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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

This is a timely topic, as we are now at the stage of the COVID-19 pandemic where in most countries 

the most prevalent variant is no longer the wild type. 

So understanding transmissibility and immune landscape is crucial, as we continue attempt mitigation 

of SARS-CoV-2. 

While this is a interesting ms, there are quite a few issues that I had, revolving the modeling 

framework and most importantly how it is explained. 

Specifically: 

How do they account for under-detection This is not clear 

Delays in reporting Why not have this varying? 

Disease seasonality not clear how this was done. Why is there a fig S5 with climate variables? 

NPIs not well explained (even with the tables in Si) 

Also since different vaccines might better in terms of variant coverage I wonder if it worth while to 

have simulations where you have different vaccines? This is not clear in the NYC simulations 

Not clear if the age structured model is calibrated to match NYC pop? 

While the scenarios are comprehensive, the lack of detail leaves me unsure of the validity of these 

results. 

More importantly, once these issues are addressed, I would suggest to simulate scenarios of different 

VE, even though we know some of the vaccines are highly effective on the VOCs. 

There is not clarity on how the vaccination was introduced in the model. 

Further, the incorporation mobility and seasonality is not well explained. 

Aggregating data at the Country level data for these three countries is problematic, particularly 

because there is huge spatial heterogeneity. This is not really discussed 

Fig 1B The whole truth concept is poorly explained 

Fig 1C Consider decomposing this plot. It is very confusing and hard to examine. 

Fig 4 suggested the wildtype is not longer circulating. Is these scenarios? Does this seem plausible?? 

FigS2 A consider adding vaccine uptake. In the Uk vaccination started in Dec 2020 and my End of 

March 2021 a considerable proportion of the population had at least received one dosage. 

The figure legend needs a lot more detail. 

Fig S4 Again this fig is really confusing. Needs more space between plots and a much more 



comprehensive legend. 

The age structure model is very poorly explained. Also while there is come inference done there is no 

reporting of goodness of fit (eg, some AIC or MLE) 

Reviewer #2 (Remarks to the Author): 

This manuscript described a model-inference framework to estimate changes in transmissibility and 

immune escape of new variants of SARS-CoV-2. I believe the research question is important, but I 

was not very sure how the inference could be performed with case and mortality data without 

stratifying by virus strains (i.e., by wild type and the new variant). Please see below for my specific 

comments. 

1.The two-virus-type model was built mainly from Equation S4 in the Supplementary Information. 

However, it was not clear to me how the two viruses compete for the same susceptible population. 

What is the relationship between S_i, S_j, and the S_ij? How many susceptible classes are there if a 

two-virus-type model is considered? Please clarify using the two-virus-type model as an example. 

2.Figure 1: Please add legend or notation to Figure 1C for “transmissibility” and “immune escape”. 

3.Figure 2: Were any serology data against wildtype or new variant used in the model fitting for the 

UK? Also, except for the REACT data, were the S-dropout data used for the UK model fitting? What 

about the sequence data from UK? Will adding all these data improve the model fit? 

4.Figure 2: The serology data of South Africa and Brazil were obtained before the emergence of VOC. 

Thus, one would imagine these serology data were essentially reflecting the transmission of the 

wildtype. Therefore, in these two countries, the inference of VOC transmissibility and immune escape 

was mainly based on case and death data. With no data about the percentage of wildtype and VOC 

over time for the second wave, was the model overfitting the data because there would be quite a lot 

of combination of possible values of transmissibility and immune escape that would result in the 

observed epidemic case and death data. 

5.Methods: The ensemble Kalman adjustment filter (EAKF) was used in the parameter estimation 

rather than the more widely used likelihood-based Bayesian inference with Markov Chain Monte Carlo. 

Would you please explain what priors were used in EAKF and how the posterior estimates would be 

affected if the priors were changed.
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REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
This is a timely topic, as we are now at the stage of the COVID-19 pandemic where in most 
countries the most prevalent variant is no longer the wild type. So understanding 
transmissibility and immune landscape is crucial, as we continue attempt mitigation of SARS-
CoV-2. While this is a interesting ms, there are quite a few issues that I had, revolving the 
modeling framework and most importantly how it is explained. 
 
Specifically: 
How do they account for under-detection This is not clear 
 
- Under-detection of infection is accounted for in the observation model (see SI, Section 2.2, 
Lines 121 - 141).  To make it clearer, we have now added a more descriptive header for the 
related section.  Briefly, the model-inference system included a parameter for infection-
detection rate (i.e., case ascertainment rate). During model-inference, the model-simulated 
infections (i.e. all infections including those not identified as cases) were lagged in time to 
account for delay in detection, and then further multiplied by the infection-detection rate to 
compute model-simulated cases. The model-simulated cases were then used as model prior 
estimate to compute the posterior along with the observed cases. The infection-detection rate 
and time-lag in detection are both estimated by the model-inference system along with other 
parameters and variables.  
 
