Online Supplemental Material

Apolipoprotein M and sphingosine-1-phosphate receptor 1 promote the transendothelial transport of HDL

Srividya Velagapudi^{1,*}, Lucia Rohrer^{1,*}, Francesco Poti^{2,3,*}, Renate Feuerborn⁴, Damir Perisa¹, Dongdong Wang¹, Grigorios Panteloglou¹, Anton Potapenko¹,

Mustafa Yalcinkaya¹, Andreas J. Hülsmeier¹, Bettina Hesse⁵, Alexander Lukasz⁵, Mingxia Liu⁶, John S. Parks⁶, Christina Christoffersen⁷, Markus Stoffel⁸, Manuela Simoni³, Jerzy-Roch Nofer^{3,4,9,*}, and Arnold von Eckardstein^{1,*, \$}

- 1. Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland
- 2. Department of Medicine and Surgery Unit of Neurosciences, University of Parma, Parma, Italy
- 3. Department of Biomedical, Metabolic and Neural Sciences Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
- 4. Central Laboratory Facility, University Hospital of Münster, Germany
- 5. Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, Münster, Germany
- 6. Department of Internal Medicine/Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
- 7. Department of Biomedical Science, University of Copenhagen, and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- 8. Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland.
- 9. Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

*: The three first authors and two last authors made equal contributions

\$: Corresponding author: Arnold von Eckardstein, MD, Institute of Clinical Chemistry, University Hospital of Zurich, Switzerland, Raemistrasse 100, CH-8091 Zurich, Switzerland

- Major Resource Table
- 2 Supplemental Tables I and II
- 5 supplemental figures I through V

Major Resources Table

Animals (in vivo studies)

Species	Vendor or Source	Background Strain	Sex	Persistent ID / URL
Mouse	Charles River	C57BI/6J	F	https://www.jax.org/strain/000664
(Mus	Laboratories,			
Musculus)	Sulzfeld,			
C57BI/6J	Germany			

Genetically Modified Animals

	Species	Vendor or Source	Back- ground Strain	Other Infor- mation	Persistent ID / URL
Parent - Male	Mouse (<i>Mus Musculus</i>) Tg(Cdh5- cre/ERT2)CIVE23Mlia X B6.129P2-Apoetm1Unc/J (referred to as <i>Apoe^{-/-}</i> <i>Cdh5-CreER</i> ^{T2})	Christian Weber (Ludwig Maximillian University, München, Germany)	C57Bl/6J		http://www.infor matics.jax.org/allele/MGI:3700149https://www.jax. org/strain/002052
Parent - Female	Mouse (<i>Mus Musculus</i>) C57Bl/6J- Gt(ROSA)26Sor ^{tm1(S1pr1)Ge} ^{no} (referred to as S1pr1 ^{LSL} line)	Genoway, Lyon, France	C57BI/6J	Generated on behalf of University of Modena and Reggio Emilia, Italy	Not available

Cultured Cells

Name	Vendor or Source	Sex	Catalogue #
Bovine aortic endothelial cells (BAECs).	Veal calf aorta, Slaughterhouse Zurich	Unknown	Not applicable
Human aortic endothelial cells (HAECs)	Cell Applications Inc	Male and female	304-05a

Antibodies

Target antigen	Vendor or Source	Catalog #	Working concentration (μg/mL)
S1P ₁ , Western blot	Abcam	ab125074	0.3
S1P1, immunofluorescence	MyBiosource	MBS8534430	20
SR-BI , Western blot	Novus	NB400-131	3.0
SR-BI, immunofluorescence	Novus	NB400-101	20
LDL-receptor, Western blot	Abcam	ab52818	0.7
Na+/K+- ATPase, Western blot	Santa Cruz	SC-21712	1.0
TATA binding protein, Western blot	Abcam	ab51841	1.0
VE-cadherin, Immunofluorescence	Novus	NBP1-43347	10
Goat Anti-Rabbit Immunoglobulins /HRP	Agilent Dako	P0448	0.1
Rabbit Anti-Goat Immunoglobulins/ HRP	Agilent Dako	P0449	0.2
Rabbit Anti-Mouse Immunoglobulins/ HRP	Agilent Dako	P0260	0.5
Secondary antibodies Immunofluorescence	Santa Cruz	sc-516250 sc-516248	1,3
Secondary antibodies Immunofluorescence	Novus	NBP1-76096 NBP1-72973	3.3

