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Supplementary Methods 

1. Estimating seasonal trends 
Many respiratory infections tend to occur seasonally and are predominantly prevalent during 
certain months of the year (e.g., cold months in temperate climates).1 This seasonal pattern has 
been documented for influenza viruses,2 respiratory syncytial viruses,3 and endemic human 
coronaviruses.4 In addition, studies have showed that this seasonality may be associated with 
climate conditions – particularly, temperature and humidity – as they may modulate the 
survival and transmission of respiratory viruses.5, 6, 7, 8 For the SARS-CoV-2 virus, our work has 
also shown that a winter-time seasonality exists, similar to endemic human coronaviruses in 
New York City (NYC), and that models accounting for this seasonality enable more accurate 
projection of COVID-19 pandemic dynamics than those do not.9, 10  However, to date, no 
mechanistic models exist that quantify the response of the SARS-CoV-2 virus to temperature 
and humidity and in turn the seasonality of COVID-19. In addition, seasonal trends may differ by 
climate. For instance, epidemics of influenza can occur any time of the year in subtropical and 
tropical climates; it is thus more difficult to characterize the seasonality of respiratory infections 
in these climates.  To address these challenges, we recently developed a flexible climate-forced 
model of epidemic dynamics for subtropical and tropical climates; results with this model also 
describe the response to temperature and humidity conditions common in temperate 
climates.11   Thus, to account for the potentially diverse seasonal trends of COVID-19 in the UK 
(temperate climates), South Africa (mostly temperate climates), and Brazil (mostly tropical 
climates), we applied this climate-forcing to temperature and humidity data for each country 
and computed the relative seasonal trend for each country.  
 
Specifically, the climate-forcing takes the following form: 

 !"($) = [()*($) + ,)($) + -][
/0
/($)]
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where R0(t) is the basic reproduction number at time t; q(t) is specific humidity (i.e. a measure 
of absolute humidity) at time t; and T(t) is temperature at time t.  In essence, the forcing 
function assumes that specific humidity has a bimodal effect on R0, with both low and high 
humidity conditions favoring transmission; in addition, this effect is moderated by temperature, 
where low temperatures promote transmission and temperatures above a certain threshold 
(i.e., Tc in Eqn. S1) limit transmission. Further, to link the coefficients a, b, and c to humidity q 
and R0, Yuan et al.11 reparametrized the forcing function by solving the parabola with a nadir at 
(qmid, R0max -R0diff) and maxima at both (qmin, R0max) and (qmax, R0max), such that:  
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Yuan et al.11 estimated the parameters R0max (i.e., the maximum R0), R0diff (i.e., the difference 
between the maximum and minimum R0), qmin, qmid, and qmax (i.e., the minimum, median, and 
maximum specific humidity for the response), Tc (the threshold temperature) and Texp (the 
exponent in Eqn S1) for influenza in Hong Kong, a subtropical city, based on long-term epidemic 
data collected therein during 1998 - 2018.  Here we use their mean estimates for these 
parameters and temperature and humidity data for each country (see main text and 
Supplementary Fig 7) to compute the seasonal trend for each country using Eqns. S1-2.  
However, as these parameters were estimated for influenza, the outputs do not represent the 
actual R0 for the SARS-CoV-2 virus. Thus, we instead compute the relative seasonal trend, by 
scaling the weekly country output from Eqn S1 by the country mean output, such that this 
scaled output provides a relative, seasonality-related transmissibility for each week of the year. 
These relative estimates also decouple the seasonality-related and variant-specific 
transmissibility (assuming no interaction; see below). The estimated seasonal trends are shown 
in Supplementary Fig 2 and used in the epidemic model to represent disease seasonality for 
each country via the parameter bt in Eqn S3 (see below).   
 
2. Model-inference system  
The model-inference system developed for this study consists of an SEIRSV model to simulate 
the transmission dynamics of SARS-CoV-2 and the ensemble Kalman adjustment filter (EAKF)12 
to estimate the model state variables and parameters, based on case and mortality data. Here 
we describe the model and the filtering method in detail.  
 
2.1. Epidemic model.  
The SEIRSV (susceptible-exposed-infectious-removed-susceptible-vaccination) model uses the 
following set of equations to simulate the transition of sub-populations between different 
disease stages, while accounting for disease seasonality, concurrent non-pharmaceutical 
interventions (NPIs), and vaccination:  
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where S, E, I, R are the number of susceptible, exposed (but not yet infectious), infectious, and 
removed (i.e., recovered or immune) individuals, respectively; N is the population size. The 
parameter ε represents travel-related importation of infections (nominally set to 1 per 20 days 
per 1 million population, unless specified otherwise).  
 
To account for local seasonality, bt, the estimated relative seasonal trend for each country (see 
Section 1 above and Supplementary Fig 2), is used to adjust the relative transmission rate at 
time t.  For instance, for the UK (Supplementary Fig 2A), the estimated seasonal trend bt is 1.15 
for week 1 (a week during winter), indicating the transmission rate for that week is 1.15 times 
the yearly average, due to the more favorable winter weather conditions; similarly, estimated 
bt is 0.86 for week 27 (a week during summer), indicating the transmission rate for that week is 
86% of the yearly average, due to the less favorable summer weather conditions. 
 
Different NPIs (e.g., stay-at-home mandate for nonessential workers, school closures, masking 
mandate, and other social distancing rules and preventive measures) have been implemented 
during the COVID-19 pandemic. However, the specific NPIs implemented varied by location and 
time; in addition, the effectiveness of each NPI remains unclear. It is thus difficult to detail and 
capture specific NPI and effectiveness in the model.  Nevertheless, previous studies have shown 
that the overall impact of NPIs (e.g., reduction in the reproduction number Rt) has been highly 
correlated with population mobility during the COVID-19 pandemic.9, 13 14  As such, here we 
used the relative mobility as observed in each study location to represent the overall impact of 
NPIs. Specifically, to account for concurrent NPIs, the term mt, the relative population mobility 
at time t (in this study, we use data from Google Community Mobility Reports;15 see main text 
and Supplementary Fig 2), is used to adjust the transmission rate. For instance, for the UK 
(Supplementary Fig 2A), relative mobility mt was 41% of pre-COVID levels for the week starting 
March 22, 2020; per Eqn 3, the overall transmission rate for that week was reduced by 41%, 
before adjusting for the effectiveness. To further account for the potential changes in 
effectiveness, the model additionally includes a parameter, et, to scale NPI effectiveness at time 
t.  This effectiveness (et) was then estimated by the model-inference system along with other 
model variables and parameters.   



 5 

 
For virus-specific characterization, NK  is the variant-specific transmission rate at time t, Z is the 
latency period, D is the infectious period, and L is the immunity period. Note that the 
parameters et, NK, Z, D, and L are estimated by the model-inference system as described below.  
 