Delays in reporting Why not have this varying? 
 
- We thank the reviewer for the suggestion.  Indeed, we used a broad prior range for the delay 
in detection and allowed it to vary over time. Specifically, gamma distributions were used to 
model the time from infectiousness to detection (see SI, section 2.2). For each week, the mean 
and standard deviation (SD) of the distribution were estimated and updated by the model-
inference system.  Fig R1 below shows the estimates for the three countries. The distributions 
remained wide for all three countries, likely due to several factors. First, the data were not 
strong enough to support more constrained estimates for these parameters (i.e. the mean and 
the SD of the gamma distribution). Second, the infection demographics changed over time and 
thus estimates made for the entire population may mask the changes for key populations. For 
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instance, during more recent months, while delay in detection in older age groups may have 
decreased, more infections occurred in children and young adults, who tend to experience 
more mild or asymptomatic infection, and thus have lower detection rates and take a longer 
time to detect.  

 
Fig R1. Posterior estimates of time from infectiousness to detection. Gamma distributions were 
used to model the time from infectiousness to detection (see SI, section 2.2). The mean and 
standard deviation (SD) of the distribution were estimated by the model-inference system.  Left 
panel shows the posterior estimates for the mean of this distribution and right panel shows the 
estimates for the SD of this distribution, for each country. Thick lines and shaded areas show 
the mean, 50% credible intervals (darker blue), and 95% credible intervals (lighter blue).  
 
Disease seasonality not clear how this was done. Why is there a fig S5 with climate variables? 
 
- Estimation of disease seasonality was described in the SI, Section 1 (Lines 7 – 54). Two climate 
variables – i.e., temperature and specific humidity – were used to compute the seasonal trend. 
Therefore, we showed the climate variables in Fig S5 (i.e., Fig S7 in the revision).  Briefly, the 
seasonality model (Eqn S1) assumed the basic reproductive number at a given week of the year 
[R0(t), a measure of how the likelihood of transmission changes over time due to seasonal 
factors] is modulated by both humidity and temperature during that week. For the humidity, 
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based on available studies for SARS-CoV-2, the model assumed both very low and very high 
humidity conditions are favorable for SARS-CoV-2 transmission and used a quadratic form (the 
first square bracket in Eqn S1) to represent this relationship. For temperature, the model 
assumed low temperatures promote transmission and temperatures above a certain threshold 
(i.e., Tc in Eqn. S1) limit transmission; this is represented by the terms in the second square 
bracket of Eqn. S1.  Thus, given different inputs of humidity and temperature in different 
locations (shown in the revised Fig S7 for the three countries), the local seasonal trend can be 
estimated.  To allow for model flexibility, we further scaled the weekly country output from Eqn 
S1 by the country mean output, such that this scaled output provides a relative, seasonality-
related transmissibility for each week of the year.  
 
The final results for the seasonal trends are shown in Fig S2 and used in the epidemic model to 
represent disease seasonality for each country via the parameter bt in Eqn S3.  For instance, for 
the UK (Fig S2A), the estimated seasonal trend bt is 1.15 for week 1 (a week during winter), 
indicating the transmission rate for that week is 1.15 times the yearly average, due to the more 
favorable winter weather conditions; similarly, estimated bt is 0.86 for week 27 (a week during 
summer), indicating the transmission rate for that week is 86% of the yearly average, due to the 
less favorable summer weather conditions. 
 
To clarify these issues, we have added a note (SI, Lines 52-54) and the above example in the SI 
(Lines 74 - 80) and the legend of Fig S2.  
 
NPIs not well explained (even with the tables in Si) 
 
- Different NPIs (e.g. stay-at-home mandate for nonessential workers, school closures, masking 
mandate, and other social distancing rules and preventive measures) have been implemented 
during the COVID-19 pandemic, depending on study location and time period.  In addition, the 
effectiveness of each NPI is unclear.  It is thus difficult to detail and capture specific NPI 
effectiveness in the model.  However, previous studies including our own have shown that the 
overall impact of NPIs (e.g., reduction in the reproduction number Rt) has been highly 
correlated with population mobility during the COVID-19 pandemic (see, e.g., Lasry et al. 2020; 
MMWR 69(15):451-7; Kraemer et al. 2020 Science. 368(6490):493-7. Yang et al. 2021 RSIF 
18(175):20200822).  Thus, here we used relative mobility, as observed in each study location, to 
represent the overall impact of NPIs. The mobility data used were described in the Methods of 
the main text, section “Data sources and processing” and model implementation was described 
in the SI, 2.1 Epidemic model. Briefly, the epidemic model (Eqn S3) included a variable mt 
(relative mobility at week t) to include the observed mobility pattern (shown in Fig S2). For 
instance, for the UK (Fig S2A), relative mobility mt was 41% of pre-COVID levels for the week 
starting March 22, 2020; per Eqn 3, the overall transmission rate for that week was reduced by 
41%, before adjusting for the effectiveness. To further account for the effectiveness, the model 
included another parameter et (effectiveness of NPIs) and multiplied it with mt. The 
effectiveness et was estimated by the model-inference system along with other model variables 
and parameters.   
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To clarify these issues better, we have now reorganized the descriptions in Section 2.1 to 
highlight each component.  In addition, we have also added examples similar to the ones 
described above to provide more context in the revision.  Please see SI, Lines 82 – 98. 
 
