Supplementary Information for

A high-risk retinoblastoma subtype with stemness features, dedifferentiated cone states and neuronal/ganglion cell gene expression

Jing Liu^{1,2,3,34}, Daniela Ottaviani^{1,2,4,34}, Meriem Sefta^{1,2,34}, Céline Desbrousses^{1,2}, Elodie Chapeaublanc^{1,2}, Rosario Aschero⁵, Nanor Sirab^{1,2}, Fabiana Lubieniecki⁵, Gabriela Lamas⁵, Laurie Tonon⁶, Catherine Dehainault^{7,8}, Clément Hua^{1,2}, Paul Fréneaux⁷, Sacha Reichman⁹, Narjesse Karboul^{1,2}, Anne Biton^{1,2,10,11,30}, Liliana Mirabal-Ortega^{12,13,14}, Magalie Larcher^{12,13,14}, Céline Brulard^{1,2,31}, Sandrine Arrufat⁷, André Nicolas⁷, Nabila Elarouci³, Tatiana Popova¹⁵, Fariba Némati¹⁶, Didier Decaudin¹⁶, David Gentien¹⁶, Sylvain Baulande¹⁷, Odette Mariani⁷, Florent Dufour^{1,2}, Sylvain Guibert¹⁸, Céline Vallot¹⁸, Livia Lumbroso-Le Rouic¹⁹, Alexandre Matet^{19,20}, Laurence Desjardins¹⁹, Guillem Pascual-Pasto^{21,22}, Mariona Suñol^{21,23}, Jaume Catala-Mora^{21,24}, Genoveva Correa Llano^{21,22}, Jérôme Couturier⁷, Emmanuel Barillot^{10,11}, Paula Schaiquevich^{5,25}, Marion Gauthier-Villars^{7,8,15}, Dominique Stoppa-Lyonnet^{7,8,20}, Lisa Golmard^{7,8,15}, Claude Houdayer^{7,8,15,32}, Hervé Brisse²⁶, Isabelle Bernard-Pierrot^{1,2}, Eric Letouzé^{27,28}, Alain Viari⁶, Simon Saule^{12,13,14}, Xavier Sastre-Garau^{7,33}, François Doz^{20,29}, Angel M. Carcaboso^{21,22}, Nathalie Cassoux^{19,20}, Celio Pouponnot^{12,13,14}, Olivier Goureau⁹, Guillermo Chantada^{4,21,22,25,35}, Aurélien de Reyniès^{3,35}, Isabelle Aerts1,2,29,35, François Radvanyi1,2,35,36*

1 Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, 75005 Paris, France

² Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France

³ Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France

⁴ Precision Medicine, Hospital J.P. Garrahan, Buenos Aires, Argentina

⁵ Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina

⁶ Synergie Lyon Cancer, Plateforme de bioinformatique "Gilles Thomas", Centre Léon Bérard, 69008 Lyon, France.

⁷ Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France

⁸ Service de Génétique, Institut Curie, 75005 Paris, France

9 Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France

¹⁰ Institut Curie, PSL Research University, INSERM, U900, 75005 Paris, France

¹¹ Ecole des Mines ParisTech, 77305 Fontainebleau, France

¹² Institut Curie, PSL Research University, CNRS, UMR3347, 91405 Orsay, France

¹³ Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France

¹⁴ Université Paris-Saclay, 91405 Orsay, France

¹⁵ Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France

¹⁶ Département de Recherche Translationnelle, Institut Curie, 75005 Paris, France

¹⁷ Institut Curie, PSL Research University, NGS platform, 75005 Paris, France

¹⁸ GeCo Genomics Consulting, Integragen, 91000 Evry, France

¹⁹ Département de Chirurgie, Service d'Ophtalmologie, Institut Curie, 75005 Paris, France

²⁰ Université de Paris, Paris, France

²¹ Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain

²² Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain

²³ Department of Pathology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain

²⁴ Department of Ophthalmology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain

²⁵ National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina

²⁶ Département d'Imagerie Médicale, Institut Curie, 75005 Paris, France

²⁷ Centre de Recherche des Cordeliers, Sorbonne Universités, INSERM, 75006 Paris, France

²⁸ Functional Genomics of Solid Tumors, équipe labellisée Ligue Contre le Cancer, Université de Paris, Université Paris 13, Paris, France

²⁹ SIREDO Center (Care, Innovation and Research in Pediatric, Adolescent and Young Adult Oncology), Institut Curie, 75005 Paris, France

³⁰Present address: Institut Pasteur – Hub Bioinformatique et Biostatistique – C3BI, USR 3756 IP CNRS – 75015 Paris, France

³¹Present address: INSERM U930, CHU Bretonneau, 37000 Tours, France

³² Present address: Department of Genetics, Rouen University Hospital, 76000 Rouen, France

33 Present address: Department of Pathology, Centre Hospitalier Intercommunal de Créteil, 94000 Créteil, France

³⁴ These authors contributed equally

³⁵ These authors jointly supervised this work

³⁶Lead contact

* Correspondence: francois.radvanyi@curie.fr

Supplementary Fig. 1 | Multi-omics classification of a series of 72 retinoblastomas.