To incorporate changes in population susceptibility due to vaccination, the model accounts for 
two-dose vaccination via v1(t) and v2(t). Specifically, v1(t) is the number of individuals 
successfully immunized after the first dose of the vaccine and is computed using vaccination 
data and vaccine efficacy for one dose (see detailed settings in Supplementary Table 2). 
Similarly, v2(t) is the additional number of individuals successfully immunized after the second 
vaccine dose (excluding those successfully immunized after the first dose).  As an example, 
assume 100 individuals receive their 1st dose on day 0 and 2nd dose on day 21 and the vaccine 
efficacy (VE) is 85% 14 days after the 1st dose and 95% 7 days after the 2nd dose. To compute v1 
and v2, we first adjust for immunity gained from infection; here for illustration, assume 10% 
have immunity from prior infection at time of vaccination (for illustration, assumed the same 
for both doses here; in this study, these were based on model-estimated cumulative infection 
rate and adjusted for waning immunity), then the number of individuals susceptible at time of 
vaccination would be 100 × (1 – 10%) = 90.  Further adjusting for the time lag of immunity 
development and VE, v1(t = day 14) is calculated as 90 × 85% = 76.5 and v2 (t = day 28) is 
calculated as 90 × (1 – 85%)[1 – (1 – 85%)(1 – 95%)] =  9, such that the total percentage of 
individuals successfully immunized is (76.5 + 9) / 90 = 95%, i.e. VE for the fully vaccinated.  
 
2.2. Observation model: accounting for under-detection of infections and delay in detection.  
We compute the model-simulated number of cases and deaths for each week using the model-
simulated infection rate, as done in Yang et al.10 Specifically, we include 1) a time-lag from 
infectiousness to detection (i.e., an infection being diagnosed as a case) – drawn from a gamma 
distribution with a mean of Tm and standard deviation (SD) of Tsd days – to account for delays in 
diagnosis and detection; 2) an infection-detection rate (r), i.e. the fraction of infections 
(including subclinical or asymptomatic infections) reported as cases, to account for under-
detection; 3) a time-lag from infectiousness to death, drawn from a gamma distribution with a 
mean of 14 days and a standard deviation of 10 days, empirically based on mortality data; and 
4) an infection-fatality risk (IFR), i.e., the fraction of infections that die from COVID-19.  To 
compute the model-simulated number of new cases per week, we multiply the model-
simulated number of new infections per day by the infection-detection rate, and further 
distribute these simulated cases in time per the distribution of time-from-infectiousness-to-
detection. We then aggregate the daily lagged, simulated cases to weekly totals for model 
inference (see below). Similarly, to compute the model-simulated deaths per week and account 
for delays in time to death, we multiply the simulated-infections by the IFR and then distribute 
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these simulated deaths in time per the distribution of time-from-infectiousness-to-death, and 
aggregate these daily numbers to weekly totals.  For each week, the infection detection rate (r), 
the mean (Tm) and standard deviation (Tsd) of time-from-infectiousness-to-detection, and the 
IFR are estimated based on weekly case and mortality data, along with other model 
parameters.  
 
2.3. Inference using the EAKF 
At the end of each week, the inference system uses the EAKF to update the state variables and 
parameters based on model-generated prior estimates and case and mortality data.  Briefly, the 
EAKF uses an ensemble of model realizations (n=500 here), each with initial parameters and 
variables randomly drawn from a prior range (see Supplementary Table 2). After model 
initialization, the system integrates the model ensemble forward in time for a week (per Eqn 
S3) stochastically to compute the prior distribution for each model state variable or parameter, 
as well as the model-simulated number of cases and deaths for that week as described in 
Section 2.2.  The system then combines the prior estimates with the observed case and death 
data for the same week to compute the posterior per Bayes' theorem.12 During this filtering 
process, the system updates the posterior distribution of all model parameters and variables 
for each week.12 As such, it is able to capture the time-varying changes in transmission 
dynamics including the variant-specific transmission rate (NK) and infectious period (D) – the 
two parameters that we use to compute variant-specific transmissibility over time. 
 
However, unlike previous studies using similar model-inference approaches, here we further 
modify the EAKF filtering process to test different potential combinations of changes in 
transmissibility and immune escape.  To enable this exploration of systemic changes (e.g. due 
to the emergence of a new variant), we randomly replace a small fraction of ensemble 
members (3-10%) using values randomly drawn from specified ranges. This technique, termed 
space reprobing (SR), was developed in order to explore state space without corrupting 
performance of the filter.16  Specifically for this application, we apply SR to a given related set of 
parameters/variables and restrict the EAKF update of non-related parameters/variables, for 14 
different hypothesized behaviors.  These hypothesized changes are as follows: 
 

1) Hypothesis 1 (minor changes in transmissibility, no immune escape): Large updates are 
only allowed for the two transmissibility-related parameters NK  and D; to explore the 
changes, the system applies SR to these two parameters using values drawn from prior 
ranges 10-20% higher than the initial priors.  

2) Hypothesis 2 (major changes in transmissibility only, no immune escape): Similar to 1); 
but to explore the changes, the system applies SR to NK  and D using values drawn from 
prior ranges 30-40% higher than the initial priors.  
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3) Hypothesis 3 (minor immune escape only, no changes to transmissibility): Large updates 
are only allowed for S, the population susceptibility, up to a total loss of 50% of the prior 
immunity.  

4) Hypothesis 4 (major immune escape only, no changes to transmissibility): Large updates 
are only allowed for S, the population susceptibility, up to a total loss of 95% of the prior 
immunity.  

5) Hypothesis 5 (minor changes in transmissibility + minor immune escape): combining 1) 
and 3) above. 

6) Hypothesis 6 (major changes in transmissibility + major immune escape): combining 2) 
and 4) above. 

7) Hypothesis 7 (minor changes in transmissibility + major immune escape): combining 1) 
and 4) above. 

8) Hypothesis 8 (major changes in transmissibility + minor immune escape): combining 2) 
and 3) above. 

9) Hypothesis 9 (changes in both transmissibility and immune escape, no restriction on 
magnitude of change): Large updates are allowed for NK  and D as well as S. To explore 
the changes, initial SR uses values drawn from prior ranges 10-20% higher than the 
initial priors, and values up to 30-40% higher than the initial priors if the inference 
system detects the prior continues to underestimate the observed cases and deaths 
with the 10-20% initial increase in SR values. In addition, SR allows updates of S up to 
95% of the prior immunity.  

 
To account for slower changes in overall population immunity (i.e., in the entire country) as the 
new variant gradually spreads to different sub-regions across a large geographic space, such as 
in Brazil, we also explore the fitting using the following five additional settings:   
 

10) Hypothesis 10 (immune escape only and changes to overall population immunity occur 
slowly over time): Large updates are only allowed for S, up to a total loss of 95% of the 
prior immunity; however, SR is applied to a smaller fraction of ensemble members than 
in 1)-9) such that changes in S occur gradually.  

11) Hypothesis 11 (minor changes in transmissibility + minor immune escape; both occur 
slowly over time): Large updates are allowed for NK  and D as well as S.  Adjustment to S 
is allowed as in 10) but up to only 50% of prior immunity.  In addition, for 
transmissibility, the system applies SR to NK  and D using values drawn from prior ranges 
10-20% higher than the initial priors.  

12) Hypothesis 12 (major changes in transmissibility + minor immune escape; both occur 
slowly over time): Similar to 11); however, for NK  and D, initial SR uses values drawn 
from prior ranges 10-20% higher than the initial priors, and values up to 30-40% higher 
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than the initial priors if the inference system detects the prior continues to 
underestimate the observed cases and deaths with the 10-20% initial increase in SR 
values.  

13) Hypothesis 13 (minor changes in transmissibility + major immune escape; both occur 
slowly over time): Similar to the settings specified in 11) but adjustment to S is allowed 
up to 95% of prior immunity. 