Also since different vaccines might better in terms of variant coverage I wonder if it worth while 
to have simulations where you have different vaccines? This is not clear in the NYC simulations 
 
- We thank the reviewer for the suggestion.  For NYC, 97% of vaccine doses administered 
through the end of April, 2021 were the Pfizer-BNTech or Moderna mRNA vaccines, both are 
highly effective (VE set to 85% after the 1st dose and 95% after the 2nd dose). Therefore, for the 
different VE scenarios simulated, we scaled the reduction due to the new variants to the 
baseline 85% and 95% VEs (see Table S5). Among the VE scenarios tested, the lowest VE was 
59.5% for the 1st dose and 76% for the 2nd dose, against B.1.351 (Table S5); these settings are 
close to the VE reported for the J&J vaccine but may be still higher than other vaccines.  
Therefore, to represent vaccines with lower VE, we have now added a fourth VE scenario (i.e. 
lower VE) where after the assumed reduction, the VE would be 42.5% and 57% for the 1st and 
2nd vaccine dose, respectively.  
 
In addition, per the reviewer suggestion, we have now performed additional simulations using 
settings representing three levels of VE for different vaccines currently in use: 1) 85% (1st dose) 
and 95% (2nd dose) as reported for the mRNA vaccines; 2) 60% (1st dose) and 70% (2nd dose) as 
reported for vaccines such as J&J; and 3) 45% (1st dose) and 55% (2nd dose) as reported for 
vaccines such as Sinovac. 
 
In the revision, we have added a summary of the simulation scenarios, including the new 
scenarios for difference vaccines in the Results, main text (see below).  In addition, we report 
the new results in Fig 4 and Fig S5 of the revised manuscript.  
 
See Main text, Lines 153 – 167: 
“We focus on NYC for which detailed data and estimates (e.g., contact patterns, variant 
prevalence, and vaccination rates) are available. We consider 3 variant prevalence scenarios for 
P.1 and B.1.351; these are equal initial seeding of P.1 and B.1.351 (both at 2-5%) and higher 
prevalence of either P.1 or B.1.351 (one at 2-5% and the other at 0.2-0.6%; Table S5). For each 
variant prevalence scenario, we further consider 5 NPI scenarios and 4 VE reduction scenarios 
(20 combinations in total for each). The NPI scenarios range from maintaining the NPIs 
implemented at the start of a simulation to gradually lifting all NPIs within a 2-month window. 
Lastly, because NYC mostly used mRNA vaccines during the study period, we use mRNA 
vaccines (here assumed 85%/95% for the 1st/2nd dose against the wildtype) as a baseline and 
scale the VEs to represent potential VE reduction against the new variants, ranging from no 
reduction to a large reduction (as low as 42.5%/57% for the 1st/2nd dose, i.e. a 50%/40% 
reduction for the 1st/2nd doses). In addition, because different types of vaccines with different 
VEs have been used elsewhere, to represent these diverse vaccines and VEs, we also simulated 
VEs ranging from very high (85%/95% for 1st/2nd dose) to high (60%/70%) and medium 
(45%/55%; see Fig S5) levels.” 
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Not clear if the age structured model is calibrated to match NYC pop? 
 
- We used NYC data (e.g. population age structure and size) and model estimates to initialize 
the multiple-variant age-structured model and perform the simulations.  We have worked 
closely with the NYC health department since March 2020 when NYC became the initial 
pandemic epicenter in the US (see modeling results at https://github.com/wan-
yang/COLUMBIA-COVID19-PROJECTIONS-FOR-NYC) and have use detailed estimates to support 
model formulation and simulations.  For this work, the objectives for the simulations are to 1) 
test the relative competitiveness of the three VOCs under different seeding, NPI, and 
vaccination scenarios; and 2) identify key factors determining the impact of the VOCs.  While 
the simulations are calibrated to the NYC population, we summarize and report the general 
modeling findings, as we believe they are applicable to other municipalities, rather than specific 
to NYC.  
 
While the scenarios are comprehensive, the lack of detail leaves me unsure of the validity of 
these results. More importantly, once these issues are addressed, I would suggest to simulate 
scenarios of different VE, even though we know some of the vaccines are highly effective on the 
VOCs. 
 
