sound, given the 
extremely large sample sizes. The authors used a reasonable set of hard thresholds to filter low-
quality genotypes and positions. 
1. The association methodology, which uses Fisher's exact test for binary traits and a linear 
regression for quantitative traits, is quite simplistic (see D. below). The use of these unadjusted 
models should be justified extensively, ideally replaced, or complemented using sensitivity 
analyses. 
2. It would be useful to summarise what PHEASANT does in section 2. of the methods. I would 
also rephrase "we adopted a union mapping approach" into a more factual "we computed the 



 

 

 

union of cases across phenotypes" or similar. 
3. Section 6. of the methods describes sample filtering based on ethnicity, excluding all non-
European samples. While it is understood that this was done to alleviate the risk of spurious 
associations, (a) these samples could have been included had the authors chosen to adjust for 
ethnicity using a more complex model, (b) the authors themselves show these samples exhibit 
novel, specific and disease-relevant variants in Fig. 1g, and (c) excluding non-Europeans in the 
first paper to use the UKB WES data is not ideal. However, I do acknowledge that the cumulative 
proportion of non-Europeans does not exceed ~10%(Fig 1.f). 
4. The Data Availability statement does not state whether full exWAS and variant collapsing 
summary statistics will be publicly available. They should. Given the scope of the paper (phenome-
wide single-point exWAS and rare variant collapsing tests), and given the fact that it is the first 
such analysis of the UKB Exomes dataset, results should be disseminated widely, and results 
should be query-able by researchers, e.g through a searchable online portal. Variants contributing 
to every associated collapsing signal should be listed along with their single-variant effects. The 
presentation of association results, currently in the form of Table 1 (which feels more like a 
supplementary table) and ST6, could be improved (e.g., reporting only the strongest p-value for 
gene/phenotype pairs, improving phenotype descriptions, etc). 
 
D. Appropriate use of statistics and treatment of uncertainties 
 
0. The authors mention a Fisher's as the main association test for single-point analyses. This 
approach is historical and does not correct for well-documented sources of inflation/T1E. I 
understand the authors wished to include very low allele counts, however the overall impact of 
using an uncorrected method outweighs the single advantage of being able to include very rare 
variants in single-point testing. The reason variant aggregation tests exist is to bypass the 
fundamental limitations of single-point methods at very low allele counts. If it is retained (I don't 
think it should), Fisher's testing should only be used for those very rare variants. For anything not 
ultra-rare, up-to-date methods adjusting for ethnic and other covariates, as well as random 
relatedness effects, should be used. The size of the study is not a justification either, as single-
point GWAS studies of the full imputed UK Biobank, which are comparable in terms of sample size 
and variant numbers, have successfully used subtler models. Using a better model would make it 
unnecessary to remove non-Europeans and unrelated individuals. 
1. A linked point is that some of the lambdas (inflation factors) are very low or very high. This 
suggests that a non-negligible part of the test statistics and resulting P-value distributions may be 
poorly calibrated. I would suggest using hard lambda thresholds (e.g. 0.95 - 1.05) to exclude 
these analyses from further consideration. 
2. Rare variant testing. Again, it is surprising to read that the authors have used a Fisher's exact 
test for rare variant association. As above, the same questions about adjustment of spurious effect 
apply here. Arguably, the most interesting use of WES is the examination of rare variants. The 
authors use a collapsing test, which makes important hypotheses regarding the architecture of the 
underlying signals. The authors mention in passing that they frequently observe concordant 
directions of effect in genes with multiple associated variants, but this and its relationship to the 
collapsing test should be discussed rigorously. It is regrettable that the authors did not examine 
different architectures, such as those modelled by SKAT-type methods, or SKAT-O optimal tests. 
In particular, I would have liked to see a distribution of the rho parameter, which could have 
confirmed the authors' hypotheses regarding signal architecture. These methods have historically 
scaled poorly, however implementations now exist for biobank sized datasets and the authors 
should use them. 
3. Significance threshold. The authors are convincing in their calculations, however I would like to 
see their threshold confirmed by a calculation that would take into account the effective number of 
traits, variants and analyses through reduction of the respective correlation matrices (phenotype, 
LD and z-scores). It would be good if the authors added more details about their permutation 
method. Finally, in this paper the authors report results from two correlated analyses using the 
same test, single-point and collapsed. Two different thresholds were used instead of a single 
study-wide reporting threshold. The authors should convincingly justify this, or use a single 



 

 

 

threshold that adjusts for the increased reporting burden caused by the collapsing analysis. 
 
E. Conclusions: robustness, validity, reliability 
 
0. The conclusion of the paragraph starting at line 188 is overly general. A qualifying statement 
should be added to the last sentence, acknowledging that this is observed only when testing non-
synonymous exonic variants. Indeed, isn't this conclusion likely to be wrong when studying non-PT 
and/or non-exonic variants? 
1. Conclusions regarding association signals are conditional on the robustness of the methods 
used, as discussed previously. 
2. The conclusions concerning HMCN1 are backed up by evidence. The authors' analysis shows 
that HMCN1 variants are associated with lung function phenotypes. Separately, they show that 
increased expression of this gene may be involved in idiopathic pulmonary fibrosis and discuss 
some mechanistic pathways. However, as they note, this constitutes only the "beginning of an 
elucidation" and can be construed as weak from a clinical interest point of view, especially since it 
is the only signal discussed in detail (see H.). 
 
F. Suggested improvements: experiments, data for possible revision 
 
0. Address methodological questions and points raised above 
1. Improve the presentation and dissemination of their results, ideally through the implementation 
of a searchable portal (solutions exist for single-point signals, e.g. pheweb). It is especially 
important that variants constituent of the collapsing tests are documented. 
2. Build upon the discussion of signals, for example through the discussion of positive controls, as 
well as further signals with translational potential. 
 
G. References: appropriate credit to previous work? 
 
0. The authors could refer more to previous rare variant analyses, in particular with respect to the 
following points: 
- which methods did previous papers use to aggregate the effect of rare variants (WES, WGS, and 
even imputed GWAS)? 
- to what extent did the choice of methods place hypotheses on the type of signal that could be 
detected, and which type of signal was indeed detected? 
This can then spur an interesting discussion on how the current dataset can be used to validate 
these hypotheses, and the methods required for that. 
1. The authors should report, in particular for collapsing tests, whether any of their 
gene/phenotype association has been previously determined, and if yes in which context (GWAS, 
previous rare variant, family studies...) and present supporting references. 
 
H. Clarity and context: lucidity of abstract/summary, appropriateness of abstract, introduction and 
conclusions 
 
0. Presenting data at this scale is challenging, and this article is overall well-written and 
constructed. However, perhaps as a consequence of the vast scope of analyses performed, it is not 
entirely clear what the scientific focus of the paper is. Currently it feels neither like a resource 
paper (data accessibility/browsing/sharing is too limited), nor an in-depth analysis of what 
Biobank-scale WGS can tell us about the architecture of human disease (discussions on effects of 
rare variants are too succinct), nor like an examination of the clinical relevance of such analyses 
(see below). 
1. As mentioned in E., the paragraph about HMCN1 feels somewhat ancillary. This is the 400th 
signal in terms of strength of association. How did the authors choose it for discussion? Some of 
the top-associated collapsing tests provide good proof of concepts: ALPL, APOC3, CST3, APOB, 
GPT... If the authors wish to focus the paper on clinically relevant gene/phenotype associations, 
the paper would benefit from discussion of those, plus any other additional signals of potential 



 

 

 

clinical/drug development importance. 
 
 
Referee #4 (Remarks to the Author): 
 
This manuscript describes a massive analysis linking rare coding variants identified from whole 
exon sequencing on DNA from 269,171 participants in the UK Biobank to a large series of binary 
and quantitative traits identified based on clinical and laboratory data. The authors identified a 
large number of protein truncating variants (PTVs) and missense mutations and analyzed 
associations with both individual sequence variants and groups of presumed loss of function 
variants in the same gene. A large number of known associations were found and there were many 
new associations identified. The authors make a strong case that the approaches described will 
could eventually lead to new insights into the molecular bases of human disease and suggest 
promising drug targets. 
 
One weakness of the current manuscript is the authors effort to highlight a specific example of the 
utility of their approach. They chose to focus on the new association they identified between a PTV 
in the gene encoding hemicentin 1 (HMCN1), a secreted component of the extracellular matrix that 
has been suggested to contribute to the organization of cell adhesions, and an increase in the ratio 
of FEV1 to FVC. the authors correctly point out that the FEV1/FVC ratio is often increased in 
patients with restrictive lung diseases, including idiopathic pulmonary fibrosis (IPF). They include 
convincing data showing that expression of HMCN 1 is increased in whole lung RNA from patients 
with IPF and suggest that this finding validates their approach. However, this change is in the 
opposite direction of the change suggested by their genetic data. The PTV in HMCN1 would 
presumable lead to a reduction in functional HMCT1, not the increase that is seen in IPF. This rare 
variant (with presumed reduction in HMCN1 function) is associated with the increase in FEV1/FVC 
that the authors used to identify a link to IPF. Of course, there are many other potential 
explanations for increases in the FEV1/FVC ratio other than restrictive lung disease and the fact 
that HMCN1 expression is actually increased rather than decreased in IPF suggests that the 
association identified probably had nothing to do with IPF. 
 
It is therefore unclear why the authors chose to evaluate how HMCN1 expression levels might alter 
the biology that underlies pulmonary fibrosis. The experiments they include also somewhat miss 
the point of the effects seen on HNCN1 gene expression seen in IPF. Rather than overexpress 
HMCN1 (the abnormality seen in IPF lungs) the authors show that knockdown of HMCN1 leads to a 
reduction in TGFb-induced upregulation of alpha smooth muscle in cultured primary lung 
fibroblasts. The also show that knockdown causes a reduction in baseline collagen 1a1 expression 
and claim that this knockdown also inhibits the increase in col1a1 induced by TGFbeta. However, 
when one takes into account the effects on baseline collagen expression, TGFb seems to induce 
similar proportionate increases in both control and HMCN1 KD fibroblasts. Again, since if anything, 
the effects seen are in the opposite direction of what would be required to connect a decrease in 
functional HMCN1 to an increase in FEV1/FVC, none of these data appear to shed light on how a 
PVT in the HMCN1 gene would increase the FEV1/FVC ratio. 
 
In summary, this is a very impressive paper that includes identification of many new genetic 
variants that might contribute to human disease and/or drug response. Unfortunately, the single 
example the authors chose to evaluate in more detail does not actually strengthen the manuscript 
and should either be deleted or replaced by a more convincing example, where the direction of 
effect of the variant and the underlying biology are more congruent. 

 

Author Rebuttals to Initial Comments: 

Dear Editor and Reviewers: 



 

 

 

We would like to thank the editorial team and reviewers for their comments and the opportunity to 
improve our manuscript. In particular, to address the questions around our choice of test statistic, we 
include results of SAIGE SPA adjusting for sex, age, sequencing batch and the top 10 ancestry 
principal components for all variants on chr 1 against all Chapter IX phenotypes. The comparisons 
show that relying on a regression framework for low frequency variants detectable by exome 
sequencing results in unstable associations when minor allele counts in cases or controls approach 
zero; however, for signals achieving a p<1x10-8, the correlation of the Phred scores (-10*log10[p-
values]) between our Fisher’s Exact and SAIGE SPA tests was Pearson’s r = 0.9997, with the Exact test 
proving to be more conservative than SAIGE among lower frequency (MAF≤0.01) variants. At this 
scale of analyses, compute efficiency is another key consideration and our exact tests were ~5-fold 
more efficient. Originally, we were preparing these learnings as a separate technical report, but now 
incorporate the key insights in this revised manuscript.  

Since our initial submission we have campaigned for and received the support to provide a public 
portal (http://azphewas.com/) for interacting with the PheWAS statistics. This portal currently 
includes gene-level (collapsing analysis) data generated from the 200K exomes released to the UK 
Biobank research community. We will expand the portal to include variant-level association statistics 
and additional data as updated phenotypes and additional exome data are released by the UK 
Biobank. We have also removed the HMCN1 proof-of-principle from this work while we continue to 
unravel the biology of that finding over the coming years. 

Below, we address each of the specific editorial and reviewer comments and cite the location of the 
edits corresponding to the marked-up version of our resubmission. 

 

Referee #1 

This is an important paper with very interesting findings for the genetics of human disease. It is 
the largest yet rare variant 'protein coding variant' wide association study (or exWAS as the 
authors describe it) for very many multiple phenotypes. With various other studies/analyses 
following on from this. Previous manuscripts described the exome sequencing and analyses of the 
first 50k of UK BioBank (refs 11,12 and the authors nicely describe the differences in Supp 
Methods page 8). Now the authors analyse ~250k and show there is much more to find. While this 
may well eventually get published in Nature, it is not there yet and has multiple flaws. 
 
Major Comments: 
1. There is an enormous amount of multiple testing, inevitable with the study of 17361 binary and 
1419 quant phenotypes * protein coding variants. The authors do attempt some control for this 
e.g. with permutation methods.  
2. However REPLICATION in an independent dataset is the gold standard for GWAS, and for its 
friend here protein coding-exWAS. This must be done for at least some of the results.  
- There are already 500+k exomes sequenced from UK Biobank (being presented for a few traits at 
ASHG 2020 last month). Whilst I do not know the deal for who writes which paper from which 
company for UKBB sequencing, it should be possible to look at doing some limited replication in 
the next 250k! 

http://azphewas.com/


 

 

 

- There are other cohorts with sequencing e.g. DeCode. 
- There are other cohorts with chip data and imputation e.g. Finngen, MVP that might enable 
testing of low freq variants (TOPMED will impute to MAF 0.01%) and traits. 
 
We now annotate all non-synonymous variants in the ExWAS that achieved p<1x10-8 with the 
Finngen release 4 outputs to further flag variants achieving p<1x10-4 among the Finngen release 4 
public data for a comparable phenotype (Supplementary Table 2). This supplements the existing 
ExWAS annotations based on ClinVar and GWAS Catalog reporting.  