14) Hypothesis 14 (major changes in transmissibility + major immune escape; both occur 
slowly over time): Similar to settings specified in 12) but adjustment to S is allowed up 
to 95% of the prior immunity. 

 
We carry out the model-inference process for each of the 14 settings described above and for 
each country dataset. We then select the most plausible hypothesis for each country based on 
the following criteria: 1) model fitting to case and mortality data, as indicated by the relative 
root-mean-squared-error (RRMSE) between the posterior estimates for the corresponding 
variable (i.e. case rate or mortality rate) and data; 2) the accuracy of one-step ahead prediction, 
as indicated by the RRMSE between the prior estimates for the corresponding variable (i.e. case 
rate or mortality rate) and data; 3) the level of adjustment needed for two key variables, i.e., 
infection rate and case rate, as indicated by the RRMSE between the prior and posterior 
estimates for each variable; 4) a penalty on the number of variables needing SR adjustment; 
and 5) a penalty on the frequency of SR adjustment. We combine all these metrics by weighting 
them heuristically using the following set of weights: 0.27 for the two metrics in 1); 0.13 for the 
two metrics in 2), 0.03 for the two metrics in 3), and 0.07 for both 4) and 5). We also tested 
other sets of weights and found that higher weights should be given to 1) and 2) based on 
results from the synthetic testing where the ‘true’ values of the state variables and parameters 
are known; however, in general, the final results are similar if there are minor changes to these 
weights.   
 
To account for model stochasticity, we repeat each model-inference 100 times for each 
dataset, each with initial parameters and variables randomly drawn from the prior distributions 
(Supplementary Table 2). Each model-inference tests the 14 hypotheses described above, 
selects the one with the best performance (i.e. minimizing the combined metric described 
above), and outputs the estimates of the best-performing run. That is, the model estimates 
reported in the main text are aggregated from 100 best-performing model runs (each with 500 
ensemble members and totaling 50,000 individual model realizations).  
 
3. Model validation using model-generated synthetic data 
To test the accuracy of our model-inference system, we generate 10 synthetic datasets using a 
separate multi-variant SEIRS model, similar to models developed in Yang et al.17 and Gog & 
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Grenfell.18   Within this model, variants can interact via cross-immunity, which protects a 
portion of individuals with prior infection (i.e. polarized immunity) by reducing transmission. 
Specifically, the model takes the following form: 
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where N is the population size; Si, Ei, Ii, and Ri, are, respectively, the numbers of susceptible, 
exposed-but-not-yet infectious, infectious, and recovered individuals, with respect to variant-i 
(here, the wild-type SARS-CoV-2 virus or a new variant); N=, Di, and Li are, respectively, the 
transmission rate, mean infectious period, and mean immunity period, for variant-i; and cij 
measures the strength of cross-immunity to variant-i conferred by infection with variant-j (e.g., 
close to 0 if it is weak and cii=1 for infection by the same variant). The parameter ε represents 
travel-related importation of infections; to generate the synthetic data (i.e., “truths”), we set ε 
to 1 per week for the first 5 weeks and 1 every 3 days for the rest of the first wave (here weeks 
1-20); for the second wave, as transmission has been established locally, we set ε to 0 for 
simplicity. The terms bt, mt, and et are the same as in Eqn S3 and account for seasonality and 
NPIs over time.  For simplicity, we omit birth, death, and vaccination. 
 
To generate the synthetic data (i.e., “truths”), we seed the Eq. S4 model with 2 infections of 
wild-type virus at the start of each simulation and 50 infections of a new variant at the start of 
Week 21, for N = 1 million people; we run the model stochastically with a daily time-step from 
the week starting 3/1/2020 to the week starting 2/21/2021 (i.e. 52 weeks in total) using the 
parameters listed in Supplementary Table 3. To compute the weekly number of cases and 
deaths, we use the same procedure as described in Section 2.2 above for each variant. We then 
combine the case/mortality estimates for both variants, add random noises drawn from a 
Poisson distribution to mimic observational error. The final noise-added weekly case and 
mortality time series are then used as synthetic data for testing the model-inference system 
(described in Section 2 above). To compare the posterior estimates of key parameters and 
variables (e.g. transmissibility and population susceptibility) from the model-inference system, 
we compute the true values of population susceptibility and transmissibility over time as the 
weighted average of the two variants based on the relative prevalence during each week. Fig 1 
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and Supplementary Fig 1 show the 10 model-generated truths including cases, deaths, and the 
computed “true” values of population susceptibility and transmissibility for each week of the 
simulation.  
 
4. Multi-variant, age-structured model for simulation to test the relative competitiveness of 
VOCs and project future SARS-CoV-2 dynamics.  
We modify the multi-variant model in Eqn S4 to further include age structure and vaccination. 
The inclusion of age structure here allows incorporation of age-specific parameters (e.g., 
transmission rate and infection-fatality risk) as well as age-specific vaccination coverage and 
rates. Specifically, this multi-variant, age-structured SEIRSV model takes the following form: 
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Model parameters in Eqn S5 are similar to those in Eqn S4, except for those related to age, 
which are indicated by the superscripts. The formulation of the age-related model component 
follows a typical age-structured model; for a given age group A (designated by the superscript), 
the total infection rate by a given variant-i (designated by the subscript) is the sum over all age 

groups (i.e., ∑ \A
]F

Â
]_A

F

`F; , where N=Y;  is the transmission rate of variant-i from age-group a to 
age-group A). The vaccination model component is similar to Eqn S3, but with age-stratification. 
However, the terms R=,SY ($) and R=,*Y ($) are variant-specific, as indicated by the additional 
subscript i; that is, they additionally account for the reduction in vaccine efficacy against the 
new variants, based on scenario assumptions specified in Supplementary Table 5.  
 
As an example, we simulate the transmission dynamics under different scenarios of variant 
prevalence, vaccine efficacy, and NPIs for a city like NYC, from the week of 4/25/2021 to the 
week of 8/22/2021 (i.e., approximately May - August 2021). We use data or estimates available 
for NYC to initialize the parameters and state variables needed for model simulations. In 
addition, we use our model-inference estimates for the VOCs for related parameters and 
variables.  Specifically, as in previous work,9, 10, 19 we include 8 age-groups (i.e. <1, 1-4, 5-14, 15-
24, 25-44, 45-64, 65-74, and 75+ year-olds) to account for age-specific differences.  To focus on 
the three VOCs, here we only include the B.1.1.7, B.1.351, and P.1 variants and attribute the 
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rest as “wildtype” virus. NYC data on variant prevalence among tested infections during the 
weeks of March – April 2021 are used to inform the initial range of seeding for each variant 
(Supplementary Table 5). Initial conditions for the state variables (e.g., susceptibility and SARS-
CoV-2 prevalence) for each age group are taken from estimates9, 10, 19 made for the week of 
4/18/2021, using detailed data (including case, mortality, COVID-19-related emergency visit, 
mobility, and vaccination) during 3/1/2020 – 4/24/2021.  For each age group, to compute the 
initial variant-specific population susceptibility (Si) at the start of a simulation, we move the 
estimated proportion with immune escape for variant i among those who have had prior 
infection with the wild-type virus but have not been vaccinated back to the susceptible 
compartment.  The number of people losing vaccine-induced immunity is computed based on 
scenario assumptions determining the reduction in vaccine efficacy (see scenarios in 
Supplementary Table 5).  
 