- We thank the reviewer for the suggestions. We have revised the manuscript to provide 
additional methodological detail and clarification.  As described above, we have also performed 
additional simulations for the vaccination scenarios, using settings representing three levels of 
VE (versus wild type), covering different vaccines currently in use.  
 
There is not clarity on how the vaccination was introduced in the model. 
 
- We have revised the Methods section to clarify the vaccination component in the model: 
 
SI, Section 2.1, Lines 104 – 119: 
“To incorporate changes in population susceptibility due to vaccination, the model accounts for 
two-dose vaccination via v1(t) and v2(t). Specifically, v1(t) is the number of individuals 
successfully immunized after the first dose of the vaccine and is computed using vaccination 
data and vaccine efficacy for one dose (see detailed settings in Table S2). Similarly, v2(t) is the 
additional number of individuals successfully immunized after the second vaccine dose 
(excluding those successfully immunized after the first dose).  As an example, assume 100 
individuals receive their 1st dose on day 0 and 2nd dose on day 21 and the vaccine efficacy (VE) is 
85% 14 days after the 1st dose and 95% 7 days after the 2nd dose. To compute v1 and v2, we first 
adjust for immunity gained from infection; here for illustration, assume 10% have immunity 
from prior infection at time of vaccination (for simplicity, assumed the same for both doses 
here; in this study, these were based on model-estimated cumulative infection rate and 
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adjusted for waning immunity), then the number of individuals susceptible at time of 
vaccination would be 100 × (1 – 10%) = 90.  Further adjusting for the time lag of immunity 
development and VE, v1(t = day 14) is calculated as 90 × 85% = 76.5 and v2 (t = day 28) is 
calculated as 90 × (1 – 85%)[1 – (1 – 85%)(1 – 95%)] =  9, such that the total percentage of 
individuals successfully immunized is (76.5 + 9) / 90 = 95%, i.e. VE for the fully vaccinated.” 
 
 
Further, the incorporation mobility and seasonality is not well explained.  
 
- As detailed above, we have revised the manuscript to clarify these modeling components.  
 
 
Aggregating data at the Country level data for these three countries is problematic, particularly 
because there is huge spatial heterogeneity. This is not really discussed 
 
- We thank the reviewer for the critique and have acknowledged this limitation in the 
Discussion:  
 
Main text, Lines 260 -268: 
“Due to a lack of sub-regional data, we used aggregated country-level data to estimate the 
properties for the three VOCs. Our model-inference system also did not account for differences 
of disease severity and infection-detection rate among age groups, which may vary 
substantially.17  This model simplification may introduce uncertainty and bias to our estimates, 
particularly for Brazil where country-level data may mask more intense transmission in 
subpopulations and may have led to underestimation of the transmissibility of P.1.  
Nevertheless, validation using independent data, including for Brazil, indicates that the model-
inference system is able to closely capture pandemic dynamics and accurately estimate 
cumulative infection rates (Fig 2).” 
 
Fig 1B The whole truth concept is poorly explained 
 
- We have revised Fig 1 and its legend to better explain this concept. See the revised figure and 
legend below. 
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Fig 1. Model-inference system validation using model-generated synthetic data with an 
infection-detection rate of 20%. For this testing, the true values of incidence and mortality by 
week (A), transmissibility by week (B, top panel), population susceptibility by week (B, bottom), 
and overall changes in transmissibility and immune escape due to a new variant (C) were 
generated by model simulations with prescribed parameters and conditions. Unlike the real-
world in which most epidemiological characteristics are unobserved, here these quantities (i.e. 
the ‘Truth’) are prescribed and known and thus can be compared to estimates made with the 
model-inference system using the synthetic, model-generated incidence and mortality data (A). 
(A) 5 sets of synthetic data (dots) and model-fits to each dataset; lines show mean estimates 
and surrounding areas show 50% (dark) and 95% (light) CrIs.  (B) Weekly model estimated 
transmissibility and population susceptibility. The lines show mean estimates and surrounding 
areas show 50% (dark) and 95% (light) CrIs, compared to the true values (dots).  (C) overall 
estimates of the change in transmissibility (‘Trans’) and immune escape (‘Imm esc’; boxes and 
whiskers show model estimated median, interquartile range, and 95% CI from 100 model-
inference simulations) compared to the true values (dots). 
 
 
Fig 1C Consider decomposing this plot. It is very confusing and hard to examine. 
 
- We have revised Fig 1C and its legend to clarify the figure items.  
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Fig 4 suggested the wildtype is not longer circulating. Is these scenarios? Does this seem 
plausible?? 
 
- Yes, rapid variant displacement has occurred in all three countries (the UK, South Africa, and 
Brazil) where the three VOCs studied here initially emerged.  
 