We observe high positive control / replication rates with 77% of the p<1x10-8 exWAS non-
synonymous variants supported directly or via other variants in the same gene by one or more of: 1) 
OMIM evidence, 2) Pathogenic/Likely Pathogenic in ClinVar, 3) independently cited in GWAS 
Catalogue, or 4) independently observed in Finngen release 4 (http://r4.finngen.fi/) – now 
summarised in Supplementary Table 2. Unsurprisingly, the proportion of previously linked signals is 
(30/118) 25% for MAF<0.1% and (416/461) 90% for MAF≥0.1% missense variants and (16/18) 89% 
and (14/18) 78% for PTVs (Supplementary Table 2). We summarise this in revised manuscript (See pg 
7, lines 194– 198). 

 

3. The association test used has not properly controlled for population/ethnic stratification. Yes, 
the authors have been careful to pick a very white European group based on genetics. But 
association tests MUST include principal components in the regression analyses. Recently groups 
have been using 20 PCs derived from PCA using common variants, and another 20 PCs derived 
from PCA just using rare variants. As far as I can see just a Fishers Exact Test was used here. As a 
consequence of 2 and 3 there are some spurious looking unbelievable odds ratios in Fig 1c. 

In this study, adopting an exact test allowed us to robustly assess significance of variants at a 
frequency as low as MAF = 0.001%. The limitations of exact tests are that covariates cannot be 
incorporated. Thus, we focused on the pre-association harmonisation to mitigate these confounders 
while still allowing for robust test statistics in the rare variant range. We do recognise that we didn’t 
sufficiently qualify the choice of the exact test for this exome study. In the revised paper, we now 
illustrate what happens to the test statistic distribution if you run SAIGE (with sex, age, exome 
sequencing batch, and ancestry PC covariates). Relying on a regression framework for such low 
frequency and case-control imbalanced configurations results in unstable associations when minor 
allele counts in cases or controls are near zero. However, for signals achieving a p<1x10-8, Pearson's 
correlation coefficient of the Phred scores (-10*log10[p-values]) between our Fisher’s Exact and the 
SAIGE SPA (with covariates) test was 0.9997 (pgs 9-10, 215-265 in Supplementary Methods, 
Supplementary Table 5, and main text pg 8 lines 206-220). The Exact tests proved to be more 
conservative than SAIGE for variants with MAF≤0.01 (Fig S3-4, Supplementary Table 6) and also 
required ~5-fold reduced CPU time.  

http://r4.finngen.fi/


 

 

 

 

Supplementary Figure 2. -10*log10(p-values) from SAIGE (with 10 PC covariates) and current Fisher’s 
exact test for variant-trait pairs with p-value < 1x10-8 for both SAIGE and Fisher’s exact test. 

Moreover, we compared SAIGE results with and without PCs. Pearson’s correlation coefficient 
between Phred values from SAIGE with 10 PCs from Bycroft et al. versus SAIGE with no PCs ranges 
between 0.8425 to 0.9998 with a median of 0.99. This result reflects the fact that: 1) we have 
carefully selected samples of European genetic ancestry, and 2) adjusting for PCs might not be 
necessary once we have adjusted for the kinship matrix in SAIGE. Adding 10 PCs as covariates in this 
situation is a conservative approach, which increases SAIGE running times by 1.5-fold (total of 2,257 
running hours for SAIGE without PCs, versus 3,464 hours for SAIGE with 10 PCs). 

We also now point our readers interested in common variant associations to previously published 
PheWAS results derived from imputed micro-array data (p7, 187-188). In our study, our primary goal 
was  to showcase the contribution among the rarest end of the variant frequency spectrum, both at 
individual variant (exWAS) and genic (collapsing) levels. We have also modified figure 2b to 
emphasize our focus on rare variants.  

The comment about the unbelievable OR’s is well received. We feel those results are precisely why 
the community should be excited about access to rare variant data available through sequencing 
studies on such large cohorts. Looking at Table 1, all PTVs that achieve an OR > 500 are unsurprising 
as they have well-established roles in monogenic disease: the association between HBB and 
thalassemia (three PTVs achieve OR>500), UMOD and CKD (three PTVs), RP1 and Hereditary retinal 
dystrophy (1 PTV), and BRCA2 and BRCA1 and Prophylactic surgery for risk-factors related to 



 

 

 

malignant neoplasms (1 PTV each). In response to reviewer comments and to enhance interpretation, 
we now also include the 95%CI’s from Supplementary Table 2 into Table 1 in the re-submission. 

 

4. I would like to see a bigger analysis/table/supp table of 'known truths' for rare variant 
associations. Some of this is in Table1, Fig 1e. 

In addition to Table 1, the ClinVar and GWAS Catalog annotations for rare variants can be identified 
as fields in Supplementary Table 4 and also summarised in Figure 2d. In particular, for rare variants, 
we feel that ClinVar is one reliable source of positive controls and accordingly we find that (13/18) 
72% of our exWAS significant PTVs with MAF<0.1% have been previously reported as 
Pathogenic/Likely Pathogenic in ClinVar and this statistic increases to (16/18) 89% if assessing known 
haploinsufficiency mediated disease at gene level (Supplementary Table 4).  
 

5. page 6 line 170. Most researchers are not very interested in common frequency PTV as these 
are all in olfactory genes etc (MacArthur et al Science 2012). Instead much more interested in rare 
PTV, please provide breakdowns for rare. 

In the revised submission we have incorporated an additional PTV figure focusing on PTV’s with a 
MAF<1% and also in the corresponding text (pg 6, lines 166-171, Supplementary Fig 1). We retain the 
original plots to provide the unfiltered summary. 
 
 
Minor 
6. I am a bit sad that related individuals have been discarded. There are methods (e.g. bolt-lmm, 
gcta64, SAIGE/REGENIE) that will use these individuals. But what the authors have done is not 
incorrect, it has just lost a bit of power. Perhaps they can discuss this? Can they also st ate 
'predominantly unrelated' or some similar words, as they have gone down to 8% relatedness - 
there will be third cousins etc in their analysis. 

We now include discussion about the benefits and limitations of approaches in the new section that 
compares the alternative test statistics for a subset of signals (pg 8, lines 206-220 and pg 16 lines 
403-417). We have made the requested suggested language around the relatedness threshold (e.g., 
pg 22, line 565). 
 
7. The various models in Supp Table 5 are quite carefully chosen. More discussion of this in the 
main paper please. 

We have expanded on the key variations of these qualifying variant models and their motivations in 
the updated text (pg 24, lines 617-619). 
 
8. I disagree re MAF >0.5% for microarray technology. this may be true for affymetrix UKBB 
genotypes but is not true for Illumina. please remove. also p17 lines 427,428 

We have addressed this accordingly in the revised manuscript. 
 



 

 

 

Other comments 
- It is also a bit sad that only white people have been used. This gives a cleaner dataset. But does 
lose a lot of power that cross-ethnicity analysis brings. The authors do discuss this a bit in the 
Discussion, but this is a very topical subject.  
We whole-heartedly agree with R1 on this point. Not only does this issue sacrifice power, but it also 
exacerbates genomics healthcare inequality. In Fig. 1g, we show that the number of candidate rare 
qualifying variants in OMIM genes is higher for non-European individuals due to the lack of 
sufficiently large reference cohorts for non-European ancestries. This observation is in-line with our 
previous commentary (Petrovski and Goldstein, 2016). It is crucial that the field generate equivalent 
sequencing and rich phenotyping data for non-European populations. We further emphasise this 
point in our revised manuscript (pg 18, lines 448 – 452).  

 

Referee #2: 

Wang et al provide results from analyses of largest tranche of UK Biobank Exome Sequencing data 
to date. They provide two primary analyses after a general description of the dataset : variant and 
gene-level association tests for protein coding variation. This is primarily a descriptive paper 
providing the top association results from these analyses, but represent an enormous undertaking 
to perform several billion association tests. There don’t seem to be any technical faults with the 
manuscript and it provides a hugely important resource for research labs unable to process the 
UKB exome dataset on their own. However, I strongly hold that for publication of this manuscript 
in any journal, full summary statistics from all traits and genes should be made public. There is no 
barrier to this - there are no legitimate privacy concerns and the hosting burden is not major 
(about 20,000 files with no more than 10 columns and 20,000 rows). In the reporting summary 
that data availability is merely stated as the availability of raw UKB data. This does not provide 
any ability for independently validating and replicating these analyses. To give examples of other 
Nature publications - gnomAD hosts terabytes of data to aid the community and the INTERVAL 
study has made their summary statistics public. Researchers will no doubt want to know if their 
favorite gene had enough variants to be tested, and the p values for those tests, and the 
supplementary tables provided here, while useful, do not show the full extent of the analyses. 
That is my major concern with the manuscript. 

We have released a public portal for interacting with gene-level association statistics p<0.1. This 
portal currently includes data generated from the 200,000 exomes available to the UK Biobank 
research community. We provide a link in the manuscript (pg 28, http://azphewas.com/) and will 
expand this portal to include variant-level association statistics and additional data as the UK 
Biobank releases updated phenotypes and additional exome data to the public. 
 
Major comments :  
• The number of genes with heterozygous and homozygous PTVs reported in the UKB exome 
dataset seems disparate than some literature numbers. In the UKB main paper on medRxiv 
(https://www.medrxiv.org/content/10.1101/2020.11.02.20222232v1), page 6 includes a 
discussion of the number of genes with PTVs. In Van Hout et al, with 50k individuals, there are 
17,718 and 789 genes with het and hom PTVs, respectively. In the results from 200k individuals, 

http://azphewas.com/
https://protect-de.mimecast.com/s/tcHkCz6rEACMrXwLoC2jmVk?domain=medrxiv.org


 

 

 

there are 18,011 and 1,492 genes with at least one het and hom PTV. In Wang et al, in 287k 
individuals, there are 18,011 and 3,752 genes with het and hom PTVs (based on 96% and 20% of 
18,762 genes evaluated, lines 168 and 170).  
 
It is striking that the number of genes harboring heterozygous PTVs is remarkably consistent 
between the 200k and 280k datasets, but Wang et al report over double the number of 
homozygous PTVs. The sample size is different (~100k more individuals in this dataset) and 
ancestry make-up might also be different. However this still shouldn’t account for doubling of 
number of genes with homozygous PTVs in mostly the same data. Can the authors report their 
own numbers for the European subset and clarify the discrepancy? Many of the variant and 
sample QC filters are standard practice, therefore it’s surprising such a large difference exists. 
From the methods section, I don’t see any clarity as to what would result in *more* hom PTVs per 
individual in this dataset. While the supplemental methods section laying out differences in the 
burden testing analyses between UKB papers is interesting, it does not get at this disparity. 

We were equally surprised by the discrepancies. Looking into it further, we identified two key 
differences beyond our inclusion of all ancestries: 

1) Unlike our estimates that include PTVs across the entire allelic frequency spectrum, the 
medrxiv 200K draft reflect estimates after restricting to PTVs with an AAF<1% (see their 
Table 3). This is why, among 200K individuals, no gene was found with >100 homozygous 
PTV carriers in the medrxiv paper whereas there are many well recognised common PTVs 
impacting human traits like LPL, LPA, NOD2 and FLG, to name a few. In recognition of similar 
query by R1, we now include additional heterozygous and homozygous/hemizygous curves 
that reflect the data imposing a comparable MAF<1% filter in Supplementary Figure 1 and 
also in the revised text (pg 6, lines 168-171). 

2) For our statistics we included the X chromosome genes and this includes hemizygous males 
among counts. Philosophically, we remain motivated to include the X chr genes than exclude 
for such a summary, but emphasise the hemizygosity inclusion throughout the text for clarity. 

 
• Could the authors provide clarity on processing times and prices for the AstraZeneca CGR 
Bioinformatics pipeline? Running all associations seems like a gargantuan effort, and would be 
useful information to know approximate CPU cost and run-time to appreciate this. 

Related to this point, could the authors clarify reasoning for processing FASTQs vs starting from a 
functionally equivalent VCF? Most researchers reading this manuscript will be working off the 
UKB-provided pVCF or plink files, and it is unclear how this dataset differs and how significant that 
difference is.  

We will be submitting our DRAGEN reprocessed vcf files to the UK Biobank to host alongside the 2017 
Functional equivalent in the UK Biobank RAP. This will allow other groups who, like us, adopt a more 
scalable Dragen platform to have comparable derived files as their internal sequences. We agree 
with the value of a functional equivalent, but also recognise virtues of having alternative options 
available.  



 

 

 

Our end-to-end (CRAM -> FASTQ -> BAM -> VCF) processing of the UK Biobank 300K exomes was 
achieved at a rate of 1,600 exomes per hour, consuming a total of 52K hours of CPU time running on 
Linux servers with FPGA acceleration.  

Regarding our collapsing PheWAS analyses, construction of the full set of genotype and phenotype 
matrices took 13K and 30 CPU hours to compile, respectively. Subsequently, all ~4.5 billion statistical 
tests were calculated in 19K CPU hours. In wall clock hours, this took 30 hours to generate all the 
collapsing and phenotype matrices. Once the intermediate files were ready, the ~4.5 billion 
collapsing statistical tests took 8 hours to complete. 

Regarding our variant-level exWAS, upon construction of our variant matrices, which took 2.5K CPU 
hours to compile, all 108 billion statistical tests were calculated in 855K CPU hours. In wall clock 
hours, this took 37 hours to generate the variant matrices. Once these intermediate files were ready, 
the ~108 Billion exWAS statistical tests took 27 hours for binary traits and 11 hours for quantitative 
traits. 

 
• While the authors provided the percent of associations identified in the rare variant collapsing 
analysis that were not identified with the ExWAS, I wasn’t clear on the inverse relationship. 
Intuitively I’d expect virtually all associations identified via ExWAS to show up in the collapsing 
analysis - unless non-functional non-synonymous variant drown the signal. How many ExWAS 
significant associations were re-identified with the rare variant collapsing analysis? 