The cross-immunity settings, i.e., values of cij’s in Eqn S5, come from our posterior model-
inference estimates of immune escape and are used for all age groups. To reduce uncertainty, 
here we use the 80% CI estimates (see Supplementary Table 5).  For instance, as our model-
inference estimate of immune escape for B.1.351 has an 80% CI of 40.1 – 82.8%, we set 
c(B.1.351←wildtype), the cross-immune protection against B.1.351 conferred by prior infection 
of the wildtype virus relative to variant-specific immunity, to values drawn from a uniform 
distribution ranging from 0.172 to 0.599 (i.e. cross-immunity is set to the complement of 
estimated immune escape). We set all c(wildtype←new variant) to 1 – that is, we assume full 
cross-immune protection against the wild-type virus conferred by infection due to any VOC.  
 
Similarly, the variant-specific transmission rates, i.e. N=’s, come from our posterior model-
inference estimates of the relative transmissibility for each variant. For instance, as our model-
inference estimate of transmissibility for B.1.351 is 18.5 – 45.7% (80% CI) higher than that of 
the wildtype virus, we set NB.1.351 to 1.185 – 1.457 times of the estimate for Nwildtype. The same 
scaling is applied to all age groups. 
 
Due to a lack of information, we do not account for potential differences in infection fatality 
risk by variant; therefore, the simulated mortality under different scenarios only reflect the 
relative infection rate by age group, for which we apply age-specific infection-fatality risk (see 
Supplementary Table 5).  In addition, due to the uncertainty of the infection fatality risk among 
breakthrough infections (i.e., those who have been vaccinated), we only show mortality-related 
simulations for the “Same VE” scenario which assumes no reduction in VE. 
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We run the model for each scenario 1000 times stochastically, with the parameters and initial 
conditions randomly drawn from uniform distributions with ranges specified in Supplementary 
Table 5. Results are summarized from the 1000 model runs for each scenario.   
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Supplementary Fig 1. Model-inference system validation using model-generated synthetic data 
with an infection-detection rate of 10%. For this testing, the true values of incidence and 
mortality by week (A), transmissibility by week (B, top panel), population susceptibility by week 
(b, bottom), and overall changes in transmissibility and immune escape due to a new variant (C) 
were generated by model simulations with prescribed parameters and conditions. Unlike the 
real-world in which most epidemiological characteristics are unobserved, here these quantities 
(i.e. the ‘Truth’) are prescribed and known and thus can be compared to estimates made with 
the model-inference system using the synthetic, model-generated incidence and mortality data 
(A). (A) 5 sets of synthetic data (dots) and model-fits to each dataset; lines show mean 
estimates and surrounding areas show 50% (dark) and 95% (light) CrIs.  (B) Weekly model 
estimated transmissibility and population susceptibility. The lines show mean estimates and 
surrounding areas show 50% (dark) and 95% (light) CrIs, compared to the true values (dots).  (C) 
overall estimates of the change in transmissibility (‘Trans’) and immune escape (‘Imm esc’), 
compared to the true values (dots); boxes show model estimated median (middle bar) and 
interquartile range (box edges) and whiskers show model estimated 95% CIs, from n=100 
model-inference simulations. 
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Supplementary Fig 2. Pandemic dynamics, mobility, and estimated seasonal trends, and 
vaccination uptake in the three countries: (A) United Kingdom, (B) South Africa, and (C) Brazil. 
Bars show weekly numbers of reported cases per 1 million persons (grey) and reported deaths 
per 100,000 persons (red). Green lines show relative mobility by week (relative to pre-
pandemic levels), based on data from Google Community Mobility Reports (see main text, 
Methods, “Data sources and processing”). Orange lines show estimated seasonal trends (see SI, 
Section 1, “Estimating seasonal trends”). Blue lines show the cumulative fractions of population 
partially vaccinated (dashed lines) and fully vaccinated (solid lines), based on vaccination data 
from each country (see main text, Methods, “Data sources and processing”).  
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Supplementary Fig 3. Other model estimates. Left panel (A, C, and E) shows the estimated 
infection-detection rate and right panel (B, D, and F) shows the estimated infection-fatality risk 
for each week during the study period for the three countries. For comparison, estimated 
weekly infection rates are superimposed in each plot (right y-axis).  Blue lines and surrounding 
areas show model estimated mean, 50% and 95% CrIs.  Boxes (middle bar = mean; edges = 50% 
CrIs) and whiskers (95% CrIs) show the estimated weekly infection rates.  Grey shaded boxes 
indicate the timing of lockdowns or key period of restrictions; horizontal arrows indicate the 
timing of variant identification and vaccination rollout.   
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Supplementary Fig 4. Model projections of COVID-19 related mortality under different 
scenarios of VOC co-circulation and NPIs. (A) Example projected weekly number of deaths due 
to infections by each variant, assuming mRNA vaccines are used and the vaccine efficacy (VE) is 
as high as for the wild-type virus. Each panel shows projections for one seeding and NPI 
scenario, as indicated in the subtitle. Lines and surrounding areas show model projected 
median and interquartile range, from n = 1000 model simulations (color-coded for each variant 
as indicated by the legend).  (B) Tallies over the entire simulation period (May – Aug 2021) for 
different scenarios of seeding (as indicated in the subtitles, see detail in Supplementary Table 5) 
and NPIs (as indicated by the x-axis labels, see detail in Supplementary Table 5). Due to the 
uncertainty of the infection fatality risk among breakthrough infections (i.e., those who have 
been vaccinated), all simulations shown here assume no reduction in VE. All numbers are scaled 
to per 1 million people. 
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Supplementary Fig 5. Model projections of infection, under different scenarios of VOC co-
circulation, NPIs, and vaccines/VEs. (A) Example projected epidemic trajectories for each variant 
assuming very high VE as for the mRNA vaccines against the wildtype virus.  Lines and 
surrounding areas show model projected median and interquartile range, from n = 1000 model 
simulations (color-coded for each variant as indicated by the legend).  (B) Tallies over the entire 
simulation period (May – Aug 2021) for different scenarios of seeding, VE (as indicated in the 
subtitles, see detail in Supplementary Table 5), and NPIs (as indicated by the x-axis labels, see 
detail in Supplementary Table 5). All numbers are scaled to per 1 million people.  
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Supplementary Fig 6. Model performance for (A) United Kingdom, (B) South Africa, and (C) 
Brazil. Boxes (middle bar = median, box edges = interquartile range) and whiskers (95% CIs) 
show the distributions of relative root-mean-square-error (RRMSE) for the posterior estimates 
(cases in blue and deaths in pink) and one-step-ahead predictions, across n = 100 model-
inference runs. See SI, Section 2.3 for details on RRMSE calculation.  
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Supplementary Fig 7. Weekly average temperature and specific humidity for the three 
countries.  These data were used to estimate the disease seasonality for each country.  
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Supplementary Table 1. Model-simulated prevalence of different variants under different scenarios. Numbers show the median 
(and interquartile range; all in percentage) of tallies over the entire simulation period (i.e. the week of 4/25/2021 to 8/22/2021) for 
each scenario, as specified in columns 1 (seeding of the B.1.351 and P.1 variant), 2 (NPI), and 3 (reduction on vaccine efficacy). For all 
these simulations, the models assume mRNA vaccines are used and a baseline VE of 85% after the 1st dose and 95% after the 2nd 
dose; see details in Supplementary Table 5. 