Small Interfering RNAs

Gene	Vendor or Source	Catalogue #	Final concentration
S1P1	Ambion silencer select	s4449, s4447 s4448	5nmol/L
SCARB1	Ambion silencer select	s2648 s2649 s2650	5nmol/L
Non-silencing control siRNA	Ambion silencer select	4390843	5nmol/L

Primer sequences

Primer name	Sequence
S1pr1 ^{LSL} excised allele - forward	AAC ATA CTC CCT TCC CGC AGA AACC
S1pr1 ^{LSL} excised allele - reverse	AGC CTC TGC TAA CCA TGT TCA TGCC
mS1pr1 – forward	GCA ACT TAA TTT TAT TAG GAC AAG GCT GGT GG
mS1pr1 - reverse	TCT TCA TCC TAC TAC TGT TAG ATG TGG GCT GC
WT Rosa26 Locus - forward	CAA TAC CTT TCT GGG AGT TCT CTGC
WT Rosa26 Locus - reverse	CTG CAT AAA ACC CCA GAT GAC TACC
VeCAD_Cre - forward	ATC CGA AAA GAA AAC GTT GA
VeCAD_Cre - reverse	ATC CAG GTT ACG GAT ATA GT
hS1PR1 - forward	GTC TGG AGT AGCGCC ACC
hS1PR1 - reverse	GTA GTC AGA GAC CGA GCT GC
hSCARB1 - forward	CTG TGG GTG AGA TCA TGT GG
hSCARB1 – reverse	GCC AGA AGT CAA CCT TGC TC
hGAPDH – forward	CCC ATG TTC GTC ATG GGT GT
hGAPDH - reverse	TGG TCA TGA GTC CTT CCA CGA TA

Supplemental table I: Treatment with S1P1 agonist SEW2871 differentially regulates endothelial permeability for HDL and Evan's Blue in wild type mice

	vehicle	SEW 2871	P*
Evans' Blue in the peritoneal fluid	0.32 ± 0.02	0.26 ± 0.01 *	0.041
(arbU)	(N = 5)	(N = 5)	0.041
DyL-HDL in the peritoneal fluid	78.2 ± 5.2	106.8 ± 13.2*	0.032
(arbU)	(N = 8)	(N = 8)	0.032

i.v. injection of Evan's Blue (600 μ g/animal) or DyLight-HDL (350 μ g/animal) and i. p. stimulation with lipopolysaccharide (25.0 μ g/animal). SEW2871 administration (15 μ g/g body weight) 150 min prior to stimulation with LPS. Collection of peritoneal fluid 3h after stimulation with LPS. (Results are presented as means ± SEM; *: P calculated by Mann-Whitney U-Test. (arbU = arbitrary units)

Supplemental Table II: Less severe hypercholesterolemia and fatty streak formation in S1P1-iECKI mice fed with a high fat diet

	CTRL	S1P ₁ -iECKI	P*
	(N = 5)	(N = 5)	•
Total cholesterol (mmol/L)	6.56 ± 0.25	4.66 ± 0.27	< 0.001
HDL-cholesterol (mmol/L)	2.21 ± 0.16	1.57 ± 0.10	0.0086
nonHDL cholesterol (mmol/L)	4.34 ± 0.17	3.10 ± 0.35	0.0127
Triglycerides (mmol/L)	0.41 ± 0.02	0.41 ± 0.04	0.970
Oil red stained area in the aortic roots (% plaque/total area)	1.38 ±0.24	0.35 ± 0.11	0.0087

Apoe haploinsufficient mice with $(S1P_1-iECKI)$ or without (CTRL) a knock-in of S1p1 were fed for 30 weeks with a western diet containing 1.25% cholesterol before they were sacrificed for collection of blood and aortas. (Results are presented as means ± SEM; *: P calculated by Mann-Whitney U-Test).