One of the added, but well-known, complexities of comparing the results of exWAS  with collapsing 
analysis is that collapsing analysis will, by design, enrich for causal gene-phenotype associations. On 
the other hand, exWAS is more often impacted by accompanying structure. For this reason, we 
limited this comparison to variants with MAF<0.1%, which makes it more comparable to the most 
flexible MAF imposed by the non-recessive collapsing models. This comparison showed that the 
proportion of gene-phenotype study-wide relationships identified in exWAS that were also captured 
in the collapsing analysis was much higher when we focussed on PTVs (85/93 [91%] for quantitative 
and 30/36 [83%] for binary traits), compared to missense variants (122/270 [45%] for quantitative 
and 42/188 [22%] for binary traits). We include these new statistics in the results (see page 15, lines 
372 377) and as a supplementary table (Supplementary Table 13B). 
 
• The analysis of enrichment of approved drug targets needs a little more clarity. Prior 
publications showing the enrichment matched for phenotype similarity of the tested trait and the 
approved drug. Could the authors perform a similar analysis to add detail here? (especially given 
the github repository for King et al is relatively detailed : https://github.com/AbbVie-
ComputationalGenomics/genetic-evidence-approval) .  
At minimum it would be helpful to contextualize whether success of drug targets from 
ExWAS/collapsing analyses from exomes is more informative than GWAS or OMIM genes. 

We expanded this assessment (methods lines 678-704) by comparing the results of our binary and 
quantitative collapsing analyses with the gene lists provided by King et al. and accordingly updated 
Fig 2f and an extended set of comparisons as Supplementary Figure 6. We also expanded these 
analyses by providing benchmarking against OMIM genes and the GWAS catalogue as recommended 
by the reviewer. 

https://protect-de.mimecast.com/s/-wiYCA6R2rCNRxlYAcRvJpr?domain=github.com
https://protect-de.mimecast.com/s/-wiYCA6R2rCNRxlYAcRvJpr?domain=github.com


 

 

 

 
• On line 178 the authors point to the methods section when stating “Adopting a p value 
threshold of 1 x 10-8…”. In the methods section for the ExWAS analysis on line 605, they simply 
state “we adopted a significance cutoff of 1 x 10-8” which hardly provides reasoning for the cutoff 
using 3 models on 2 million variants and ~20,000 traits. Can the authors add reasoning for the p 
value cutoff threshold for the ExWAS? 

We apologise for lack of this detail, which we agree is important for community. In the revised 
manuscript we now explain our reasoning for the selection. In brief, we performed an n-of-1 
permutation on the binary and quantitative trait dominant model ExWAS. The below Table 
summarises the findings across the ~35.8 billion binary tests and ~2.9 billion quantitative tests with 
the number of observations per increasing order of p-value magnitude.  

n-of-1 Permutation p-value 
cut-off threshold 

Binary ExWAS Quantitative ExWAS 

P < 1x10 -10 0 0 
P < 1x10 -9 4 2 
P < 1x10 -8 75 13 
P < 1x10 -7 684 155 
P < 1x10 -6 7582 1462 

Total tests performed ~35.8 billion ~2.9 billion 
 
Although we had some events below the p<1x10-8 cut-off (i.e., 75 out of 35.8 billion), we felt that 
given the total number of tests performed, these permutation-based results were consistent with the 
p<1x10-8 guidance for ExWAS from earlier work by Fadista et al., (2016), a more stringent cut-off 
than community GWAS cut-off of p<5x10-8. In recognizing that our primary focus is on rare variants 
and in order to maximize computational efficiency, we calculated the n-of-1 ExWAS permutations on 
the dominant model.  We now provide additional detail in our revised manuscript on this selection 
(pg 22, lines 595-600). Alongside the above summary table (Supplementary Table 15), we introduce 
another new supplemental table reporting the 5,000 lowest p-value signals from the n-of-1 ExWAS 
permutation analysis for both binary and quantitative traits (Supplementary Table 16).  

 
• Even thought there were three models in the ExWAS analysis, very little time was spent 
discussing results from the different models. For example, how many variants showing recessive 
effects also showed dominant effects?  

We observed that of the distinct genotype-phenotype associations that were identified using the 
recessive genetic model, 23% (304/1,342) for binary traits and 14% (1,707/12,500) for quantitative 
traits were not detectable using the dominant genetic model. We have added some additional text to 
highlight the value of using different genetic models to enhance the identification of associations 
between variants and phenotypes. See page 7, lines 184 – 187. 

 
• I found the statement on line 192 “it is uncommon to observe both negatively and positively 
associated rare variants for a given gene-phenotype relationship” a bit severe. Breaking the 
function of a gene seems more probable than increasing its function with a PTV or missense 



 

 

 

variant. If looking at rare non-coding variation, does this same effect hold? At least one GTEx 
paper looking at expression outliers enriched for rare variants has shown when calling expression 
outliers, there are equal number of genes that are over-expresed and under-expressed in 
individuals attributable to underlying rare variants https://www.nature.com/articles/nature24267 

We now clarify this section by emphasizing that these data are restricted to rare (MAF < 0.1%) non-
synonymous variants that are significantly associated with a specific phenotype.  In addition, we also 
now acknowledge and cite the GTEx finding that there is greater potential for variants with opposing 
effects in the noncoding regulatory sequence. See page 8, lines 203 – 205. 
 
• I don’t follow why a synonymous model was not implemented for the collapsing analysis for 
each nonsynonymous allele frequency threshold. Different allele frequencies will have different 
error modes, and rare variants with higher allele frequencies are likely to include systematic errors 
that might potentially throw false positives. In SuppTable 5, there is only a synonymous variant 
model for MAF 0.05%, which is a driver of the p value threshold for the analysis. Why not 
implement a 0.1% MAF, 5% MAF, 0.025% MAF and 0.005% MAF synonymous model (or at least 
the first two).  

There is a significant computational burden associated with performing this for all synonymous 
frequency thresholds. We felt that the one collapsing run would be a good demonstration of the 
general utility of this empirical null and we accompanied it with our n-of-one permutation-based 
results. We comment further on this in the revised text, as we sought to prioritise computational 
resources to generate the complementary permutation-based null distribution. See pg 26, lines 669 – 
671. 
 
• Could the authors compare rare variant burden collapsing results between the raredmg and 
raredmgmtr or the or flexnonsyn and flexnonsynmtr models? That is to say, the additional value of 
the MTR metric for burden test associations. They describe it’s use but mention nothing in the 
results on its value, which would be informative for researchers.  

In addition to improving the effect sizes of significant associations, we found that the MTR metric 
captures association signals that were not study-wide significant in the corresponding ‘non-mtr’ 
model. Of the 878 distinct study-wide significant gene-phenotype associations spanning the 
flexnonsyn, flexnonsynmtr, UR, URmtr, raredmg and raredmgmtr models, 133 (15.1%) were study-
wide significant only among the mtr-informed models. We include a line about this in the text (pg 11, 
lines 268 – 275). 

In the case of gene-phenotype relationships that were captured by both the ‘mtr’ and the ‘non-mtr’ 
versions of a model, we consistently observed signal enhancement in mtr-aware versions 
(Supplementary Figure 1).  For quantitative and binary traits, the effect sizes in the ‘mtr’ versions 
were significantly higher, which support optimised specificity (Mann-Whitney test P=0.006). We 
include a line about this in the text (pg 11, lines 273 – 275). 
 
• I find it weird to only provide the tail of the synonymous p value distributions and not the full 
distribution. Allowing full access to summary statistics would better allow evaluation of pvalue 

https://protect-de.mimecast.com/s/z1K3CBrV2vS7nxRo5Ug5Tj2?domain=nature.com


 

 

 

distributions and visualization of qq plots per trait (since most of the binary trait analyses are 
underpowered, I don’t think we’d expect a large overall lambda skew anyway).  

The synonymous output represents >300 million statistical tests. In our resubmission we now provide 
two supplemental files. The first lists the synonymous-based p-values extended to those achieving 
p<0.001 (Supplementary Table 17). This is supplemented by an additional table summarising the 
number of positive events along increasing p-value thresholds (Supplementary Table 18 – shared 
below for convenience). Users will also be able to interact with the synonymous model results as part 
of the portal http://azphewas.com/. 

Synonymous collapsing output  
p-value cut-off threshold 

Binary ExWAS Quantitative ExWAS 

P < 1x10 -10 1* 1* 
P < 1x10 -9 2* 1* 
P < 1x10 -8 2* 2* 
P < 1x10 -7 11 3 
P < 1x10 -6 105 30 
P < 1x10 -5 1,062 271 
P < 1x10 -4 10,967 2,417 
P < 1x10 -3 116,366 22,876 

Total tests performed ~346.5 million ~28.3million 
* Biological precedence (likely true) associations.  

 Moreover, we also now provide an additional file with the full list of lambdas as a separate 
supplemental, which we realise we unintentionally omitted in our initial submission Supplementary 
Table 19. 
 
• Can the authors detail on their penetrance estimates beginning on line 302? They acknowledge 
the importance of comparable prevalence to accurately calculate penetrance, but is the 
prevalence of asthma and dermatitis in UKB comparable to population prevalence in the UK? 
There is a conflation of genetic effect size and accuracy of diagnoses in the argument, and the 
point made here was not clear to me.  

We do observe that the prevalence of asthma and dermatitis in the UKB is comparable to the 
population prevalence that has been reported in literature. We have revised the text accordingly – 
see pages 13-14, lines 321 – 332. 
 
 
Minor points :  
• Line 87 –I think clinical genomics suffices, clinico-genomics isn’t’ quite a commonplace word. 

We have revised the text accordingly. 

 
• On line 339 – demonstrable complementarity just sounds like a euphemism for disparity ϑ I 
think it’s ok to just say that.  
We have revised the text accordingly. 
 

http://azphewas.com/


 

 

 

Referee #3: 
 
C. Data & methodology: validity of approach, quality of data, quality of presentation 
1. The association methodology, which uses Fisher's exact test for binary traits and a linear 
regression for quantitative traits, is quite simplistic (see D. below). The use of these unadjusted 
models should be justified extensively, ideally replaced, or complemented using sensitivity 
analyses. 

This point is similar to the one raised by R1. In brief, we now clarify that the motivation for this study 
was the exploration and robust study of rare variant associations. This included studying variants as 
low as 0.001% MAF. For readers interested in variants with a more common MAF (>0.1%), we now 
direct them to the existing microarray studies on the same cohort that use the standard common 
variant best practices. As we do not want to simply ignore variants for being too rare, and to support 
the use of an exact test in these scenarios, we now provide direct comparison of Fisher’s exact and 
SAIGE (with PC covariates) for a subset of phenotypes on chromosome 1 (pgs 9-10, 215-265 in 
Supplementary Methods, Fig S2-4; and main text pg 8 lines 206-220). 

 
2. It would be useful to summarise what PHEASANT does in section 2. of the methods. I would also 
rephrase "we adopted a union mapping approach" into a more factual "we computed the union of 
cases across phenotypes" or similar. 

We have expanded Section 2 of methods and revised the text accordingly. 
 

3. Section 6. of the methods describes sample filtering based on ethnicity, excluding all non-
European samples. While it is understood that this was done to alleviate the risk of spurious 
associations, (a) these samples could have been included had the authors chosen to adjust for 
ethnicity using a more complex model, (b) the authors themselves show these samples exhibit 
novel, specific and disease-relevant variants in Fig. 1g, and (c) excluding non-Europeans in the first 
paper to use the UKB WES data is not ideal. However, I do acknowledge that the cumulative 
proportion of non-Europeans does not exceed ~10%(Fig 1.f). 

We whole-heartedly agree on this point. As mentioned in our response to R1, not only does this issue 
sacrifice power, but it also exacerbates genomics healthcare inequality. In Fig. 1g, we show that the 
number of candidate rare qualifying variants in OMIM genes is higher for non-European individuals 
due to the lack of sufficiently large reference cohorts for non-European ancestries. This observation is 
in-line with our previous commentary (Petrovski and Goldstein, 2016). It is crucial that the field 
generate sequencing and rich phenotyping data for non-European cohorts. We further emphasise 
this point in our revised manuscript (pg 18, lines 448 – 452). However, as this reviewer points out, 
non-European individuals account for <10% of the cohort. Methods such as SAIGE and BOLTLMM, 
although they allow for inclusion of PCs, have not been used or tested for transethnic analysis. The 
appropriate approach for such analysis would be to analyse each ethnicity separately and then 
combine the results in a meta-analysis framework. In the UK Biobank instance, we expect such results 
to be overwhelmed by the European representation, and therefore, the non-European ancestry 



 

 

 

groups will add little information in this context. We feel this is best addressed by the generation of 
equivalent medical research resources in non-European collections. 

 

4. The Data Availability statement does not state whether full exWAS and variant collapsing 
summary statistics will be publicly available. They should. Given the scope of the paper (phenome-
wide single-point exWAS and rare variant collapsing tests), and given the fact that it is the first 
such analysis of the UKB Exomes dataset, results should be disseminated widely, and results 
should be query-able by researchers, e.g through a searchable online portal. Variants contributing 
to every associated collapsing signal should be listed along with their single-variant effects. The 
presentation of association results, currently in the form of Table 1 (which feels more like a 
supplementary table) and ST6, could be improved (e.g., reporting only the strongest p-value for 
gene/phenotype pairs, improving phenotype descriptions, etc).  

With the accompanying data portal, the PheWAS association statistics are browsable. In addition, we 
have modified Table 1 to report only the strongest p-value for each gene/phenotype pair and 
included the 95% CI’s. Full phenotype descriptions, including field codes and ICD10 codes where 
applicable were used in this table purposefully to allow the reader to cross reference Table 1 with 
Supplementary Table 1. We have now added a comment explaining this to the legend of Table 1.  