Seeding NPI VE Wildtype B.1.1.7 B.1.351 P.1 
Equal seeding Current NPI Same VE 8.5 (7.8, 9.1) 64.3 (61.3, 67.1) 12.6 (10.1, 15.8) 13.8 (12.1, 16) 
Equal seeding Current NPI Minor reduction 8.3 (7.6, 9) 64 (60.6, 66.9) 12.8 (10.2, 16.3) 14.1 (12.3, 16.4) 
Equal seeding Current NPI Medium reduction 7.5 (6.9, 8.2) 63.7 (59.9, 66.7) 13.3 (10.4, 17.2) 14.5 (12.4, 17.1) 
Equal seeding Current NPI Large reduction 7.2 (6.6, 7.9) 61 (56.8, 64.4) 15 (11.6, 19.5) 15.7 (13.5, 18.4) 
Equal seeding 25% less Same VE 5.4 (4.6, 6.2) 55.2 (49.3, 61) 16.4 (11.8, 23.7) 20.5 (16.5, 25.1) 
Equal seeding 25% less Minor reduction 5.1 (4.3, 5.9) 53.7 (47.2, 59.2) 17.7 (12.6, 25.2) 21.1 (17, 26.2) 
Equal seeding 25% less Medium reduction 4.3 (3.5, 5.1) 51.7 (44.8, 58.4) 19.9 (13, 28.9) 21.2 (16.7, 26.7) 
Equal seeding 25% less Large reduction 3.8 (3, 4.6) 45.5 (37.2, 51.6) 23.6 (15.1, 33.9) 24.9 (19.8, 31.2) 
Equal seeding 50% less Same VE 3.4 (2.7, 4.3) 44.4 (36.5, 52.3) 21.7 (13.5, 32.6) 26.4 (20.2, 34.2) 
Equal seeding 50% less Minor reduction 3.2 (2.4, 4.1) 42 (34.8, 50.1) 23.2 (14.8, 35.8) 26.7 (19.9, 34.9) 
Equal seeding 50% less Medium reduction 2.5 (1.9, 3.2) 39.9 (31.3, 47.8) 26.5 (16.5, 39.3) 27.4 (20.1, 35.9) 
Equal seeding 50% less Large reduction 2 (1.5, 2.6) 30.9 (23.6, 38.9) 31.4 (18.8, 44.1) 32 (24.8, 40.8) 
Equal seeding Fully open, slow Same VE 2.6 (1.9, 3.4) 38 (30, 46.6) 23.2 (14.2, 36.7) 31.6 (22.4, 40.2) 
Equal seeding Fully open, slow Minor reduction 2.3 (1.7, 3.1) 35.1 (26.7, 44.3) 26 (15.1, 41.9) 31.3 (21.8, 40.6) 
Equal seeding Fully open, slow Medium reduction 1.8 (1.4, 2.4) 33.5 (25.2, 42) 28.4 (17, 43.8) 30.8 (22.3, 41) 
Equal seeding Fully open, slow Large reduction 1.4 (1, 1.9) 24.4 (17.4, 31.4) 33.3 (20, 51.7) 35.9 (25, 47.9) 
Equal seeding Fully open, fast Same VE 1 (0.8, 1.2) 25.8 (19.6, 33.8) 30.1 (17.5, 45.5) 38.1 (27.4, 50.1) 
Equal seeding Fully open, fast Minor reduction 0.9 (0.7, 1.1) 23.4 (17.3, 30.3) 34.1 (19.7, 50.3) 38.3 (26.1, 49.8) 
Equal seeding Fully open, fast Medium reduction 0.7 (0.6, 0.9) 22.1 (16, 30.1) 38.7 (22.6, 54) 34.5 (24.8, 47.8) 
Equal seeding Fully open, fast Large reduction 0.6 (0.5, 0.7) 15.9 (12.1, 20.8) 41.2 (25.2, 58.1) 39.5 (27.3, 52.6) 
More P.1 Current NPI Same VE 11.7 (10.9, 12.6) 70.8 (68.6, 72.7) 1.7 (1.3, 2.3) 15.5 (13.6, 17.8) 
More P.1 Current NPI Minor reduction 11.5 (10.7, 12.3) 70.4 (68.2, 72.6) 1.8 (1.4, 2.5) 15.8 (13.7, 18.3) 
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More P.1 Current NPI Medium reduction 10.5 (9.7, 11.3) 70.8 (68.3, 73.2) 1.9 (1.4, 2.6) 16.2 (14.1, 19) 
More P.1 Current NPI Large reduction 10.2 (9.4, 11.1) 69.2 (66, 71.7) 2.1 (1.5, 2.9) 18 (15.6, 21.4) 
More P.1 25% less Same VE 7.8 (6.8, 8.9) 65.1 (59.8, 68.8) 2.5 (1.6, 4) 23.9 (19.6, 29.2) 
More P.1 25% less Minor reduction 7.5 (6.6, 8.6) 63.8 (59.1, 68) 2.8 (1.7, 4.3) 25 (20.5, 30.4) 
More P.1 25% less Medium reduction 6.5 (5.6, 7.5) 63.2 (57.9, 68.4) 2.9 (1.8, 5) 26.1 (21, 32) 
More P.1 25% less Large reduction 5.8 (4.9, 6.9) 56.8 (50.5, 62.4) 3.7 (2.3, 6.5) 31.8 (26.4, 39) 
More P.1 50% less Same VE 5.3 (4.1, 6.5) 55.6 (47.9, 62.8) 3.2 (1.7, 5.6) 33.9 (26.1, 43) 
More P.1 50% less Minor reduction 4.9 (3.9, 6.2) 53.3 (46.3, 60.9) 3.5 (1.9, 6.7) 35.8 (28.7, 43.6) 
More P.1 50% less Medium reduction 4.1 (3.1, 5.2) 51.9 (43.9, 59.1) 4.2 (2.1, 8.5) 37.4 (29.5, 45.3) 
More P.1 50% less Large reduction 3.3 (2.5, 4.2) 42.3 (34.5, 50.8) 5.2 (2.6, 10.8) 46.1 (36.7, 55.1) 
More P.1 Fully open, slow Same VE 4 (3.2, 5.1) 49.8 (40.6, 57.5) 3.8 (1.9, 7.4) 40 (32.3, 50.1) 
More P.1 Fully open, slow Minor reduction 3.8 (2.9, 4.9) 46.9 (39, 55.3) 4.3 (2.2, 8.3) 42.2 (33.3, 51.1) 
More P.1 Fully open, slow Medium reduction 3 (2.3, 4) 45.6 (36.5, 53.2) 4.7 (2.4, 9.9) 44.1 (34.9, 53.5) 
More P.1 Fully open, slow Large reduction 2.3 (1.8, 3) 34.1 (26.3, 43.2) 6.2 (2.9, 12.4) 53.3 (43.2, 63.1) 
More P.1 Fully open, fast Same VE 1.4 (1.2, 1.8) 34.5 (26.3, 43.6) 5.9 (2.7, 12.3) 54.4 (44.8, 64.2) 
More P.1 Fully open, fast Minor reduction 1.3 (1.1, 1.6) 31.8 (24.6, 40.2) 6.9 (3.1, 14.5) 55.8 (46.2, 65.5) 
More P.1 Fully open, fast Medium reduction 1.1 (0.9, 1.3) 31.8 (24.9, 39.6) 7.8 (3.6, 16.2) 54.7 (45.2, 64.3) 
More P.1 Fully open, fast Large reduction 0.9 (0.7, 1) 22.7 (17.5, 29.1) 9.5 (4.4, 19.1) 63.3 (53.5, 71.3) 
More B.1.351 Current NPI Same VE 11.7 (11, 12.6) 71.9 (68.8, 74.6) 14.1 (11.3, 17.5) 1.9 (1.5, 2.3) 
More B.1.351 Current NPI Minor reduction 11.6 (10.7, 12.4) 71.5 (68, 74.2) 14.4 (11.7, 18.5) 1.9 (1.6, 2.4) 
More B.1.351 Current NPI Medium reduction 10.6 (9.7, 11.5) 71.4 (67.8, 74.8) 15.3 (12, 20) 2 (1.6, 2.5) 
More B.1.351 Current NPI Large reduction 10.2 (9.3, 11.1) 69.9 (65.4, 73.2) 17.4 (13.3, 22.4) 2.2 (1.8, 2.8) 
More B.1.351 25% less Same VE 8 (6.8, 9.2) 67.6 (60.3, 72.8) 20.2 (14.7, 29.1) 3 (2.1, 4) 
More B.1.351 25% less Minor reduction 7.6 (6.4, 8.8) 65.9 (57.6, 71.3) 22.5 (16.2, 32.4) 3 (2.2, 4.4) 
More B.1.351 25% less Medium reduction 6.6 (5.4, 7.7) 64.2 (55.6, 71.2) 25.1 (17, 35.3) 3.1 (2.2, 4.3) 
More B.1.351 25% less Large reduction 6 (4.8, 7.2) 59.1 (47.9, 66.9) 30.1 (20.7, 42.8) 3.9 (2.7, 5.6) 
More B.1.351 50% less Same VE 5.5 (4.3, 6.9) 60 (48.4, 69.1) 28.4 (18.1, 42) 4.2 (2.8, 6.5) 
More B.1.351 50% less Minor reduction 5.1 (3.9, 6.4) 57.3 (44.5, 66.5) 31.8 (21.2, 46.7) 4.2 (2.7, 6.5) 
More B.1.351 50% less Medium reduction 4.1 (3.1, 5.4) 55.2 (41.9, 65) 34.9 (22.8, 50.7) 4.5 (3, 6.9) 
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More B.1.351 50% less Large reduction 3.5 (2.5, 4.6) 43.8 (32, 56.1) 45.6 (30.2, 60.6) 5.8 (3.4, 9) 
More B.1.351 Fully open, slow Same VE 4.3 (3.2, 5.8) 54.6 (42.2, 65.2) 33.7 (20.7, 48.9) 5.5 (3.4, 8.3) 
More B.1.351 Fully open, slow Minor reduction 3.9 (2.9, 5.4) 50.6 (37.6, 62.4) 38.5 (23.8, 53.3) 5.5 (3.3, 8.5) 
More B.1.351 Fully open, slow Medium reduction 3 (2.1, 4.1) 47.4 (32, 60.2) 41.3 (25.7, 60.9) 5.4 (3.1, 8.9) 
More B.1.351 Fully open, slow Large reduction 2.4 (1.6, 3.4) 36.2 (23.2, 49.6) 52.2 (34.5, 68.6) 7.4 (4.1, 12.1) 
More B.1.351 Fully open, fast Same VE 1.5 (1.2, 2) 39.9 (27.5, 52.9) 47.3 (30.6, 63.9) 8.1 (4.7, 14) 
More B.1.351 Fully open, fast Minor reduction 1.4 (1.1, 1.8) 34.3 (22.5, 47.8) 54.7 (36.4, 69.2) 7.6 (4.4, 12.7) 
More B.1.351 Fully open, fast Medium reduction 1.1 (0.9, 1.5) 33.1 (22.6, 46.6) 55.5 (38.1, 70.5) 7.8 (4.5, 13.5) 
More B.1.351 Fully open, fast Large reduction 0.9 (0.7, 1.1) 23.7 (15.7, 34.5) 64.9 (46.7, 77) 9.1 (5, 15.9) 
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Supplementary Table 2. Prior ranges for the parameters used in the model-inference system for the three countries. 