FigS2 A consider adding vaccine uptake. In the Uk vaccination started in Dec 2020 and my End 
of March 2021 a considerable proportion of the population had at least received one dosage. 
The figure legend needs a lot more detail.  
 
- Per the reviewer suggestion, we have added vaccination uptake to Fig S2 and revised the 
legend to provide more detail. See the revised figure and legend below.  
 

Fig S2. Pandemic dynamics, mobility, and estimated seasonal trends, and vaccination uptake in 
the three countries: (A) United Kingdom, (B) South Africa, and (C) Brazil. Bars show weekly 
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numbers of reported cases per 1 million persons (grey) and reported deaths per 100,000 
persons (red). Green lines show relative mobility by week (relative to pre-pandemic levels), 
based on data from Google Community Mobility Reports (see main text, Methods, “Data 
sources and processing”). Orange lines show estimated seasonal trends (see SI, Section 1, 
“Estimating seasonal trends”). Blue lines show the cumulative fractions of population partially 
vaccinated (dashed lines) and fully vaccinated (solid lines), based on vaccination data from each 
country (see main text, Methods, “Data sources and processing”).  
 
Fig S4 Again this fig is really confusing. Needs more space between plots and a much more 
comprehensive legend. 
 
- We have revised the figure and legend to provide more detail.  See the revised figure and 
legend below: 
 

 
Fig S4. Model projections of COVID-19 related mortality under different scenarios of VOC co-
circulation and NPIs. (A) Example projected weekly number of deaths due to infections by each 
variant, assuming mRNA vaccines are used and the vaccine efficacy (VE) is as high as for the 
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wild-type virus. Each panel shows projections for one seeding and NPI scenario, as indicated in 
the subtitle. Lines and surrounding areas show model projected median and interquartile range 
(color-coded for each variant as indicated by the legend).  (B) Tallies over the entire simulation 
period (May – Aug 2021) for different scenarios of seeding (as indicated in the subtitles) and 
NPIs (as indicated by the x-axis labels). Due to the uncertainty of the infection fatality risk 
among breakthrough infections (i.e., those who have been vaccinated), all simulations shown 
here assume no reduction in VE. All numbers are scaled to per 1 million people. 
 
 
The age structure model is very poorly explained. Also while there is come inference done there 
is no reporting of goodness of fit (eg, some AIC or MLE) 
 
- We have added a description to explain the age-related component of the model.  Please see 
SI, Lines 292– 296: 
 

“…The formulation of the age-related model component follows a typical age-structured 
model; for a given age group A (designated by the superscript), the total infection rate by a 

given variant-j (designated by the subscript) is the sum over all age groups (i.e., ∑
"#
$%&#

$'#
%

(%) , 
where 𝛽+,)  is the transmission rate of variant-j from age-group a to age-group A)…” 
 
The ensemble adjustment Kalman filter (EAKF) inference method used here is a Bayesian 
method and does not generate AIC or MLE.  However, we evaluate model performance based 
on multiple criteria, as described in SI, Section 2.3 “Inference using the EAKF” (see SI, Lines 223 
– 238). To show these results, we have now added a Figure S6 to show two main criteria: 1) 
model fitting to case and mortality data, as indicated by the relative root-mean-squared-error 
(RRMSE) between the posterior estimates for the corresponding variable (i.e. case rate or 
mortality rate) and data; and 2) the accuracy of one-step ahead prediction, as indicated by the 
RRMSE between the prior estimates for the corresponding variable (i.e. case rate or mortality 
rate) and data.  
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Fig S6. Model goodness-of-fit. Boxes and whiskers show the distributions (median, interquartile 
range, and 95% CI across 100 model-inference runs) of relative root-mean-square-error 
(RRMSE) for the posterior estimates (cases in blue and deaths in pink) and one-step-ahead 
predictions. See SI, Section 2.3 for details on RRMSE calculation.  
 
 
Reviewer #2 (Remarks to the Author): 
 
This manuscript described a model-inference framework to estimate changes in transmissibility 
and immune escape of new variants of SARS-CoV-2. I believe the research question is 
important, but I was not very sure how the inference could be performed with case and 
mortality data without stratifying by virus strains (i.e., by wild type and the new variant). Please 
see below for my specific comments.  
 
1.The two-virus-type model was built mainly from Equation S4 in the Supplementary 
Information. However, it was not clear to me how the two viruses compete for the same 
susceptible population. What is the relationship between S_i, S_j, and the S_ij? How many 
susceptible classes are there if a two-virus-type model is considered? Please clarify using the 
two-virus-type model as an example. 
 