 

D. Appropriate use of statistics and treatment of uncertainties 
0. The authors mention a Fisher's as the main association test for single-point analyses. This 
approach is historical and does not correct for well-documented sources of inflation/T1E. I 
understand the authors wished to include very low allele counts, however the overall impact of 
using an uncorrected method outweighs the single advantage of being able to include very rare 
variants in single-point testing. The reason variant aggregation tests exist is to bypass the 
fundamental limitations of single-point methods at very low allele counts. If it is retained (I don't 
think it should), Fisher's testing should only be used for those very rare variants. For anything not 
ultra-rare, up-to-date methods adjusting for ethnic and other covariates, as well as random 
relatedness effects, should be used. The size of the study is not a justification either, as single-
point GWAS studies of the full imputed UK Biobank, which are comparable in terms of sample size 
and variant numbers, have successfully used subtler models. Using a better model would make it 
unnecessary to remove non-Europeans and unrelated individuals. 

The Fisher’s exact test has the advantage of being robust for very low numbers of minor allele counts 
and highly unbalanced cases-control configurations, while also being ~5-fold more compute efficient. 
Well known limitations of this approach include the inability to adjust for covariates and to include 
potentially related individuals, which may have reduced case sample sizes for some studied 
phenotypes. Software such as BOLT-LMM, SAIGE and REGENIE have been used for running PheWAS 
on large datasets and accommodate for kinship matrix, traditional covariates and improved handling 
of imbalanced cases-control studies over traditional regression approaches. Although such 
approaches are attractive and are improving in scalability, they remain less compute efficient and 
less statistically robust for very rare variants than an exact test. Non-Europeans are still removed 
when using such software, as they have not been extensively tested in the setting of trans-ethnic 



 

 

 

studies (please see “Frequently asked questions” at the SAIGE/SAIGE-GENE wiki). In our study, we 
control for confounders in our study design by down-sampling controls to correct for sex imbalance, 
adopting the PC’s to define the homogenous European ancestry test cohort, as well as well-calibrated 
p-value significance thresholds, and are confident our results demonstrate that we do not suffer from 
unreasonable Type I error rates.   

We have now also performed variant-level tests on chromosome 1 using SAIGE SPA for Chapter IX - 
Diseases of the circulatory system, which is a subset of 324 binary traits, adjusting for sex, age, 
sequencing batch and the top 10 ancestry principal components (See pg 8 lines 206-220 and pg 16, 
lines 403 – 417).  As seen in our newly introduced Supplementary Figure 2, for signals achieving a 
p<1x10-8 by Fisher’s exact and SAIGE, Pearson's correlation coefficient (r) of the Phred scores (-
10*log10[p-values]) between the Exact and regression test was 0.9997, with the Exact test proving to 
be more conservative than SAIGE for variants with MAF≤0.01 (Supplementary Figure 4). 

 
1. A linked point is that some of the lambdas (inflation factors) are very low or very high. This 
suggests that a non-negligible part of the test statistics and resulting P-value distributions may be 
poorly calibrated. I would suggest using hard lambda thresholds (e.g. 0.95 - 1.05) to exclude these 
analyses from further consideration. 

We now include the lambda’s for all studied phenotypes and models as an additional supplemental 
file (Supplementary Table 19). This allows readers to query the associated lambda for a given studied 
phenotype and genetic model. Important to note that only 1.3% of all 208,405 studied binary 
collapsing analyses landed outside of a respectable 0.90-1.10 lambda range, with nothing exceeding 
a lambda of 1.35. Given the scale of this study, we consider this an impressive small set of outliers 
and feel speaks well to the robustness of the implementation of the adopted analytical framework in 
the setting of rare-variant analyses. We also highlight that the majority of the events outside the 
0.90-1.10 lambda range are driven by the recessive model, and excluding the recessive model from 
the lambda distribution only 0.76% of 191,037 remaining non-recessive model collapsing analyses 
land outside the 0.90-1.10 lambda range. We discuss this additional consideration in our revised text 
(pg 13, lines 300 – 302). 

 
2. Rare variant testing. Again, it is surprising to read that the authors have used a Fisher's exact 
test for rare variant association. As above, the same questions about adjustment of spurious effect 
apply here. Arguably, the most interesting use of WES is the examination of rare variants. The 
authors use a collapsing test, which makes important hypotheses regarding the architecture of the 
underlying signals. The authors mention in passing that they frequently observe concordant 
directions of effect in genes with multiple associated variants, but this and its relationship to the 
collapsing test should be discussed rigorously. It is regrettable that the authors did not examine 
different architectures, such as those modelled by SKAT-type methods, or SKAT-O optimal tests. In 
particular, I would have liked to see a distribution of the rho parameter, which could have 
confirmed the authors' hypotheses regarding signal architecture. These methods have historically 
scaled poorly, however implementations now exist for biobank sized datasets and the authors 
should use them. 



 

 

 

With regard to not adjusting for covariates, we refer the reviewer to our response to comment 
number 0 above. Regarding the use of a burden test, this is one of the most popular and simple 
methods, adopted also by Van Hout et al and Cirulli et al when analysing the first tranche of the UK 
Biobank 50K WES. The assumptions of the burden test are: 1) the variants collapsed together are 
independent and not in LD, 2) they have a function on the trait of interest, and 3) all of them affect 
the trait in the same direction. SKAT alleviates assumptions (2) and (3), while SKAT-O lets the data 
decide what allelic architecture fits the trait-gene pair best. SAIGE-GENE implements all 3 tests and 
while this is outside the scope of our manuscript, comparing results of the 3 approaches on 
thousands of traits in UK Biobank would be of interest to the research community. Regarding the 
assumptions of the burden test, assumption (1) is accurate as we used only very rare variants in 
gene-based analysis, while assumption (2) should be accurate as we focus predominantly on 
predicted loss of function and missense variants. Regarding assumption (3), we investigated the 
consistency in the direction of effect of significant rare non-synonymous variants (pg 8, 203-205) and 
we show that it is uncommon for those within the same gene to have opposing effects (Fig 2e). In the 
unlikely scenario where this assumption is violated, we would expect a false negative rather than a 
false positive result and we made the decision a priori that this would be acceptable.  

 
3. Significance threshold. The authors are convincing in their calculations, however I would like to 
see their threshold confirmed by a calculation that would take into account the effective number 
of traits, variants and analyses through reduction of the respective correlation matrices 
(phenotype, LD and z-scores). It would be good if the authors added more details about their 
permutation method. Finally, in this paper the authors report results from two correlated analyses 
using the same test, single-point and collapsed. Two different thresholds were used instead of a 
single study-wide reporting threshold. The authors should convincingly justify this, or use a single 
threshold that adjusts for the increased reporting burden caused by the collapsing analysis. 

We provide further details on our permutation method (pg 25, lines 660 – 671). We also now provide 
the n-of-one permutation based assessment for ExWAS. The ExWAS and collapsing represent 
considerably different test statistic distributions and we consider treating them separately to be 
appropriate.  
 
E. Conclusions: robustness, validity, reliability 
0. The conclusion of the paragraph starting at line 188 is overly general. A qualifying statement 
should be added to the last sentence, acknowledging that this is observed only when testing non-
synonymous exonic variants. Indeed, isn't this conclusion likely to be wrong when studying non-PT 
and/or non-exonic variants? 

We now address this according to the reviewer’s suggestion – a valid point also raised by R2. See pg 
8, 203-205. 

 
1. Conclusions regarding association signals are conditional on the robustness of the methods 
used, as discussed previously. 

In the revised manuscript we emphasise the focus of this work is on the rare variant spectrum as this 
is where the value of exome sequencing comes from. We addressed the comments about the choice 



 

 

 

of an exact test statistic in earlier responses (and on pg 16, lines 403 – 417). Briefly, our comparison 
analysis shows that relying on a regression framework for low frequency variants results in unstable 
associations when minor allele counts in cases or controls approach zero; however, for signals 
achieving a p<1x10-8, the correlation of the -10*log10(p-values) between the Exact and SAIGE 
regression test was Pearson’s r = 0.9997, with the Exact test proving to be more conservative than 
SAIGE for variants with MAF≤0.01. As cited in earlier responses for R1, the considerably high rate of 
positive controls (known true rare-variant or gene-level associations) among our outputs are an 
indicator of robustness of the approaches taken in this study focusing on maximising value of access 
to the rarer end of the frequency spectrum to complement existing microarray-based results on the 
same dataset that are readily available to the public (See pg 7, Lines 186 – 188, pg 17 436 – 438). 

 
2. The conclusions concerning HMCN1 are backed up by evidence. The authors' analysis shows 
that HMCN1 variants are associated with lung function phenotypes. Separately, they show that 
increased expression of this gene may be involved in idiopathic pulmonary fibrosis and discuss 
some mechanistic pathways. However, as they note, this constitutes only the "beginning of an 
elucidation" and can be construed as weak from a clinical interest point of view, especially since it 
is the only signal discussed in detail (see H.).  

Following careful consideration, we have agreed to remove the HMCN1 example from the 
resubmission as we agree this story needs more experimental work to reach the levels for publication 
in this journal. A concern also shared by R4. 
 
F. Suggested improvements: experiments, data for possible revision 
1. Improve the presentation and dissemination of their results, ideally through the 
implementation of a searchable portal (solutions exist for single-point signals, e.g. pheweb). It is 
especially important that variants constituent of the collapsing tests are documented. 

We have released a public portal to accompany our PheWAS data and cite it’s link in the revised 
manuscript (http://azphewas.com/). It currently corresponds to gene-level associations for the 200K 
public exomes, but these data will be updated with the new associations statistics alongside the UK 
Biobank release schedule. 

 
2. Build upon the discussion of signals, for example through the discussion of positive controls, as 
well as further signals with translational potential. 

We further describe positive control findings from our analyses throughout the revised manuscript: 
see pg 7, lines 193-198, pg 10 lines 23-235,  pg 13 lines 302-305, supp table 9, and lines 304-306). 
 
G. References: appropriate credit to previous work? 
0. The authors could refer more to previous rare variant analyses, in particular with respect to the 
following points: 
- which methods did previous papers use to aggregate the effect of rare variants (WES, WGS, and 
even imputed GWAS)? 
- to what extent did the choice of methods place hypotheses on the type of signal that could be 
detected, and which type of signal was indeed detected? 

http://azphewas.com/


 

 

 

This can then spur an interesting discussion on how the current dataset can be used to validate 
these hypotheses, and the methods required for that. 

We have added more discussion of rare variant association analysis methods and other large scale 
studies that have employed them. See pg 17 lines 431 - 438 

 
1. The authors should report, in particular for collapsing tests, whether any of their 
gene/phenotype association has been previously determined, and if yes in which context (GWAS, 
previous rare variant, family studies...) and present supporting references. 

We provide additional fields in Supplementary Table 8 and Supplementary Table 9 for the collapsing 
analyses results highlighting the enrichment of positive control relationships amongst our collapsing 
analyses outputs on the basis of those gene-phenotype relationships already documented in the 
Online Mendelian Inheritance in Man (OMIM) database. 
 
H. Clarity and context: lucidity of abstract/summary, appropriateness of abstract, introduction and 
conclusions 
0. Presenting data at this scale is challenging, & this article is overall well-written and constructed. 
However, perhaps as a consequence of the vast scope of analyses performed, it is not entirely 
clear what the scientific focus of the paper is. Currently it feels neither like a resource paper (data 
accessibility/browsing/sharing is too limited), nor an in-depth analysis of what Biobank-scale WGS 
can tell us about the architecture of human disease (discussions on effects of rare variants are too 
succinct), nor like an examination of the clinical relevance of such analyses (see below).  

We anticipate this concern should be addressed with the release of the public facing PheWAS portal 
to accompany the association statistics generated by this large-scale PheWAS. 

 
1. As mentioned in E., the paragraph about HMCN1 feels somewhat ancillary. This is the 400th 
signal in terms of strength of association. How did the authors choose it for discussion? Some of 
the top-associated collapsing tests provide good proof of concepts: ALPL, APOC3, CST3, APOB, 
GPT... If the authors wish to focus the paper on clinically relevant gene/phenotype associations, 
the paper would benefit from discussion of those, plus any other additional signals of potential 
clinical/drug development importance. 

We are convinced by R3, R4 and the editors that a proper evaluation into the biology of any of the 
novel associations requires considerable experimental and translational validation that is outside the 
scope of this paper. Therefore, we have removed the HMCN1 example to focus on other aspects of 
the work, while we continue to work on HMCN1 biology over the coming years. 
 

Referee #4: 

This manuscript describes a massive analysis linking rare coding variants identified from whole 
exon sequencing on DNA from 269,171 participants in the UK Biobank to a large series of binary 
and quantitative traits identified based on clinical and laboratory data. The authors identified a 
large number of protein truncating variants (PTVs) and missense mutations and analyzed 



 

 

 

associations with both individual sequence variants and groups of presumed loss of function 
variants in the same gene. A large number of known associations were found and there were 
many new associations identified. The authors make a strong case that the approaches described 
will could eventually lead to new insights into the molecular bases of human disease and suggest 
promising drug targets. 
 
One weakness of the current manuscript is the authors effort to highlight a specific example of the 
utility of their approach. They chose to focus on the new association they identified between a 
PTV in the gene encoding hemicentin 1 (HMCN1), a secreted component of the extracellular matrix 
that has been suggested to contribute to the organization of cell adhesions, and an increase in the 
ratio of FEV1 to FVC. the authors correctly point out that the FEV1/FVC ratio is often increased in 
patients with restrictive lung diseases, including idiopathic pulmonary fibrosis (IPF). They include 
convincing data showing that expression of HMCN1 is increased in whole lung RNA from patients 
with IPF and suggest that this finding validates their approach. However, this change is in the 
opposite direction of the change suggested by their genetic data. The PTV in HMCN1 would 
presumable lead to a reduction in functional HMCT1, not the increase that is seen in IPF. This rare 
variant (with presumed reduction in HMCN1 function) is associated with the increase in FEV1/FVC 
that the authors used to identify a link to IPF. Of course, there are many other potential 
explanations for increases in the FEV1/FVC ratio other than restrictive lung disease and the fact 
that HMCN1 expression is actually increased rather than decreased in IPF suggests that the 
association identified probably had nothing to do with IPF. 
 