Parameter/ 
variable 

Symbol Prior range Source/rationale 

Initial exposed E(t=0) 5 – 50 times (for the UK), 1 – 10 times (for South Africa), or 
2.5 – 25 times (for Brazil) of the reported number of cases 
on the first week of simulation 

Low infection-detection rate in first weeks; 
likely higher initial introduction for the UK 
due to more international travel per capita. 

Initial infectious I(t=0) Same as for E(t=0)  

Initial 
susceptible 

S(t=0) 99 – 100% of the population Almost everyone is susceptible initially 

Population size  N N/A Based on data 

Variant-specific 
transmission 
rate 

β [0.5, 0.8] for the UK; [0.4, 0.7] for South Africa; [0.4, 0.8] 
for Brazil 

Based on R0 estimates of around 1.5-4 for 
SARS-CoV-2.20, 21, 22  Slightly lower ranges 
are used for South Africa and Brazil, as 
initial testing showed that the priors tend 
to overestimate the observations.  

Scaling of 
effectiveness of 
NPI 

e  [0.5, 1.5] Around 1, with a large bound to be flexible. 
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Latency period Z [2, 5] days Incubation period: 5.2 days (95% CI: 4.1, 
7)20; latency period is likely shorter than 
the incubation period 

Infectious 
period 

D [2, 5] days Time from symptom onset to 
hospitalization: 3.8 days (95% CI: 0, 12.0) in 
China,23 plus 1-2 days viral shedding before 
symptom onset. We did not distinguish 
symptomatic/asymptomatic infections. 

Immunity 
period 

L [730, 1095] days  Assuming immunity lasts for 2-3 years 

Mean of time 
from viral 
shedding to 
diagnosis 

Tm [5, 7] days for the UK, [5, 8] days for South Africa and Brazil From a few days to a week from symptom 
onset to diagnosis/reporting,23 plus 1-2 
days of viral shedding (being infectious) 
before symptom onset. There may be a 
slightly longer delay for South Africa and 
Brazil. 

Standard 
deviation (SD) of 
time from viral 
shedding to 
diagnosis 

Tsd [1, 3] days To allow variation in time to 
diagnosis/reporting 
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Infection-
detection rate 

r For the UK: starting from U[0.01, 0.15] at time 0 and 
allowed to increase over time using space re-probing16 
with values drawn from U[0.1, 0.24] starting at week 5 
(the week of 3/29/2020), U[0.05, 0.2] during the summer 
(July – Aug 2020), U[0.1, 0.3] starting Sep 2020, and 
U[0.15, 0.3] starting Nov 2020.  
For South Africa: starting from U[0.01, 0.06] at time 0 and 
allowed to change over time using space re-probing16 with 
values drawn from U[0.02, 0.08] starting at week 5 (the 
week of 4/12/2020). 
For Brazil: starting from U[0.01, 0.1] at time 0 and allowed 
to change over time using space re-probing16 with values 
drawn from U[0.02, 0.1] starting at week 5 (the week of 
4/12/2020). 
 