- We thank the reviewer for the question. Previous models tend to track the infection history of 
different variants; for example, for a 2-virus system, depending on infection history, there 
would be 3 categories of susceptibility: S_i, S_j, and S_ij. Under this model construct, the 
number of categories exponentiates with the number of viruses in the system, making the 
system extremely high dimensional and complex for systems with more than 2 or 3 viruses.    
 
Unlike such previous models, the multi-variant models in this study (Eqn S4 and Eqn S5) take a 
status-based construct, similar to developed in Gog and Grenfell (PNAS 2002) and Yang et al. 
(PLOS Comput Biol 2020).  The basic idea is that rather than tracking infection history, the 

(A) United Kingdom (B) South Africa (C) Brazil
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model only tracks susceptibility to each variant. To do so, the model computes the change in 
susceptibility to variant-i as the sum of two components: 1) loss of susceptibility due to 
infection by the same variant and 2) loss of susceptibility due to infection by other variants via 
cross-immunity.  In Eqn S4, cij represents the strength of immunity to variant-i conferred by 
infection with variant-j. For 1) where specific immunity is conferred, cii = 1 so that the loss of 
susceptibility is 𝑐..

"/&/'/
(

 = "/&/'/
(

, the same as in a simple SIR-type model (note, for illustration, we 
omit the terms 𝑏1𝑒1𝑚1 here). For 2) where cross-immunity is conferred, 𝑐.+ ∈ [0,1], the 
strength of cross-immunity to variant-i conferred by infection with variant-j depends on how 
closely related the pair of viruses i and j is. If the two variants are highly similar (e.g., for 
i=B.1.1.7 and j=wildtype), cij would be close to 1 (say, cij = 0.95) such that infection of j=wildtype 
(i.e., 

"#&#'#
(

) confers 95% immunity protection against i=B.1.1.7 (i.e., 𝑐.+
"#&#'#
(

= 0.95 "#&#'#
(

).  
Conversely, if the two variants are highly dissimilar (e.g., for i = B.1.351 and j = wildtype), cij 
would be closer to 0 (say, cij = 0.4) such that infection of j=wildtype (i.e., 

"#&#'#
(

) confers only 40% 

immunity protection against i=B.1.351 (i.e., 𝑐.+
"#&#'#
(

= 0.4 "#&#'#
(

).  The summation in the RHS of 

line 1 of Eqn S4 (i.e., ∑ @ABACAD/#"#&#'#
(+ ) thus converts both specific immunity (for i = j) and cross-

immunity (for i ≠ j) to loss of susceptibility to each variant.   
 
As shown above, using the status-based construct, the multi-variant model is greatly simplified 
and still able to represent both specific and cross-immunity and the resulting variant 
competition (For previous studies using this model construct, see, e.g., Koelle et al. 2006 
Science; Koelle et al. 2015 eLife; and Arinaminpathy et al. 2012 PNAS, in addition to Gog and 
Grenfell 2002 PNAS 2002 and Yang et al. 2020 PLOS Comput Biol).  
 
We have described how the cross-immunity settings and values of cij’s are configurated in the 
SI (see Lines 321 – 329).  
 
2.Figure 1: Please add legend or notation to Figure 1C for “transmissibility” and “immune 
escape”. 
 
- We thank the reviewer for the suggestion and have added a more descriptive legend for 
Figure 1C and revised the Figure 1 caption.  Please see the revised Figure 1 included in the reply 
to Reviewer 1 (page 7 of this document). 
 
3.Figure 2: Were any serology data against wildtype or new variant used in the model fitting for 
the UK? Also, except for the REACT data, were the S-dropout data used for the UK model 
fitting? What about the sequence data from UK? Will adding all these data improve the model 
fit?  
 
- For all three countries (i.e., including the UK), only case and mortality data were used for 
model fitting. The REACT data were independent of the model-inference estimates and only 
plotted to compare with corresponding model-estimates for model validation.  Please note 
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that, while the UK has much richer epidemiological data and inclusion of these data could 
further improve model estimates, we develop the model-inference system to only require the 
minimal datasets commonly available for many countries (i.e. case and mortality data). As 
demonstrated here, despite the minimal data need, the model-inference system was able to 
accurately estimate observations not fed into system (e.g. the REACT data from the UK and 
serology data for South Africa and Brazil).   
 
4.Figure 2: The serology data of South Africa and Brazil were obtained before the emergence of 
VOC. Thus, one would imagine these serology data were essentially reflecting the transmission 
of the wildtype. Therefore, in these two countries, the inference of VOC transmissibility and 
immune escape was mainly based on case and death data. With no data about the percentage 
of wildtype and VOC over time for the second wave, was the model overfitting the data 
because there would be quite a lot of combination of possible values of transmissibility and 
immune escape that would result in the observed epidemic case and death data. 
 
- As noted above, the serology data were not fed to the model-inference system; rather, they 
were only plotted to compare with corresponding model-estimates for model validation. 
 