It is therefore unclear why the authors chose to evaluate how HMCN1 expression levels might 
alter the biology that underlies pulmonary fibrosis. The experiments they include also somewhat 
miss the point of the effects seen on HNCN1 gene expression seen in IPF. Rather than overexpress 
HMCN1 (the abnormality seen in IPF lungs) the authors show that knockdown of HMCN1 leads to 
a reduction in TGFb-induced upregulation of alpha smooth muscle in cultured primary lung 
fibroblasts. They also show that knockdown causes a reduction in baseline collagen 1a1 expression 
and claim that this knockdown also inhibits the increase in col1a1 induced by TGFbeta. However, 
when one takes into account the effects on baseline collagen expression, TGFb seems to induce 
similar proportionate increases in both control and HMCN1 KD fibroblasts. Again, since if anything, 
the effects seen are in the opposite direction of what would be required to connect a decrease in 
functional HMCN1 to an increase in FEV1/FVC, none of these data appear to shed light on how a 
PVT in the HMCN1 gene would increase the FEV1/FVC ratio. 
 
In summary, this is a very impressive paper that includes identification of many new genetic 
variants that might contribute to human disease and/or drug response. Unfortunately, the single 
example the authors chose to evaluate in more detail does not actually strengthen the manuscript 
and should either be deleted or replaced by a more convincing example, where the direction of 
effect of the variant and the underlying biology are more congruent. 

Taking into consideration the thoughtful feedback from our expert reviewer alongside similar 
comments from R3 we have made the difficult decision to exclude the HMCN1 example from this 
manuscript and work on this story independently and with more experimental work over time to 



 

 

 

better understand what relevance HMCN1 inhibition has to lung health beyond the physiological 
phenotypes currently identified. 

 

Reviewer Reports on the First Revision: 

Referee #1 (Remarks to the Author): 
 
The authors have done a good job in the revision, well done, but it is not quite there yet. 
 
In response to my previous review, the following issues remain: 
 
1. Choice of statistical test. I like the new para beginning line 211, which has partly dealt with my 
criticism. However this is going to be a really important point for future studies, and I would 
encourage the authors to do the SPA vs Exact test across all autosomes not just chr1 (i.e. test the 
full dataset). Yes it will burn some fossil fuel, but important. 
 
1b. abstract states "The latter revealed 1,703 statistically significant gene-phenotype relationships, 
...." 
- please add after the 1703 "versus xxx expected by chance" e.g. by using simulations or some 
other method. This then helps show the value of what has been found, and contributes to the 
choice of test discussion. 
 
2 Replication. The authors have partially addressed my previous major comment in the para 
beginning line 198 and in Supp Table 2 with replication in Finngen. However quite how many 
signals replicate or not is unclear from the text and Table. I would like at least a sentence or two 
on this in the main text. Does NA in the Table mean the phenotype was not tested in Finngen, or 
that the P value was 0.1, or what? More work needed on this please. 
 
Minor: 
3. In Fig 3c, in response to my previous comments about 'unbelievable associations' is it possible 
to label the previously known disease associations in a different colour or something to make them 
stand out as 'known truth'. 
 
I note some of the other reviewers made the same criticisms as I did about some points. However 
I have not been over the authors responses to the other reviewers in this round. 
 
regards & signed, david van heel 
 
 
Referee #2 (Remarks to the Author): 
 
My comments to the authors were addressed satisfactorily in the review. I defer to the remaining 
reviewers on whether the Fisher's test benchmarking is technically satisfactory. 
 
My only remaining minor comment is to include the processing times in the Methods section of the 
manuscript, instead of only in the responses. 
 
 
Referee #3 (Remarks to the Author): 
 
In this revision, the authors made efforts to address my and other reviewers' comments. While the 
manuscript has been improved, some of my initial concerns remain, particularly regarding the 
robustness of the statistical test used. Below I reproduce my original comments verbatim, with 



 

 

 

additional comments and responses for the authors. For concision, the authors' replies are not 
included, but my comments refer to them. This is followed by a second section of additional 
comments. 
 
1. The association methodology, which uses Fisher's exact test for binary traits and a linear 
regression for quantitative traits, is quite simplistic (see D. below). The use of these unadjusted 
models should be justified extensively, ideally replaced, or complemented using sensitivity 
analyses. 
 
The authors misunderstood my comment. I did not suggest rare variants should be ignored in a 
WES study (!). I remarked that the method used for both single-point and collapsing tests 
(Fisher's) is very rudimentary considering the Biobank-oriented method development efforts of 
late. For comments on the authors' comparison with SAIGE, see below. 
 
3. Section 6. of the methods describes sample filtering based on ethnicity, excluding all non-
European samples. While it is understood that this was done to alleviate the risk of spurious 
associations, (a) these samples could have been included had the authors chosen to adjust for 
ethnicity using a more complex model, (b) the authors themselves show these samples exhibit 
novel, specific and disease-relevant variants in Fig. 1g, and (c) excluding non-Europeans in the 
first paper to use the UKB WES data is not ideal. However, I do acknowledge that the cumulative 
proportion of non-Europeans does not exceed ~10%(Fig 1.f). 
 
The authors should add their reply: “Methods such as SAIGE and BOLTLMM, although they allow 
for inclusion of PCs, have not been used or tested for transethnic analysis. The appropriate 
approach for such analysis would be to analyse each ethnicity separately and then combine the 
results in a meta-analysis framework. In the UK Biobank instance, we expect such results to be 
overwhelmed by the European representation, and therefore, the non-European ancestry groups 
will add little information in this context. We feel this is best addressed by the generation of 
equivalent medical research resources in non-European collections” to the main text. Although the 
documentation of SAIGE states that multi-ethnic associations are untested, they also suggest that 
it may be well-powered and controlled with the adjustments of PCs. Without these precisions, their 
added paragraph ”Furthermore, the recognised Eurocentric bias across the field of human 
genomics has ethical and scientific consequences, exacerbating genomics healthcare inequality and 
limiting power to identify novel associations. The need to establish linked genomic and phenotypic 
resources equivalent to the exemplar UKB standard in other global populations has never been 
clearer” reads somewhat hypocritical, as restricting the analysis to unrelated white British 
individuals in a diverse cohort (mainly because of the chosen method, which is in turn to mitigate 
compute costs, i.e. convenience), can be perceived as perpetuating the Eurocentric focus of 
human genetics, rather than exploiting the little non-European information that does exist. 
 
4. The Data Availability statement does not state whether full exWAS and variant collapsing 
summary statistics will be publicly available. They should. Given the scope of the paper (phenome-
wide single-point exWAS and rare variant collapsing tests), and given the fact that it is the first 
such analysis of the UKB Exomes dataset, results should be disseminated widely, and results 
should be query-able by researchers, e.g through a searchable online portal. Variants contributing 
to every associated collapsing signal should be listed along with their single-variant effects. The 
presentation of association results, currently in the form of Table 1 (which feels more like a 
supplementary table) and ST6, could be improved (e.g., reporting only the strongest p-value for 
gene/phenotype pairs, improving phenotype descriptions, etc). 
 
I would like to commend the authors on implementing a browsable portal. One small comment is 
that the collapsing models are not documented in the results table when browsing. It would be 
good to display the details in an info bubble. 
 
0. The authors mention a Fisher's as the main association test for single-point analyses. This 



 

 

 

approach is historical and does not correct for well-documented sources of inflation/T1E. I 
understand the authors wished to include very low allele counts, however the overall impact of 
using an uncorrected method outweighs the single advantage of being able to include very rare 
variants in single-point testing. The reason variant aggregation tests exist is to bypass the 
fundamental limitations of single-point methods at very low allele counts. If it is retained (I don't 
think it should), Fisher's testing should only be used for those very rare variants. For anything not 
ultra-rare, up-to-date methods adjusting for ethnic and other covariates, as well as random 
relatedness effects, should be used. The size of the study is not a justification either, as single-
point GWAS studies of the full imputed UK Biobank, which are comparable in terms of sample size 
and variant numbers, have successfully used subtler models. Using a better model would make it 
unnecessary to remove non-Europeans and unrelated individuals. 
 
I thank the authors for augmenting their article with the SAIGE comparison. I must say that the 
correlation they show is impressive. This would suggest that in the current setting, a more 
complex regression model is “not needed” versus Fisher’s. Given that this is a conclusion with 
significant impact on the community, I feel it has to be fully irrefutable. To that effect, I have 
several comments below. 
- The authors perform additional preparation steps to their data to make it match the assumptions 
of Fisher’s (e.g. rebalancing sex-specific c/C ratios since they cannot adjust for sex). These 
operations are computationally costly, and should be added to the cost of running their analysis 
vs. SAIGE to avoid an unfair comparison. 
- SAIGE is notoriously inefficient versus REGENIE when it comes to multi-phenotype associations. 
Please repeat the comparison for REGENIE and include running time. 
- REGENIE 2 also performs variant aggregation tests natively. SAIGE is also able to do it if fed 
aggregated genotypes. Please include this in your comparison. 
- In all supplementary figures relating to this comparison, the authors select predictors that pass a 
given threshold in both studies (according to the legends). What if a test produces p=0.05 with 
one method and p=1e-100 in the other? These will reduce correlation and should be included. 
- What motivated the choice of the phenotypes? Wouldn’t one expect increased correlation among 
“all chapter IX” variables? What is the effective number of traits actually being compared? 
- Another enlightening metric could be a comparison of lambdas between the different methods. 
- Please also report r in general, not in subsets of variants 
- In the supplementary figures, give the coefficients of the blue regression lines 
- The authors repeatedly say that “Fisher’s exact is more robust for lower frequencies”. Does this 
simply mean that the p-values are less strong? In the absence of a ground truth, is this really an 
argument for Fisher’s superiority? Fisher’s exact is recommended in place of chi-squared in the 
analysis of 2x2 tables when individual cell counts are smaller than 5 or 10. To expand this very 
specific rule of thumb to “Fisher’s is better than a regression model when analysing rare variants” 
needs much more justification than currently provided in this article. 
 
1. A linked point is that some of the lambdas (inflation factors) are very low or very high. This 
suggests that a non-negligible part of the test statistics and resulting P-value distributions may be 
poorly calibrated. I would suggest using hard lambda thresholds (e.g. 0.95 - 1.05) to exclude 
these analyses from further consideration. 
 
Thanks for clarifying that most of the abnormal lambdas come from the recessive model. Please 
report lambdas in the 0.95-1.05 range and separately for the different models. 
 
2. Rare variant testing. Again, it is surprising to read that the authors have used a Fisher's exact 
test for rare variant association. As above, the same questions about adjustment of spurious effect 
apply here. Arguably, the most interesting use of WES is the examination of rare variants. The 
authors use a collapsing test, which makes important hypotheses regarding the architecture of the 
underlying signals. The authors mention in passing that they frequently observe concordant 
directions of effect in genes with multiple associated variants, but this and its relationship to the 
collapsing test should be discussed rigorously. It is regrettable that the authors did not examine 



 

 

 

different architectures, such as those modelled by SKAT-type methods, or SKAT-O optimal tests. 
In particular, I would have liked to see a distribution of the rho parameter, which could have 
confirmed the authors' hypotheses regarding signal architecture. These methods have historically 
scaled poorly, however implementations now exist for biobank sized datasets and the authors 
should use them. 
 
Thank you for adding this discussion. Since it is relevant to the choices made in the paper, I would 
include the paragraph starting at “The assumptions of the burden test…” in your reply to the text. 
 
3. Significance threshold. The authors are convincing in their calculations, however I would like to 
see their threshold confirmed by a calculation that would take into account the effective number of 
traits, variants and analyses through reduction of the respective correlation matrices (phenotype, 
LD and z-scores). It would be good if the authors added more details about their permutation 
method. Finally, in this paper the authors report results from two correlated analyses using the 
same test, single-point and collapsed. Two different thresholds were used instead of a single 
study-wide reporting threshold. The authors should convincingly justify this, or use a single 
threshold that adjusts for the increased reporting burden caused by the collapsing analysis. 
The added details around the permutation are very helpful, thanks to the authors for adding them. 
 
In their reply, the authors say “the ExWAS and collapsing represent considerably different test 
statistic distributions and we [consider them separately]”. I disagree. The two tests are the same 
(Fisher’s), test two different, but very closely related hypotheses, to the extent that one can be 
considered an extended scenario of the other. The tests are also not independent. As far as I 
understand, the exWAS contains test statistics for all variants with MAC>5. Imagine a case with 2 
qualifying RVs in the collapsing part. One of them with MAC=5 and the other with MAC=100. The 
collapsed test will be very similar to the single-point test of the second variant. 
I maintain that a single threshold would truly be “study-wide” here. Authors could use the 
aggregation p-value (2e-9) to declare significance across the board. 
 
ADDITIONAL COMMENTS. 
Line 80: Is it really well-recognised, or do these variants “need” to have large effects to be 
detected? It is an issue of detectability, not necessarily biological truth. 
Line 176: Mention here, early on, the testing methodology used. 
Line 275: MTR has not been defined or explained before. 
Line 341: I am confused by this paragraph. Does the fact that the authors find genes associated 
with haematological malignancies necessarily mean that they are picking up somatic variations vs. 
a germline susceptibility? 
Line 356: Mention here the author’s own comparison of fold increase vs. the 50k using their own 
methodology. Is there a marked difference, and can the authors expand on methodological 
differences between the cited studies and theirs? 
Line 361: This is a “dangerous” paragraph. It is of course statistically expected that there will be 
false negatives using a stringent P threshold. It does not mean that people should start 
investigating “suggestive” signals like in the early (and bad) days of GWAS. I would recommend 
moving this to the supplementary. 
Line 369: Does this mean that 18% of genes associated with a phenotype in the collapsing 
analysis also contain a significant variant in the single-point analysis? An important question is 
whether one signal is “tagging” the other in these cases, which could be assessed through 
conditional testing – were covariates allowed in the testing model. 
Lines 381-386: This newly added paragraph is quite confusing. 
Line 386-393: This is quite interesting. Was this accompanied by loss of power for some signals 
(i.e. do the reverse) ? Do the authors then recommend including more common variants in 
collapsing analyses? 
Line 443-445: This is not a sentence. 
Line 442: This newly added paragraph feels out of place in the wider flow of the article. Would it 
feel more at home in the intro? 