Supplementary Figure I: Targeting vector/transgene structure and Cremediated activation of transcription. (a) The transgene, inserted within the ROSA26 locus via homologous recombination, contains the murine S1pr1 cDNA, separated from the synthetic cytomegalovirus early enhancer/chicken β -actin (CAG) strong promoter by a LoxP-STOP-Neomicin-LoxP (LSL) cassette. S1pr1LSL mice were crossed with the tamoxifen inducible Apoe-/-Cdh5-CreER^{T2} mice, which express the Cre recombinase under control of the VE-cadherin promoter, active in endothelial cells only. Gene overexpression was achieved by intraperitoneal injection of tamoxifen and the LSL insert is hence excised only in Cre-expressing cells. S1P1-iECKI: S1P1- inducible endothelial cell knock-in mice. (b) Agarose gel electrophoresis of PCRamplified genomic DNA from lungs of wild type mice and S1P1-ECKI mice. From the left: lane 1 molecular weight marker (Marker XIV, Roche); lanes 2 through 15, fourteen samples of mouse genomic DNA; lane 16 water (last lane). Upper bands (≈600bp) in samples depicted in lanes 6, 7, 8, 9, 10, 12, and 14 identify samples of S1P1 ECKI mice with the excision event . The lower band is generated by the primers.

Supplementary Figure II: RNA interference with S1P₁ inhibits binding, association, and transport of HDL by human aortic endothelial cells (HAECs). HAECs were transfected with a specific siRNA against S1P₁ with non-silencing control siRNA (NS control) and functional assays were performed 72 hours post-transfection. (a) representative Western blot showing the efficacy of S1P₁ silencing relative to the non-silencing siRNA (NS control) and TATA-binding protein (TBP) used as the loading control. HAECs were incubated with 10µg/mL of ¹²⁵I-HDL for 1 hour in the absence (total) or in the presence of 40-fold excess of unlabeled HDL, to record nonspecific interactions. Specific binding, association and transport were calculated by subtracting nonspecific values from total values. (b) cellular binding of ¹²⁵I-HDL at 4 °C. (c) cellular association of ¹²⁵I-HDL at 37 °C. (d) for the measurement of transport of ¹²⁵I-HDL from the apical to the basolateral compartment, HAECs were cultured on inserts. Data represented as means ± SEM of three or four independent triplicate experiments (n=3). P was calculated by unpaired Mann Whitney U-test

b

Control

 $S1P_1$ inhibitor

Supplementary Figure III: Endothelial barrier function in the presence of S1P1 receptor inhibitor (a) shows the filtration of tritiated inulin through HAECs cultivated in a transwell system: confluent cells were incubated for 30 minutes at 37 °C with 20nM of the S1P₁ agonist SEW2871 or 20nM of the S1P₁ inhibitor W146. (b) shows the immunostaining of endothelial tight junction protein (TJP-1) in cultivated HAECs treated with either 20nM of the S1P₁ inhibitor W146 or control medium.

DAPI S1P₁ VE-Cadherin

Supplementary Figure IV: Demonstration of S1P1 in the endothelium of aortas from Apoe haploinsufficient mice without (a; CTRL) or with overexpression of S1P1 (b, S1P1-iECKI). Figure shows en-face prepared aortic immunostainings. Aortas were quickly cleared from the adventitial tissue, opened longitudinally and incubated with primary and secondary antibodies conjugated with green or red fluorescent dyes, as indicated. Nuclei were counterstained with DAPI. Images were captured by confocal microscope and z-axis projections of 14 scanned planes are shown. Scale bar = 10µm.

DAPI SR-BI VE-Cadherin

Supplemental Figure V: Demonstration of SR-BI in the endothelium of aortas from Apoe haploinsuffS5Vicient mice without (a; CTRL) or with overexpression of S1P1 (b, S1P1-iECKI). Figure shows en-face prepared aortic immunostainings. Aortas were quickly cleared from the adventitial tissue, opened longitudinally and incubated with primary and secondary antibodies conjugated with green or red fluorescent dyes, as indicated. Nuclei were counterstained with DAPI. Images were captured by confocal microscope and z-axis projections of 14 scanned planes are shown. Scale bar = 10µm.