Indeed, because the infection rate is a product of transmissibility and susceptibility, multiple 
combinations of possible values of transmissibility and immune escape could lead to the same 
infection rate, for a given time point.  Therefore, the key question here is two-fold: 1) Can the 
true values of transmissibility and immune escape be identified jointly? and 2) If yes, how can 
this be done?  For the first question, when looking at different combinations of transmissibility 
and immune escape, we learned that over multiple points in time over the course of a 
pandemic wave, the epidemic trajectories diverge under different combinations, even though 
initially the infection rates could be similar.  This is shown in Figure 1, where even though the 
five combinations give similar infection rates initially (from seeding of a new variant in ~late 
August to Sep/Oct), the epidemic trajectories diverge over time.  For instance, for truth 1 (red 
line), the true change is 80% immune escape and no change in transmissibility; and for truth 2 
(olive line), the true change is 0% immune escape and 50% increase in transmissibility; even 
with the higher percentage change in immunity, the increase in transmissibility leads to more 
immediate increase in infection rates (see the 2nd wave in olive due to a 50% increase in 
transmissibility is ahead of the one in red due to a 80% immune escape). These differences 
suggest that different combinations of changes in transmissibility and immune escape can be 
distinguished using observations over multiple time points. We have provided this rationale in 
the main text:  
 
Main text, Lines 309 – 320:  
“... However, joint estimation of the transmission rate and population susceptibility, which is 
related to immune evasion, is challenging, as both quantities can change for a new variant. This 
problem arises mathematically because the product of these two quantities, rather than either 
individually, determines disease incidence – i.e., at any point in time, given the incidence, 
transmissibility and susceptibility are not individually identifiable. Nevertheless, we posit that 
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transmissibility and susceptibility affect epidemic dynamics differentially over time, and, as 
such, data at multiple time points can enable joint estimation. Indeed, simulations show that 
epidemic trajectories can diverge over time even when infection rates during the initial weeks 
after introduction of a new variant are similar (see, e.g., Fig 1A). We thus design a model-
inference system to estimate the most plausible joint changes in these two quantities using 
commonly available incidence and mortality time series…”  
 
The answer to question #2 – how to estimate the two quantities jointly – is the main 
methodology advance in this study. We describe the method briefly in the main text (Lines 322 
– 350 and excerpt below) and in detail in the SI for specific settings under the 14 hypothesized 
possible combinations and criteria for evaluating the hypothesis (See SI, Lines 143 – 246). As 
reported in the manuscript, we first tested this approach using model-synthesized data, where 
the true values for changes in transmissibility and immune escape due to the new variant, as 
well as the underlying state variables (e.g. population susceptibility), are known.  As shown in 
Fig 1B, even though the combined transmissibility (black dots, top panel in Fig 1B) and 
population susceptibility (black dots, bottom panel in Fig 1B) could change substantially over 
time and that these underlying data were not fed into the model-inference system, the model-
inference system was able to accurately estimate these underlying quantities (blue lines and 
shaded areas). This synthetic testing demonstrates the model-inference system is able to 
accurately estimate the changes in transmissibility and immune escape using only case and 
mortality data.  In addition to this synthetic testing, when applied to real-world data from the 
three countries, we further validate the model estimates using independent data not fed into 
the model-inference system. These validation results are shown in Fig 2, B for the UK, D for 
South Africa, and F for Brazil. 
 
Excerpt from Main text, Lines 332 – 344: 
“…Further, due to the challenge identifying these two quantities individually, we ran the model-
inference system, repeatedly and in turn, in order to test 14 major combinations of changes in 
transmissibility and susceptibility (see details in Supplemental Information). Briefly, depending 
on the hypothesized change, we restricted the EAKF update to a given related set of 
parameters or variables. For instance, for the hypothesis that the new variant changes the 
transmissibility but does not evade immunity, the system only allows major adjustment to the 
transmission rate and the infectious period; for the hypothesis that the new variant induces 
both changes, the system allows major adjustment to the transmission rate, the infectious 
period, and population susceptibility.  The system then selects the run with the best 
performance based on the accuracy of model-fit, one-step ahead prediction, and magnitude of 
changes to key state variables to identify the most plausible combination of changes in 
transmissibility and level of immune evasion (see Supplemental Information and Fig S6 for 
model goodness-of-fit measures)...” 
 
5.Methods: The ensemble Kalman adjustment filter (EAKF) was used in the parameter 
estimation rather than the more widely used likelihood-based Bayesian inference with Markov 
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Chain Monte Carlo. Would you please explain what priors were used in EAKF and how the 
posterior estimates would be affected if the priors were changed. 
 