 

 

 

 

Author Rebuttals to First Revision: 

Dear Editor and Reviewers: 

We would like to thank the editorial team and reviewers for their comments and the opportunity to 
further improve our manuscript. We have now run SAIGE SPA for variants across all autosomes for all 
Chapter IX phenotypes. Consistent with our previous analysis limited to chromosome 1, we found 
that study-wide significant signals were highly correlated between SAIGE and the Fisher’s exact test 
(r = 0.99) and r = 0.95 across the full p-value distribution.  

We also appreciate the request to incorporate analyses of non-European ancestries. We are in 
complete ethical agreement that we should incorporate these individuals and set the right example 
for the community, irrespective of power expectations. We thus ran an additional PheWAS for each 
major non-European ancestral group with at least 1,000 exome sequenced participants (South Asian, 
East Asian, African). As expected, no novel gene-phenotype reached significance in any single 
population. However, we also performed a “pan-ancestry” analysis in which we used a Cochran–
Mantel–Haenszel (CMH) test to generate a combined, stratified p-value representing the data from 
all four genetic ancestry strata, including the European cohort. We also ran a pan-ancestry PheWAS 
for quantitative traits. These results are summarized in the manuscript and in Figure 4.  

Below, we address each of the specific editorial and reviewer comments and cite the location of the 
edits corresponding to the marked-up version of our resubmission. 

 

Referee #1 

1. Choice of statistical test. I like the new para beginning line 211, which has partly dealt with my 
criticism. However this is going to be a really important point for future studies, and I would 
encourage the authors to do the SPA vs Exact test across all autosomes not just chr1 (i.e. test the 
full dataset). Yes it will burn some fossil fuel, but important. 

In the revised text we have expanded the Chapter IX comparison across all autosomes. Our 
conclusions are the same as those based on chromosome 1 alone, in that results are highly correlated 
(r=0.99) with Fisher’s exact p-values being more conservative as the allele frequency reduces. We 
have updated the relevant text, figures and tables accordingly throughout (Supplementary Methods: 
Comparing exWAS results using Fisher’s exact test versus SAIGE with covariates and main manuscript 
Pg 9, lines 229 – 234). 

 

1b. abstract states "The latter revealed 1,703 statistically significant gene-phenotype 
relationships, ...." - please add after the 1703 "versus xxx expected by chance" e.g. by using 
simulations or some other method. This then helps show the value of what has been found, and 
contributes to the choice of test discussion. 



 

 

 

We have been conservative in setting our study-wide significance threshold using both the empirical 
synonymous and the permutation-based null distributions. As a result, at that conservative threshold 
the expected number is zero to nearest integer. We have added some text in the methods to 
emphasise the interpretation of the selected adjusted p-value threshold (See pg 12, line 279). 

 

2 Replication. The authors have partially addressed my previous major comment in the para 
beginning line 198 and in Supp Table 2 with replication in Finngen. However quite how many 
signals replicate or not is unclear from the text and Table. I would like at least a sentence or two 
on this in the main text. Does NA in the Table mean the phenotype was not tested in Finngen, or 
that the P value was 0.1, or what? More work needed on this please. 

Indeed, FinnGen studied approximately ~2.8K phenotypes compared to over 18,000 in the UK 
Biobank. Thus, some phenotypes in the UKB don’t have a comparison in FinnGen. Because of the 
different ontologies adopted by FinnGen and UKB, it is not a simple exercise to map all phenotypes 
across the resources to differentiate whether (i) a relevant phenotype wasn't studied in FinnGen or 
(ii) a relevant phenotype was studied in FinnGen but the p-value of the association is p>10-4. We 
have, however, taken this opportunity to update the FinnGen exercise using the most recent public 
release FinnGen r5 and updated the text, tables and figures accordingly. For each variant in Table S2 
(missense and PTV tabs), we have checked if any variant in that gene is associated with a related 
phenotype at p<10-4. If not, then we label it as ‘NA’. 
 

Minor: 
3. In Fig 3c, in response to my previous comments about 'unbelievable associations' is it possible 
to label the previously known disease associations in a different colour or something to make 
them stand out as 'known truth'. 

We appreciate this suggestion. The majority of the study-wide significant associations are well-
established and agree it is important to communicate this information. As such, we have revised 
supplementary tables 8 and 9 to provide greater clarity with respect to associations that are well 
established in OMIM. We believe that the incorporation of this information in supplementary tables 8 
and 9 provides the reader with a more comprehensive overview of prior knowledge, and facilitates 
greater understanding beyond what could be communicated through the annotation of Fig 3c.  

 

Referee #2: 

My comments to the authors were addressed satisfactorily in the review. I defer to the remaining 
reviewers on whether the Fisher's test benchmarking is technically satisfactory.  My only 
remaining minor comment is to include the processing times in the Methods section of the 
manuscript, instead of only in the responses. 

We now include computational requirements in the Methods section of revised manuscript (See Pg 
28, lines 729 – 743). 



 

 

 

 
 
 

Referee #3: 
 
The authors should add their reply: “Methods such as SAIGE and BOLTLMM, although they allow 
for inclusion of PCs, have not been used or tested for transethnic analysis. The appropriate 
approach for such analysis would be to analyse each ethnicity separately and then combine the 
results in a meta-analysis framework. In the UK Biobank instance, we expect such results to be 
overwhelmed by the European representation, and therefore, the non-European ancestry groups 
will add little information in this context. We feel this is best addressed by the generation of 
equivalent medical research resources in non-European collections” to the main text. Although the 
documentation of SAIGE states that multi-ethnic associations are untested, they also suggest that 
it may be well-powered and controlled with the adjustments of PCs. Without these precisions, 
their added paragraph ”Furthermore, the recognised Eurocentric bias across the field of human 
genomics has ethical and scientific consequences, exacerbating genomics healthcare inequality 
and limiting power to identify novel associations. The need to establish linked genomic and 
phenotypic resources equivalent to the exemplar UKB standard in other global populations has 
never been clearer” reads somewhat hypocritical, as restricting the analysis to unrelated white 
British individuals in a diverse cohort (mainly because of the chosen method, which is in turn to 
mitigate compute costs, i.e. convenience), can be perceived as perpetuating the Eurocentric focus 
of human genetics, rather than exploiting the little non-European information that does exist. 

We are in complete agreement that we should incorporate the non-European ancestry individuals 
and set the right example for the community, irrespective of statistical expectations. We have now 
expanded our study by incorporating the signals from 4,744 African, 1,475 East Asian and 5,714 
South Asian genetic ancestry participants for the set of 4,836 binary traits with at least 5 cases in at 
least one of the non-European ancestries. Alongside this we generated pan-ancestry collapsing 
PheWAS results for all quantitative traits. See Page 17 line 406 – page 19 line 463.  
 

I would like to commend the authors on implementing a browsable portal. One small comment is 
that the collapsing models are not documented in the results table when browsing. It would be 
good to display the details in an info bubble. 

The collapsing models are documented in the global filters of the portal  – we’d like to thank the 
reviewer for highlighting that this is not clear from the table itself. We will modify the info bubble to 
inform users where they can find this documentation in our next production release. 

 

I thank the authors for augmenting their article with the SAIGE comparison. I must say that the 
correlation they show is impressive. This would suggest that in the current setting, a more 
complex regression model is “not needed” versus Fisher’s. Given that this is a conclusion with 
significant impact on the community, I feel it has to be fully irrefutable. To that effect, I have 
several comments below. 



 

 

 

- The authors perform additional preparation steps to their data to make it match the assumptions 
of Fisher’s (e.g. rebalancing sex-specific c/C ratios since they cannot adjust for sex). These 
operations are computationally costly, and should be added to the cost of running their analysis 
vs. SAIGE to avoid an unfair comparison. 

The pre-processing steps referred to by the reviewer are included in our previous estimates around 
construction of phenotype matrices. We have now added some text to the compute section to clarify 
this on Pg 28, lines 729 – 743. We’d like to highlight that these are performed once per binary 
phenotype and then applied to all variants and genes studied for that binary phenotype. For 
example, the rebalancing case-control sex ratio is performed once per phenotype, resulting in a total 
of 17,362 tests, which is negligible in comparison to the ~108 billion variant-based ExWAS and ~4.5 
billion gene-based collapsing binary tests performed in this study. 

 

- SAIGE is notoriously inefficient versus REGENIE when it comes to multi-phenotype associations. 
Please repeat the comparison for REGENIE and include running time.  

- REGENIE 2 also performs variant aggregation tests natively. SAIGE is also able to do it if fed 
aggregated genotypes. Please include this in your comparison. 

In this paper, we have not introduced a novel untested statistical framework. Rather, we have 
focused on applying a conventional exact test in a carefully designed (harmonised) experimental 
setting. Surprisingly,  exact test implementations have not been routinely included in benchmarking 
of novel regression-based methods.  

Viewed holistically and conservatively, the results represented in our study do not suggest concern 
for a high Type I error rate that would necessitate additional methodological evaluation. In response 
to the reviewer’s requests during the first round of revisions, we compared to SAIGE as the most used 
framework in biobank settings for the past two years. Although we agree that a study comparing the 
growing number of available statistical approaches would be of interest, we feel that this is 
tangential to the scope of our current manuscript, particularly in the absence of concerns over 
QC/robustness. With the UKB exome data now publicly available, we highlight in the discussion (Pg 
20, lines 494-501) that future work should focus on benchmarking both novel and conventional 
algorithms on these data.  

For the purposes of the response, in accordance with the author recommendations, we have now run 
the additive model using the approximate Firth likelihood ratio test with REGENIE (switching to the 
Firth likelihood ratio test for p-values < 0.01) to compare to the FET results. We restricted this 
comparison to chromosome 1 for the 324 traits in Chapter IX, as our FET-SAIGE comparison 
highlighted chromosome 1 is a fair representation of autosome-wide results, and thus the additional 
compute is not warranted. For the chromosome 1 comparison, we adjusted REGENIE with the same 
covariates as SAIGE, i.e., age, sex, sequencing batch and 10 PCs as provided by Bycroft et al. 
Following additional advice from the REGENIE website, we restricted comparisons to only variants 
with MAC ≥ 5.  

Across the 324 traits, for signals achieving a p<1x10-8 across any of Fisher’s Exact, SAIGE or REGENIE, 
the Pearson’s correlation coefficient of the -10*log10pvalues between REGENIE and FET is 0.999 with 



 

 

 

95% confidence interval 0.998-0.999. Pearson’s correlation coefficient of the -10*log10pvalues 
between SAIGE and FET is 0.999 with 95% confidence interval 0.9987-0.9995. See Figure 1 in this 
response. 

Across the 324 traits on chromosome 1, there are 62,222,510  variant-trait pairs where REGENIE, FET 
and SAIGE SPA return a p-value (excluding where SAIGE SPA pv=0). Pearson’s correlation coefficient 
on the -10*log10pvalues between REGENIE and FET is 0.938 with 95% confidence interval 0.93799-
0.93805. Pearson’s correlation coefficient on the -10*log10pvalues between FET and SAIGE is 0.9497 
with 95% confidence interval 0.94968-0.94973.  

When we compare the p-values for different allele frequency bins, we observe that all three methods 
provide similar p-values for common and low frequency variants, with both REGENIE and SAIGE 
generating increasingly lower p-values for rarer variants (MAF<0.001). See Figure 2 in this response. 

Regarding run time, for the chromosome 1 Chapter IX collection, REGENIE ran the additive model (n= 
62,222,812 statistical tests) 1.08 times faster compared to the time it took for Fisher’s exact to 
complete all three genetic models in one analysis (n= 205,072,560 statistical tests). REGENIE does not 
currently have the option to run 3 models in one analysis. 

Figure 1 

 
Figure 2 



 

 

 

 

 

 

 



 

 

 

 

 

 

- In all supplementary figures relating to this comparison, the authors select predictors that pass a 
given threshold in both studies (according to the legends). What if a test produces p=0.05 with one 
method and p=1e-100 in the other? These will reduce correlation and should be included. 

Across the autosomes for the 324 traits, there are ~655M variant-trait pairs where both FET and 
SAIGE return a p-value. Due to the large number of pairs, it is challenging to create plots and 
therefore for plotting only, we focus on the subset of 2,105,332 variant-trait pairs with p-values < 
0.01.  

Specifically to the reviewers concern, the correlation when considering all results achieving a p<1x10-

8 in either Fisher’s or Saige SPA is 0.99 (now Supplementary Figure 2). There are no extreme p-value 
discordance examples after exclusion of SAIGE SPA p=0 from comparisons. See “Supplementary 
Methods: Comparing ExWAS results using Fisher’s exact test versus SAIGE with covariates” and main 
manuscript pg 9, lines 229 – 234. 



 

 

 

 

- What motivated the choice of the phenotypes? Wouldn’t one expect increased correlation 
among “all chapter IX” variables? What is the effective number of traits actually being compared? 

This was motivated by our Centre’s particular interest in cardiovascular disease. As also requested by 
R1, to get more independent data points in this benchmarking we have now expanded the Chapter IX 
assessment to all autosomes rather than just chromosome 1.  