Large uncertainties; therefore, in general 
we use large prior bounds and large 
bounds for space re-probing (SR).  Note 
that SR is only applied to 3-10% of the 
ensemble members and r can migrate 
outside either the initial range or the SR 
ranges during EAKF update. Efforts were 
made in the UK to increase detection of 
infection; however, detection during the 
summer of 2020 was likely lower because 
more infections at the time occurred 
among younger age groups with no or mild 
symptoms.  In South Africa, due to the 
younger age structure in the population, 
infection detection rates were likely lower.  
In Brazil, infection-detection rates were 
likely low throughout the pandemic.  

Infection fatality 
risk (IFR) 

 For the UK: starting from U[0.001, 0.015] at time 0 and 
allowed to change over time using space re-probing16 with 
values drawn from U[0.0001, 0.003] during Jun – Sep 2020 
when infections occurred mostly among younger ages, 
values drawn from U[0.0001, 0.005] during Oct – Dec 
2020, and [0.0001, 0.006] during Jan – Apr 2021 to 
account for higher IFR for B.1.1.7. 
For South Africa: starting from [0.0001, 0.003] at time 0 
and allowed to change over time using space re-probing16 

Based on previous estimates24 but extend 
to have wider ranges. Note that SR is only 
applied to 3-10% of the ensemble 
members and IFR can migrate outside 
either the initial range or the SR ranges 
during EAKF update. 
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with values drawn from U[0.0001, 0.0015] during the week 
of 4/19/2020 to the week of 7/5/2020 when case fatality 
risk was lower as computed from the data, values drawn 
from U[0.0001, 0.002] starting the week of 12/13/2020 
with the rise of B.1.351. 
For Brazil: starting from U[0.001, 0.01] at time 0 and 
allowed to change over time using space re-probing16 with 
values drawn from U[0.0001, 0.007] starting at week 5 (the 
week of 4/12/2020), values drawn from U[0.0001, 0.0035] 
during the week of 6/21/2020 to the week of 11/8/2020 
when case fatality risk was lower as computed from the 
data, values drawn from U[0.0001, 0.006] starting the 
week of 1/3/2021 with the rise of P.1, and values drawn 
from U[0.0001, 0.01] starting the week of 2/7/2021 when 
the healthcare systems began to be overwhelmed.  

Vaccine efficacy 
(VE) 

 For the UK: VE = 85% fourteen days after the 1st dose, and 
95% seven days after the 2nd dose. 
For South Africa: VE = 60% fourteen days after the 1st 
dose; no 2nd dose (for J&J vaccine). 
For Brazil: VE = 45% fourteen days after the 1st dose, and 
55% seven days after the 2nd dose. 

During our study period (up to mid-April 
2021), the UK mostly used the Pfizer and 
later on Oxford/AstraZeneca vaccine, both 
shown to be highly effective against both 
the wildtype virus and B.1.1.7.  South 
Africa mostly used the J&J vaccine with just 
one dose. Brazil mostly used the Sinovac 
and Oxford/AstraZeneca vaccines with 
relatively lower VE against P.1.   
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Supplementary Table 3. Parameters used to generate the synthetic data for model validation 
Truth Settings 
Wildtype-
virus, 
same for 
all truths 

β = 0.65 per day; Z = 3.5 days; D = 3.5 days; L = 2.5 years; Tm = 6 days; Tsd = 2 
days; IFR = 0.7% 

Variant in 
Truth 1 

Large outbreak during the first wave (See Fig 1 and Supplementary Fig 1). No 
increase in transmissibility (i.e. same β and D as for the wildtype virus); 80% 
increase in immune escape. Other parameters same as the wildtype virus. 

Variant in 
Truth 2 

Large outbreak during the first wave (See Fig 1 and Supplementary Fig 1). 50% 
increase in transmissibility (i.e. β = 0.65 x 1.5 = 0.975 per day); no immune 
escape. Other parameters same as the wildtype virus. 

Variant in 
Truth 3 

Large outbreak during the first wave (See Fig 1 and Supplementary Fig 1). 50% 
increase in transmissibility (i.e. β = 0.65 x 1.5 = 0.975 per day); 80% increase in 
immune escape. Other parameters same as the wildtype virus. 

Variant in 
Truth 4 

Large outbreak during the first wave (See Fig 1 and Supplementary Fig 1). 25% 
increase in transmissibility (i.e. β = 0.65 x 1.25 = 0.8125 per day); 40% increase 
in immune escape. Other parameters same as the wildtype virus. 

Variant in 
Truth 5 

Small outbreak during the first wave (See Fig 1 and Supplementary Fig 1). 50% 
increase in transmissibility (i.e. β = 0.65 x 1.5 = 0.975 per day); no immune 
escape. Other parameters same as the wildtype virus. 

Infection-
detection 
rate 

20% for results shown in Fig 1 and 10% for results shown in Supplementary Fig 
1. 
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Supplementary Table 4. Cumulative vaccination coverage used in the multi-variant, age-
structured model simulations. Baseline vaccination coverage (as of 4/24/2021) is based on data 
for NYC.  Projected vaccination rates for the simulation period (from the week starting 
4/25/2021 to the week ending 8/29/2021) are based on data 10 days preceding the simulation 
and assuming a cumulative vaccination uptake of 80%. Note that ages under 15 (i.e., <1, 1-4, 5-
14 years) are combined in the same column as they were not eligible to receive the vaccines at 
the time of this study. In addition, the numbers are aggregated from neighborhood-level 
estimates and thus could slightly exceed the 80% total for some age groups when some 
neighborhoods had actual vaccination coverage above 80% at baseline. 

Time point 
Vaccine 
dose 

Vaccination coverage (%) by age group (in year) 
0-14 15-24 25-44 45-64 65-74 75+ 

Start of simulation: 
4/24/2021 

1st dose 0 25.4 41.7 52.9 69 58.2 
2nd dose 0 10.5 26.7 40.7 62.6 53.6 

End of simulation: 
8/29/2021 

1st dose 0 70 76 79.1 80.6 76.8 
2nd dose 0 65.4 73.4 78.7 80.3 74.5 
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Supplementary Table 5. Parameter settings for different scenarios to simulate and project the 
impact of different variants of concern. Initial conditions and parameters are randomly drawn 
from uniform distributions with lower and upper bounds as specified below, based on 
estimates for NYC made for the week of 4/18/2021 using data during 3/1/2020 – 4/24/2021. 
Numbers associated with the parameter names denote the corresponding age groups.  

scenario: 
Seeding/VE/NPI 

variant parameter lower bound 
upper 
bound 

Equal seeding wildtype Initial seeding (%) 45 61 
Equal seeding B.1.1.7 Initial seeding (%) 35 45 
Equal seeding B.1.351 Initial seeding (%) 2 5 
Equal seeding P.1 Initial seeding (%) 2 5 
More B.1.351 wildtype Initial seeding (%) 49.4 62.8 
More B.1.351 B.1.1.7 Initial seeding (%) 35 45 
More B.1.351 B.1.351 Initial seeding (%) 2 5 
More B.1.351 P.1 Initial seeding (%) 0.2 0.6 
More P.1 wildtype Initial seeding (%) 49.4 62.8 
More P.1 B.1.1.7 Initial seeding (%) 35 45 
More P.1 B.1.351 Initial seeding (%) 0.2 0.6 
More P.1 P.1 Initial seeding (%) 2 5 
All All Travel-related importation, εi 1 per 21 days, for the 

entire city (N = 8.4 million) 

Same VE (as 
mRNA vaccines 
against wildtype) 
or Very high VE 

wildtype VE = 85% fourteen days after the 1st dose and 95% seven 
days after the 2nd days 