- The EAKF method has also been widely used in inference of infectious disease systems, 
including for COVID-19/SARS-CoV-2 (see, e.g., Yang et al. The Lancet Infectious diseases. 
2021;21(2):203-12; Pei et al. PNAS 2018;115(11):2752-7; Shaman et al. Nature 
Communications. 2013; 4:2837).  Here we use the EAKF because it is responsive to changes in 
the system, due to, e.g., the emergence of a new variant.  This is important for the system 
studied here, because as shown in Fig 1B, even after a new variant is introduced, the 
parameters and state variables (e.g., transmissibility and susceptibility) do not change 
immediately to the characteristics of the new variant. Rather, the overall epidemic 
characteristics are a combination of the two viruses and will change gradually over time, 
depending on how quickly the new variant emerges and the relative prevalence of wildtype and 
the new variant. For instance, compare the changes in susceptibility for Truth 1 (80% immune 
escape and no change in transmissibility; 1st column, lower panel in Fig 1B) and Truth 3 (80% 
immune escape and 50% increase in transmissibility; 3rd column, lower panel in Fig 1B). Given 
the same level of immune escape, the increase in susceptibility in Truth 1 occurs more slowly 
than Truth 3, as Truth 1 does not include the additional 50% increase in transmissibility and 
thus the new variant in that scenario emerges more slowly. As the exact timing of new variant 
introduction and its transmissibility and immune escape property are all unknown, it is 
challenging for methods like MCMC to infer all these quantities jointly.  However, as 
demonstrated in our study, the model-inference system using the EAKF and algorithm design 
here is able to infer the changes in underlying model parameters and state variables – after a 
few weeks adjusting to the new system dynamics, the model-inference estimates start to 
closely track the true values for both scenarios (again, please see comparison of the model-
inference estimates in blue and the true values shown by black dots in Fig 1B).      
 
Prior ranges for all parameters and state variables are reported in Table S2.  In general, given 
the uncertainty, we use very wide prior ranges guided by the literature.  For instance, a uniform 
prior of U[0.5, 0.8] per day is used for transmission rate (𝛽) in the UK and a uniform prior of 
U[2, 5] days is used for the mean infectious period; these result in initial R0 (for the wildtype) in 
the range of 1 to 4. However, even with these wide prior ranges, a substantial change beyond 
the specified prior range could occur for some parameter, due to a new variant (e.g. a 50% 
increase in transmission rate).  Using the EAKF, the posterior parameter estimates can migrate 
outside initial prior ranges, which allows the model-inference system flexibility to capture such 
scenarios. For specific countries, in initial test-runs, we compared the posterior and prior 
estimates (the two should be similar after a few weeks of filter initial spinning) to fine tune 
some of the key parameters; these location-specific priors are all listed in Table S2.    



REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

I am happy with the changes made as per my comments/ suggestions. I also went through the 

comments from the other reviewer and believe these were addressed appropriately. 

Reviewer #2 (Remarks to the Author): 

The authors have largely addressed all my comments, but I still have a last question regarding the 

response to my Comment 4. 

In real world, will the proposed model work better for scenarios of South Africa and Brazil where the 

wild type and the variant formed two distinct waves? Does the model require input about the date 

when the variant first emerged or was introduced into the population (i.e., similar to the UK scenario)? 

If no, how would the model be revised to detect the changes in epidemic growth rates due to the 

combined effect of increased transmissibility and immune escapes?



REVIEWERS' COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
I am happy with the changes made as per my comments/ suggestions. I also went through the 
comments from the other reviewer and believe these were addressed appropriately. 
 
--We thank the reviewer for the effort.  
 
Reviewer #2 (Remarks to the Author): 
 
The authors have largely addressed all my comments, but I still have a last question regarding 
the response to my Comment 4.  
 
In real world, will the proposed model work better for scenarios of South Africa and Brazil 
where the wild type and the variant formed two distinct waves? Does the model require input 
about the date when the variant first emerged or was introduced into the population (i.e., 
similar to the UK scenario)? If no, how would the model be revised to detect the changes in 
epidemic growth rates due to the combined effect of increased transmissibility and immune 
escapes?  
 
--We thank the reviewer for the questions. We do not observe a clear difference in model 
performance, related to the timing of variant emergence and whether the wild type and the 
variant formed two distinct waves. Please see Fig S6 for a comparison of model performance 
for the three countries.  The model-inference system requires input of the rough timing of the 
ending of the first wave (which can be identified based on the incidence curve) but not the 
exact date when the variant first emerged or was introduced into the population. In addition to 
estimating the changes in transmissibility and immune escape separately, the model-inference 
system also estimates the effective reproduction number for each week (Rt). Similar to the 
epidemic growth rates, these Rt estimates reflect the combined effect of increased 
transmissibility and immune escape. These estimates are shown in Fig 3 (a for the UK, d for 
South Africa, and g for Brazil) and described in the Results (see section “Reconstructed 
pandemic dynamics in the three countries”).  
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