In response, we have now calculated pairwise correlations for all 324 Union phenotypes included in 
Chapter IX. Among 52,326 phenotype pairs, 71 pairs achieved an r2 > 0.4 and 140 pairs achieved an r2 

> 0.2, suggesting a subset—but not the majority—of these phenotypes are strongly correlated. For 
example, setting a phenotype pairwise correlation pruning threshold of r2 < 0.4 results in 262 (80.1%) 
effective phenotypes of the 324 Chapter IX Union phenotypes adopted for these comparisons. We 
include these correlation statistics in the revised supplemental methods describing this activity and 
have included the list of pairs with an r2 > 0.2 as supplementary table 29. 

 

- Another enlightening metric could be a comparison of lambdas between the different methods. 

We have provided this in the revised manuscript for the expanded comparison of all autosomes in 
Chapter IX. For Fisher’s we observed a median lambda of 1.00064  [range  0.967544-1.069814] and 
for the SAIGE SPA we observed a median lambda of 0.995256 with a wider lambda distribution range 
[range 0.937221 – 1.093990]. Consistent with the high correlations described earlier between the 
two Phred distributions (See pg 9, lines 233 – 236). 

 

- Please also report r in general, not in subsets of variants 

Across the autosomes for the 324 traits, there are 654,927,125 variant-trait pairs where both FET 
and SAIGE return a p-value. Pearson’s correlation coefficient across all variant-trait pairs was r = 0.95 
and we have added this statistic to the manuscript (See pg 9, line 229). Due to the large number of 
pairs, it is difficult to create plots and therefore for plotting only, we focus on the subset of 2,105,332 
variant-trait pairs with p-values < 0.01. (See “Supplementary Methods: Comparing exWAS results 
using Fisher’s exact test versus SAIGE with covariates”). 

 

- In the supplementary figures, give the coefficients of the blue regression lines 

This is now provided in the revised supp figures. 

 

- The authors repeatedly say that “Fisher’s exact is more robust for lower frequencies”. Does this 
simply mean that the p-values are less strong? In the absence of a ground truth, is this really an 
argument for Fisher’s superiority? Fisher’s exact is recommended in place of chi-squared in the 
analysis of 2x2 tables when individual cell counts are smaller than 5 or 10. To expand this very 



 

 

 

specific rule of thumb to “Fisher’s is better than a regression model when analysing rare variants” 
needs much more justification than currently provided in this article.  

We reviewed the text and identified the two relevant sections. The language in the manuscript is 
consistent with the interpretation of the comparisons and the reviewer’s own view. For convenience, 
we provide below the language in the two relevant sections (one in main and one in supplemental). 
Note, we could not find use of “is better than.”  

Main document (pg 9, lines 231 – 233). “The Fisher’s exact p-values were more conservative than 
SAIGE for lower frequency variants (MAF ≤ 1%) (Supplementary Figures 3 and 4, Supplementary Table 
6).”  

Supplemental document: “When focusing across different MAF ranges: common (MAF≥0.05), low 
frequency (0.01≤MAF<0.05), rare (0.001≤MAF<0.01) and very rare (MAF<0.001) variants 
(Supplementary Figure 4a-4d), SAIGE reports lower p-values than the Fisher’s exact test p-values with 
decreasing MAF. We therefore reach the conclusion that in this setting the Fisher’s exact p-values 
are more conservative than SAIGE.” 

In both situations we believe that “more conservative than” captures the reviewer’s view that 
Fisher’s generates less impressive p-values in the low frequency range. 

 

Thanks for clarifying that most of the abnormal lambdas come from the recessive model. Please 
report lambdas in the 0.95-1.05 range and separately for the different models. 

The full set of lambdas for every studied phenotype-model combination are available in 
Supplementary Table 22 – lambda distributions. We have created a new supplemental table below 
that includes the percentage of lambdas falling between lambda ranges, per model introduced as 
new Supplementary Table 23.  

 Binary traits Quantitative traits 
Model λ 0.95-1.05 (%) λ 0.90-1.10 (%) λ 0.95-1.05 (%) λ 0.90-1.10 (%) 
flexdmg 16097 (93) 17338 (100) 1278 (90) 1342 (95) 
flexnonsyn 16387 (94) 17336 (100) 1301 (92) 1357 (96) 
flexnonsynmtr 16200 (93) 17337 (100) 1298 (92) 1367 (97) 
ptv 14025 (81) 17057 (98) 1248 (88) 1338 (95) 
ptv5pcnt 14343 (83) 17131 (99) 1238 (87) 1327 (94) 
ptvraredmg 15895 (92) 17338 (100) 1283 (91) 1354 (96) 
raredmg 15525 (89) 17316 (100) 1311 (93) 1388 (98) 
raredmgmtr 14912 (86) 17218 (99) 1321 (93) 1402 (99) 
rec 11866 (68) 16086 (93) 1216 (86) 1407 (99) 
syn 15868 (91) 17331 (100) 1389 (98) 1416 (100) 
UR 14548 (84) 17174 (99) 1273 (90) 1381 (98) 
URmtr 14177 (82) 17013 (98) 1272 (90) 1386 (98) 

 

 



 

 

 

In their reply, the authors say “the ExWAS and collapsing represent considerably different test 
statistic distributions and we [consider them separately]”. I disagree. The two tests are the same 
(Fisher’s), test two different, but very closely related hypotheses, to the extent that one can be 
considered an extended scenario of the other. The tests are also not independent. As far as I 
understand, the exWAS contains test statistics for all variants with MAC>5. Imagine a case with 2 
qualifying RVs in the collapsing part. One of them with MAC=5 and the other with MAC=100. The 
collapsed test will be very similar to the single-point test of the second variant. I maintain that a 
single threshold would truly be “study-wide” here. Authors could use the aggregation p-value (2e-
9) to declare significance across the board. 

We have revised the threshold for exWAS to p≤2x10-9 throughout the manuscript and updated all 
tables and figures accordingly. (See Pg 26, lines 688 – 692). 

 
ADDITIONAL COMMENTS. 

Line 80: Is it really well-recognised, or do these variants “need” to have large effects to be 
detected? It is an issue of detectability, not necessarily biological truth. 

We have revised the text accordingly (See pg 3, lines 81 – 82). 

 

Line 176: Mention here, early on, the testing methodology used. 

We have revised the text accordingly (See pg 8, lines 188-193). 

 

Line 275: MTR has not been defined or explained before. 

We have revised the text accordingly (See pg 12, lines 286-288). 

 

Line 341: I am confused by this paragraph. Does the fact that the authors find genes associated 
with haematological malignancies necessarily mean that they are picking up somatic variations vs. 
a germline susceptibility? 

Aside from DDX41, which is known familial autosomal dominant form of myeloproliferative 
neoplasms, the remaining gene signals are enriched for established somatic-driven haematological 
malignancies. However, we agree the importance to make that data more accessible to our readers. 
To this effect, we have included a new Supplementary Figure 6 that plots the distribution of the 
alternative allele ratio (i.e., the percentage of all reads in the sequence data at the site that support 
the alternative allele) and include as a reference the established germline BRCA1 and BRCA2 
alternative allele ratios, which are known germline disease drivers. We now cite this supplemental 
figure in the main manuscript (See pg 15, line 358).  



 

 

 

 

 

Line 356: Mention here the author’s own comparison of fold increase vs. the 50k using their own 
methodology. Is there a marked difference, and can the authors expand on methodological 
differences between the cited studies and theirs? 

We have introduced the fold increase as function of sample size growth from 50K to 300Kv1 (i.e., 
prior to the 300Kv2 phenotypic refresh) (See pg 15 line 373 – pg 16 line 377). When comparing the 
results of our collapsing method applied to the full UKB dataset versus the first tranche of 50K data, 
we observed an 18-fold increase in statistically significant gene-trait associations. Incorporating the 
updated phenotypic data for the same set of samples released up to July 2020 resulted in a 24-fold 
increase in significant associations compared to the 50K data. 

An expanded description of the methodological differences between the 50K comparison studies can 
be found in “Supplementary Methods: Comparing 50K UKB gene-level results across multiple 
studies”. 

 

Line 361: This is a “dangerous” paragraph. It is of course statistically expected that there will be 
false negatives using a stringent P threshold. It does not mean that people should start 
investigating “suggestive” signals like in the early (and bad) days of GWAS. I would recommend 
moving this to the supplementary. 

We have moved this section to the supplement. 

 

Line 369: Does this mean that 18% of genes associated with a phenotype in the collapsing analysis 
also contain a significant variant in the single-point analysis? An important question is whether 
one signal is “tagging” the other in these cases, which could be assessed through conditional 
testing – were covariates allowed in the testing model. 



 

 

 

This highlights that for 18% of gene aggregate (collapsing) signals an individual variant in those 
genes (exWAS) also achieved significance. One possible explanation is that this is driven by genes 
where both common and rare risk variants contribute to disease burden. We now include a citation 
to our other study currently available in biorxiv (https://doi.org/10.1101/2020.12.10.419663) where 
we performed a deep dive on FLG and asthma risk – finding that two well-known common PTVs and 
the collection of rare PTVs contribute to increased early-onset asthma risk, and achieve comparable 
effect sizes (common PTV #1 [rs61816761-G-A]  p = 6·9x10-21, OR=1.9, 95%CI=1.7-2.2; common PTV 
#2 [rs558269137-CACTG-C]  p = 4·0x10-20, OR=1.9, 95%CI=1.7-2.1; aggregate collection of rare FLG 
PTV variants not inclusive of two aforementioned common PTVs [p=2.7x10-10, OR=1.7, 95%CI=1.5-
2.1]). See pg 19 lines 475-479. 

 

Lines 381-386: This newly added paragraph is quite confusing. 

We have revised the paragraph to achieve more clarity. 

 

Line 386-393: This is quite interesting. Was this accompanied by loss of power for some signals 
(i.e. do the reverse) ? Do the authors then recommend including more common variants in 
collapsing analyses? 

It is very feasible to envision running additional collapsing models with more liberal MAFs beyond the 
PTV class. We have included additional text reflecting some soft recommendation that, in our 
experience, the collapsing approach is best suited for aggregation of rare variants, and that for 
interests in more common variants, one might be better placed to rely on the single-point analyses. 
We did make an exception for the PTV class, both out of curiosity for this exercise, but also because 
as a variant class we had higher confidence, in general, of their predicted functional effect than what 
we do for missense variants. See pg 16, lines 401 – 404 

 

Line 443-445: This is not a sentence. 

We have revised the text accordingly. 

 

Line 442: This newly added paragraph feels out of place in the wider flow of the article. Would it 
feel more at home in the intro? 

We have moved the text accordingly. 

 

Reviewer Reports on the Second Revision: 

Referee #1 (Remarks to the Author): 
 
I have no further comments to be addressed. I would be happy for this study to be published in 

https://doi.org/10.1101/2020.12.10.419663


 

 

 

Nature should the Editors so decide. 
 
I have not cross-checked that other reviewers comments have been addressed. 
 
The authors are to be commended in this revision for also updating to Finngen v5 results. This new 
sentence in discussion is also appropriate "Importantly, use of the exact test requires extremely 
careful quality control, case-control harmonization, and ancestry pruning." 
 
david van heel 
 
 
 
Referee #3 (Remarks to the Author): 
 
The authors have now made substantial changes to the manuscript to address mine and other 
reviewers' comments. These include 1) a comparison of their p-value distribution with that 
obtained from state-of-the-art methods, and 2) the inclusion of non-European ancestry samples. 
These changes have improved the manuscript, and I am not convinced that the results presented 
here are reasonably exempt of type-1 error. 
 
However, upon rereading the manuscript as a whole, I still cannot give a positive review for 
publication in Nature. 
 
The first reason remains the choice of method. Despite showing that their results are robust in this 
particular case, analysing without a linear mixed model requires careful pre-processing and testing 
to eliminate all potential sources of bias, as the authors themselves describe. The use of biobank-
ready linear mixed model software, which straightforwardly corrects for this type of bias, should be 
encouraged, especially since the time advantage of using simpler models will likely disappear when 
using recent versions such as REGENIE 2. I therefore think that giving widespread exposure to a 
manuscript that, at least partially for reasons of expediency, chooses a naive, hard to use and 
therefore error-prone model, could set a bad example for the community. 
 
The second reason is the scope of the paper. Although it presents some insight into the overlap of 
associations with drug targets, the main output of the paper is a database of PheWAS associations 
across a very wide range of phenotypes. Without a deeper examination of the role of these 
variants and the translational potential of these signals, this reads like a resource paper 
comparable to the Global Biobank Engine (McInnes et al., Bioinformatics, 2018, based on de 
Boever et al., Nat Commun 2018), or the unpublished Neale results. A paper of higher ambition 
should go further than, as the authors write, "expand the catalogue of statisically significant 
associations". 
 
The paper would also benefit from more concise writing. In its current state it quite often gets lost 
in detail, reads rough and can seem unfocused at times. It would also be nice to make sure the 
results can be reproduced. Is the code available, have the authors packaged it in a way that allows 
reproduction and reuse, in particular with respect to statistical testing? 
 
 
l. 86. Although TOPMed is likely to improve imputation accuracy for RVs due to its size, HRC 
imputation doesn't allow to go too low in the allele frequency spectrum. 
 
l. 94-96. Please review the grammar of this sentence. This is the place to spend a bit more time 
introducing the various methods of aggregation and the statistical frameworks involved. 
 
l. 193-198. The reason for this choice (computational efficiency) should be clearly stated from the 
start. The fact it turned out to be conservative doesn't need to be mentioned here. 