 
B.1.1.7 VE = 85% fourteen days after the 1st dose and 95% seven 

days after the 2nd dose 
B.1.351 VE = 85% fourteen days after the 1st dose and 95% seven 

days after the 2nd dose 
P.1 VE = 85% fourteen days after the 1st dose and 95% seven 

days after the 2nd dose 
Minor reduction 
in VE (mRNA 
vaccines)  

wildtype VE = 85% fourteen days after the 1st dose and 95% seven 
days after the 2nd dose 

B.1.1.7 VE = 85% x .95 = 80.75% fourteen days after the 1st dose and 
95% seven days after the 2nd dose 

B.1.351 VE = 85% x .80 = 68% fourteen days after the 1st dose and VE 
= 95% x .9 = 85.5% seven days after the 2nd dose 
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P.1 VE = 85% x .85 = 72.25% fourteen days after the 1st dose and 
VE = 95% x .95 = 90.25% seven days after the 2nd dose 

Medium 
reduction in VE 
(mRNA vaccines)   

wildtype VE = 85% fourteen days after the 1st dose and 95% seven 
days after the 2nd dose 

B.1.1.7 VE = 85% x .95 = 80.75% fourteen days after the 1st dose and 
VE = 95% x .95 = 90.25% seven days after the 2nd dose 

B.1.351 VE = 85% x .70 = 59.5% fourteen days after the 1st dose and 
VE = 95% x .8 = 76% seven days after the 2nd dose 

P.1 VE = 85% x .8 = 68% fourteen days after the 1st dose and VE 
= 95% x .9 = 85.5% seven days after the 2nd dose 

Large reduction 
in VE (mRNA 
vaccines) 

wildtype VE = 85% fourteen days after the 1st dose and 95% seven 
days after the 2nd dose 

B.1.1.7 VE = 85% x .95 = 80.75% fourteen days after the 1st dose and 
VE = 95% x .95 = 90.25% seven days after the 2nd dose 

B.1.351 VE = 85% x .5 = 42.5% fourteen days after the 1st dose and 
VE = 95% x .6 = 57% seven days after the 2nd dose 

P.1 VE = 85% x .6 = 51% fourteen days after the 1st dose and VE 
= 95% x .7 = 66.5% seven days after the 2nd dose 

High VE All variants VE = 60% fourteen days after the 1st dose and VE = 70% 
seven days after the 2nd dose 

Medium VE All variants VE = 45% fourteen days after the 1st dose and VE = 55% 
seven days after the 2nd dose 

Current NPI all variants no further increase in transmission rate 
25% less NPI all variants transmission rate increases by 5% per week up to 25% in 

total 
50% less NPI all variants transmission rate increases by 5% per week up to 50% in 

total 
Full reopen, slow all variants transmission rate increases by 5% per week up to fully 

reopen (~85% of current level) 
Full reopen, fast all variants transmission rate increases by 10% per week up to fully 

reopen (~85% of current level)  
wildtype β11 (per day, same below) 0.11 0.16  
wildtype β22 0.078 0.11  
wildtype β33 0.11 0.15  
wildtype β44 0.13 0.19  
wildtype β55 0.16 0.25  
wildtype β66 0.13 0.19 
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wildtype β77 0.13 0.19  
wildtype β88 0.11 0.16  
wildtype β12 0.055 0.08  
wildtype β13 0.014 0.021  
wildtype β14 0.0057 0.0084  
wildtype β15 0.018 0.026  
wildtype β16 0.0082 0.012  
wildtype β17 0.0058 0.0085  
wildtype β18 0.004 0.0059  
wildtype β21 0.039 0.055  
wildtype β23 0.01 0.014  
wildtype β24 0.0041 0.0058  
wildtype β25 0.013 0.018  
wildtype β26 0.0059 0.0083  
wildtype β27 0.0042 0.0059  
wildtype β28 0.0029 0.004  
wildtype β31 0.013 0.018  
wildtype β32 0.013 0.018  
wildtype β34 0.0066 0.0089  
wildtype β35 0.0087 0.012  
wildtype β36 0.0048 0.0066  
wildtype β37 0.0034 0.0046  
wildtype β38 0.0044 0.006  
wildtype β41 0.0073 0.011  
wildtype β42 0.0073 0.011  
wildtype β43 0.012 0.017  
wildtype β45 0.012 0.017  
wildtype β46 0.0089 0.013  
wildtype β47 0.0032 0.0046  
wildtype β48 0.0059 0.0086  
wildtype β51 0.075 0.12  
wildtype β52 0.075 0.12  
wildtype β53 0.061 0.096  
wildtype β54 0.048 0.076  
wildtype β56 0.046 0.073  
wildtype β57 0.028 0.043  
wildtype β58 0.027 0.042 
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wildtype β61 0.04 0.058  
wildtype β62 0.04 0.058  
wildtype β63 0.033 0.047  
wildtype β64 0.039 0.056  
wildtype β65 0.04 0.058  
wildtype β67 0.044 0.064  
wildtype β68 0.04 0.058  
wildtype β71 0.024 0.035  
wildtype β72 0.024 0.035  
wildtype β73 0.017 0.025  
wildtype β74 0.0074 0.011  
wildtype β75 0.018 0.025  
wildtype β76 0.025 0.036  
wildtype β78 0.051 0.074  
wildtype β81 0.017 0.024  
wildtype β82 0.017 0.024  
wildtype β83 0.018 0.025  
wildtype β84 0.013 0.018  
wildtype β85 0.016 0.023  
wildtype β86 0.028 0.04  
wildtype β87 0.043 0.061  
wildtype Z1 (days, same below) 3.3 4.3  
wildtype Z2 3.3 4.3  
wildtype Z3 3.4 4.4  
wildtype Z4 3.4 4.4  
wildtype Z5 3.5 4.4  
wildtype Z6 3.5 4.5  
wildtype Z7 3.4 4.5  
wildtype Z8 3.3 4.4  
wildtype D1 3.1 4  
wildtype D2 3.1 4.1  
wildtype D3 3 4  
wildtype D4 3.3 4.2  
wildtype D5 3.2 4.2  
wildtype D6 3.3 4.2  
wildtype D7 3.5 4.4  
wildtype D8 3.3 4.3 
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wildtype IFR1 7.70E-05 0.00012  
wildtype IFR2 7.60E-05 0.00013  
wildtype IFR3 7.70E-05 0.00012  
wildtype IFR4 7.60E-05 0.00013  
wildtype IFR5 0.00031 0.00049  
wildtype IFR6 0.0033 0.0047  
wildtype IFR7 0.018 0.023  
wildtype IFR8 0.056 0.069  
B.1.1.7 Increase in transmission rate 0.403 0.5227  
B.1.1.7 Immune escape 0 0.1  
B.1.351 Increase in transmission rate 0.1849 0.457  
B.1.351 Immune escape 0.4414 0.8281  
P.1 Increase in transmission rate 0.3682 0.4945  
P.1 Immune escape 0.3588 0.6683  
B.1.1.7 Increase in transmission rate 0.403 0.5227  
B.1.1.7 Immune escape 0 0.1  
B.1.351 Increase in transmission rate 0.1849 0.457  
B.1.351 Immune escape 0.4414 0.8281  
P.1 Increase in transmission rate 0.3682 0.4945  
P.1 Immune escape 0.3588 0.6683 
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