 

 

 

 
l. 201-202. This observation indicates that the authors primarily conducted a frequency-agnostic 
GWAS, then noting that 26% of signals came from variants with MAF<0.5%. Focusing on rare 
variants from the get-go would be better. The authors can comment on the overlap between their 
common-variant signals and previously reported ones. 
 
l. 214-216. Is this for rare significant PTVs/missense only or irrespective of MAF? How many of 
these gene/phenotype or indeed variant/phenotype relationships have been found by previous 
imputation-based UKB studies (e.g. Neale)? In general (not just for PTV/missense), a comparison 
with imputed GWAS in UKB is important both for novelty analysis and sensitivity. Perhaps a 
summary here with a couple of sentences and a more extended paragraph in the discussion? 
 
paragraph l. 227. This should be moved to the discussion. Remove runtime comparisons from the 
main text as the time advantage is expected and comes at the expense of robustness. 
 
l. 288-289. Remove "appropriate". Please reformulate "At this very..." by e.g. "Under this 
threshold, no positive associations are expected under the null." 
 
l. 307. "in this study"? Do you support/recommend the use of MTR in general as a further filter to 
select variants more likely to be functional? 
 
l. 370-372. I am still not convinced by this somatic variant paragraph. The added sentence does 
not particularly help. I suggest to substantially expand on these claims or take it out. 
 
l. 435-442. Remove the suggestive association. 
 
l. 441, 471. "insignificant" is not the proper wording. In Fig 4 legend "landed above" is also not 
serious wording. 
 
Fig. 4. b. and d. seem quite surprising to me. I would expect a marked asymmetry between blue 
signals (not significant before inclusion of non-Europeans) and orange (used to be significant in 
Europeans only), with more of the former, and weaker delta-phred values for the latter. It seems 
very surprising that adding/removing ~5% of samples changes some p-values by a log-factor of 
40? 
 
l 491-496. The proper way to test for this is through a conditional analysis. 
 
l 501-518. Emphasise that this was chosen to improve computational efficiency but is not 
something people should do in general. 
 
l. 551. What method did the authors "introduce"? 
 
l. 681. All software should be referenced. Rephrase l. 684-686 for clarity. 
 
l. 701. Remove "to account for large case-control imbalances". Also remove "permit the study of 
extremely rare variants". If that were the reason the authors could have used this test only for 
those variants with MAC<7. 
 
l.710-712. Doesn't this contradict the "zero expected positives under the null"? In general the 
number of tests performed seems to change throughout the manuscript, but if the authors 
performed 108bn variant+4.5bn collapsing, the total exceeds the 38.7 tested, bringing the 
expected number (under permutation) to over 36 false positives? 
 
l. 788. is this a second paragraph on n of 1 permutation? 
 



 

 

 

l. 794. Combining it with l. 710, does this mean that 18 permuted p-values were between 1.9e-9 
and 2e-9? 

 

Author Rebuttals to Second Revision: 

Below, we address each of the specific editorial and reviewer comments and cite the location of the 
edits corresponding to the marked-up version of our resubmission. 

 

Referee #1 

I have no further comments to be addressed. I would be happy for this study to be published in 
Nature should the Editors so decide. I have not cross-checked that other reviewers comments 
have been addressed. The authors are to be commended in this revision for also updating to 
Finngen v5 results. This new sentence in discussion is also appropriate "Importantly, use of the 
exact test requires extremely careful quality control, case-control harmonization, and ancestry 
pruning." 

We have ensured this critical sentence persists in the discussion. 

 

Referee #3 

The authors have now made substantial changes to the manuscript to address mine and other 
reviewers' comments. These include 1) a comparison of their p-value distribution with that 
obtained from state-of-the-art methods, and 2) the inclusion of non-European ancestry samples. 
These changes have improved the manuscript, and I am now convinced that the results presented 
here are reasonably exempt of type-1 error. However, upon rereading the manuscript as a whole, I 
still cannot give a positive review for publication in Nature.  

The first reason remains the choice of method. Despite showing that their results are robust in this 
particular case, analysing without a linear mixed model requires careful pre-processing and testing 
to eliminate all potential sources of bias, as the authors themselves describe. The use of biobank-
ready linear mixed model software, which straightforwardly corrects for this type of bias, should 
be encouraged, especially since the time advantage of using simpler models will likely disappear 
when using recent versions such as REGENIE 2. I therefore think that giving widespread exposure 
to a manuscript that, at least partially for reasons of expediency, chooses a naive, hard to use and 
therefore error-prone model, could set a bad example for the community. 

As previously described by the reviewer, the Fisher’s exact test is simpler, significantly more 
accessible to implement than the comparative software suites, and can provide robust results. The 
pre-association harmonisation process adopted here, does not substantially deviate from established 
best practice QC that would be typically implemented when adopting linear mixed model approaches 
(aside from perhaps the additional sex harmonization). Nonetheless, we now include the REGENIE 
2.0.2 comparisons from our previous response as a supplemental table (Table S6). 



 

 

 

 

The second reason is the scope of the paper. Although it presents some insight into the overlap of 
associations with drug targets, the main output of the paper is a database of PheWAS associations 
across a very wide range of phenotypes. Without a deeper examination of the role of these 
variants and the translational potential of these signals, this reads like a resource paper 
comparable to the Global Biobank Engine (McInnes et al., Bioinformatics, 2018, based on de 
Boever et al., Nat Commun 2018), or the unpublished Neale results. A paper of higher ambition 
should go further than, as the authors write, "expand the catalogue of statisically significant 
associations". 

We feel the above summary is not a fair representation of the work described in the manuscript and 
appears to contrast with other comments received during this peer review process. Whilst de Boever 
et al (2018), McInnes et al (2018) (both pertaining to the Global Biobank Engine) and the unpublished 
Neale results might be considered useful resources, they do not describe findings from large-scale 
exome sequencing studies. We encourage the reviewer to draw from more recent comparison papers 
such as the Regeneron/GSK 50k exomes paper (PMID: 33087929) or the gnomAD papers (PMID: 
32461654). 

 

The paper would also benefit from more concise writing. In its current state it quite often gets lost 
in detail, reads rough and can seem unfocused at times. It would also be nice to make sure the 
results can be reproduced. Is the code available, have the authors packaged it in a way that allows 
reproduction and reuse, in particular with respect to statistical testing? 

We have considerably edited the draft and worked through the Nature checklists to ensure our 
packages are public for reproduction/reuse. 

 

l. 86. Although TOPMed is likely to improve imputation accuracy for RVs due to its size, HRC 
imputation doesn't allow to go too low in the allele frequency spectrum. 

HRC is among the most common imputation panels adopted by the community and we believe it was 
rightfully cited. We have since removed this citation according to the reviewers suggestion. 

 

l. 94-96. Please review the grammar of this sentence. This is the place to spend a bit more time 
introducing the various methods of aggregation and the statistical frameworks involved. 

Due to space, we cannot expand such a methodological review. We leave the concise overview in the 
introduction and include details about other analytical frameworks in the corresponding methods 
sections. We cite our recent Nature Review Genetics paper (PMID: 31605095) throughout the 
manuscript as it provides a dedicated in-depth review of collapsing analysis frameworks and 
guidelines.  

 



 

 

 

l. 193-198. The reason for this choice (computational efficiency) should be clearly stated from the 
start. The fact it turned out to be conservative doesn't need to be mentioned here. 

We feel this is inaccurate for at least 2 reasons. Firstly, the choice of an exact test was driven by our 
considerable experience applying it to large-scale case-control sequencing studies, including our 2019 
Nature Review Genetics paper (PMID: 31605095). In addition to the NRG paper, we have successfully 
published studies using this approach in Science (PMID: 25700176), Lancet Neurology (PMID: 
28102150), NEJM (PMID: 33382938), JAMA Cardiology (PMID: 33326012) and multiple other 
journals. We provide some citations to these to further reaffirm that the selection wasn’t based on 
any expected computational efficiency, but rather our experience. Secondly, we feel that not 
describing the full comparison would be withholding important information and we are not 
comfortable with such lack of transparency. Therefore, we retain our summary of the benchmarking 
results to SAIGE and REGENIE, which also clearly demonstrated that the Fisher’s exact test was the 
more conservative test statistic – an important factor for many researchers. 

 

l. 201-202. This observation indicates that the authors primarily conducted a frequency-agnostic 
GWAS, then noting that 26% of signals came from variants with MAF<0.5%. Focusing on rare 
variants from the get-go would be better. The authors can comment on the overlap between their 
common-variant signals and previously reported ones. 

We decided to not withdraw any executed analyses from our paper. Our resubmission includes the 
frequency-agnostic analyses. 

 

l. 214-216. Is this for rare significant PTVs/missense only or irrespective of MAF? How many of 
these gene/phenotype or indeed variant/phenotype relationships have been found by previous 
imputation-based UKB studies (e.g. Neale)? In general (not just for PTV/missense), a comparison 
with imputed GWAS in UKB is important both for novelty analysis and sensitivity. Perhaps a 
summary here with a couple of sentences and a more extended paragraph in the discussion? 

Comparisons of imputation to sequencing have been provided in the Van Hout et al. Regeneron-GSK 
50K Exomes paper (PMID: 33087929) and more recently in Barton et al. (2021) (PMID:34226706). We 
continue to believe that this is out of scope for our paper and we do not believe we will add anything 
beyond the previous literature focusing on this. 

 

paragraph l. 227. This should be moved to the discussion. Remove runtime comparisons from the 
main text as the time advantage is expected and comes at the expense of robustness. 

Our benchmarking comparisons demonstrate that our choice of statistic is not only more 
computationally efficient but also more robust. We thank the reviewer in particular for their previous 
suggestion to compare the genomic inflation factor distribution statistics across the various 
approaches which further endorses the selection of the exact test. We decide to retain the runtime 
comparisons (also requested by R2), and the lambda distributions across the three approaches in the 



 

 

 

spirit of openness and transparency to the community. In that spirit, we have also included the 
REGENIE 2 comparisons in addition to SAIGE as part of the supplemental table 6. 

 

l. 288-289. Remove "appropriate". Please reformulate "At this very..." by e.g. "Under this 
threshold, no positive associations are expected under the null." 

We have revised the text accordingly (line 606-607). 

 

l. 307. "in this study"? Do you support/recommend the use of MTR in general as a further filter to 
select variants more likely to be functional? 

We have revised the text accordingly. 

 

l. 370-372. I am still not convinced by this somatic variant paragraph. The added sentence does not 
particularly help. I suggest to substantially expand on these claims or take it out. 

We have revised the text accordingly to simplify what we feel remains an interesting finding. 

 

l. 435-442. Remove the suggestive association.  

We have removed the suggestive association from the main text. 

 

l. 441, 471. "insignificant" is not the proper wording. In Fig 4 legend "landed above" is also not 
serious wording. 

We have revised the text accordingly. 

 

Fig. 4. b. and d. seem quite surprising to me. I would expect a marked asymmetry between blue 
signals (not significant before inclusion of non-Europeans) and orange (used to be significant in 
Europeans only), with more of the former, and weaker delta-phred values for the latter. It seems 
very surprising that adding/removing ~5% of samples changes some p-values by a log-factor of 40?  

As a reminder, this is a change of a log factor of 4 (p=0.0001) and not 40 as the Phred score is 10*-
log10(p-value). We have added an extra sentence in the figure legend to ensure this is not 
misinterpreted by readers. 

 

l 491-496. The proper way to test for this is through a conditional analysis. 



 

 

 

We have consulted amongst the team and feel that this remains an appropriate analysis. 

 

l 501-518. Emphasise that this was chosen to improve computational efficiency but is not 
something people should do in general. 

This would not be an accurate reflection of our test statistic choice. Indeed the computational 
efficiency is a selection factor, but our decision is based on the many virtues of this approach – as 
described in our NRG 2019 paper (PMID: 31605095) and other respectable journals described earlier. 
We have, however, included the following clear points: 

a) we clearly and openly outline the limitations and possible risks of adopting this method in similar 
studies and that all scientists should follow best experimental design and continue to be guided by 
important statistics such as genomic inflation factor in their decisions if appropriately applied – as 
they would with any other analytical framework. 

b) we include an explicit recommendation that others use other tests (i.e. mixed linear models) in 
studies where they identify high genomic inflation in their test statistic distributions or where such 
careful quality control cannot be ensured. 

c) we mention that more in-depth comparisons of the exact test and mixed linear models are 
required and should be performed in separate future studies, including studies introducing new 
frameworks should include the exact test as a comparator. 

d) the use of an informed null distribution like the permutation-based and synonymous empirical null 
distribution adopted for collapsing analyses are both incredibly important approaches to defining 
study-wide p-value cut-offs in large multiple-phenotype settings like PheWAS. Researchers should 
continue to be diligent in their pre-association QC and cohort harmonisation, irrespective of 
statistical approach implemented, and continue to be guided by tried and tested genomic inflation 
factors in assessing the health checks of their large-scale genomics studies. Critically, the use of 
uninformed, arbitrary or less conservative p-value thresholds should be strongly discouraged. 

 

l. 551. What method did the authors "introduce"? 

We have revised the text accordingly. 

 

l. 681. All software should be referenced. Rephrase l. 684-686 for clarity. 

We have referenced all software and revised the text accordingly. 

 

l. 701. Remove "to account for large case-control imbalances". Also remove "permit the study of 
extremely rare variants". If that were the reason the authors could have used this test only for 
those variants with MAC<7. 



 

 

 

We have removed these phrases accordingly.  

 

l.710-712. Doesn't this contradict the "zero expected positives under the null"? In general the 
number of tests performed seems to change throughout the manuscript, but if the authors 
performed 108bn variant+4.5bn collapsing, the total exceeds the 38.7 tested, bringing the 
expected number (under permutation) to over 36 false positives? 

This section refers to the ExWAS permutation run and we selected the dominant model whereas the 
empirical ExWAS studied 3 genetic models (108bn / 3). The collapsing was reported separately (see 
below) and in Table S20. We have revised the text accordingly. 

 

l. 788. is this a second paragraph on n of 1 permutation? 

This is the summary for the gene-based collapsing analyses. 

 

l. 794. Combining it with l. 710, does this mean that 18 permuted p-values were between 1.9e-9 
and 2e-9? 

This confusion appears to arise from having performed the permutation analyses separately for the 
gene-based (collapsing) compared to the variant-level (exwas) analyses. We have clarified this text 
accordingly. 

 