 a, GISTIC plot for copy number alteration data. GISTIC plot of the 72 retinoblastoma specimens, integrating frequency and amplitude to identify significant amplifications (red) and deletions (blue) across the genome (ordered by chromosome). These significant amplifications and deletions were used for copy number alteration data clustering (Fig. 1a).

 b, Cluster-of-clusters classification. Cluster-of-clusters analysis for 72 retinoblastoma cases, based on three unsupervised partitions, each partition being obtained using a different 7 genomic platform (transcriptomic, methylomic, and copy number alteration data). A [0;1] normalized co-classification matrix was derived from the 3 initial partitions. Hierarchical clustering was then performed with inter-individual distance defined as (1 – co-classification score) and complete linkage. This analysis identified two major groups of 27 and 37 samples, and one ambiguous/unclassified group of 8 samples. The annotations below the dendrogram represent the clusters of samples defined independently by consensus clustering of all three genomic datasets.

 c, Centroid-based classification. This is a schematic representation of the centroid classification methodology used. Each point represents a sample. Samples belonging to cluster-of-clusters 1 are in yellow (n=27), cluster-of-clusters 2 in blue (n=37), and yet unclassified samples in black (n=8). On the X-axis is the difference between each sample's correlation to the cluster-of-clusters 1 transcriptomic centroid and the cluster-of-clusters 2 transcriptomic centroid. The Y-axis represents the same information for the methylomic centroids. Samples with one dataset missing have this difference set to 0 (X coordinate=0 for missing transcriptome, Y coordinate=0 for missing methylome), and the corresponding data points are circled in red. Centroid correlation differences below 0.2 were considered to be outliers, and are in the gray areas. Gray areas therefore contain outliers or samples with one missing dataset. All cluster-of-clusters 1 samples re-classified correctly in methylomic centroid 1 and transcriptomic centroid 1 (or one of the two if a dataset is missing). All but one cluster- of-clusters 2 samples re-classified correctly also. The last one (RB208) was an outlier in the methylomic dataset with no transcriptomic data available, and was thus set to unclassified. For the samples with no cluster-of-clusters attribution (black points): RB52, RB23, RB50 and RB33 were assigned to the first group; RB22, and RB209 were assigned to the second; RB61 was an outlier in both datasets, and RB60 had a discrepancy in the transcriptomic centroid-based classification and the methylomic centroid-based classification, RB61 and RB60 therefore remained unclassified. Ultimately 31 samples were assigned to the first group, 38 to the second, and 3 (RB208, RB60, RB61) remained unclassifed.

Supplementary Fig. 2 | Distribution of the differentially methylated CpG between the two subtypes in relation to CpG islands.

- **a**, Distribution of the hypomethylated CpGs (upper panel) and the hypermethylated CpGs
- (lower panel) in subtype 2 as compared to subtype 1, by CpG content and neighborhood
- context. Hypermethylated CpGs were more frequently located within CpG islands than
- 4 hypomethylated CpGs (751 of 2087 versus 527 of 4520, $p=193x10^{-119}$, Chi² test) (related to
- Figure 2F).

 b, Boxplot comparing the number of differentially methylated CpGs with high levels of methylation (beta-value within 0.8 to 1) located in CpG Islands in subtype 1 (n=27), subtype 2

- 8 non-*MYCN*-amplified (n=32), and subtype 2 *MYCN*-amplified (n=4) tumors (related to Figure 2g upper panel).
- **c**, Boxplot comparing the number of differentially methylated CpGs with low levels of
- methylation (beta-value within 0 to 0.2) located outsideCpG Islands in subtype 1 (n=27),
- subtype 2 non-*MYCN*-amplified (n=32), and subtype 2 *MYCN*-amplified (n=4) tumors (related
- to Figure 2g bottom panel).
- **b, c,** In the boxplots, the central mark indicates the median and the bottom and top edges of 15 the box the 25th and 75th percentiles. Whiskers are the smaller of 1.5 times the interquartile 16 range or the length of the $25th$ percentiles to the smallest data point or the $75th$ percentiles to the largest data point. Data points outside the whiskers are outliers. Significance was tested 18 by two-sided Wilcoxon test, $p=1.9x10^{-7}$.

Supplementary Fig. 3 | Stemness Indices estimated by different signatures.

- **a**, Boxplot of stemness indices in the two subtypes of retinoblastoma (subtype 1 tumors: n=26, subtype 2 tumors: n=31) estimated by different signatures (from left to right: Miranda *et al.* 2018³³, Shats *et al.* 2011³⁵, Smith *et al.* 2018³⁶). In the boxplots, the central mark indicates the
- 4 median and the bottom and top edges of the box the $25th$ and $75th$ percentiles. Whiskers are 5 the smaller of 1.5 times the interguartile range or the length of the $25th$ percentiles to the 6 smallest data point or the $75th$ percentiles to the largest data point. Data points outside the whiskers are outliers. Data points outside the whiskers are outliers. Statistical tests are two-sided.
- **b**, Scatter plot showing the correlation between stemness indice estimated by Malta et al.'s method (y-axis) or by other signatures (x axis, from left to right: Miranda *et al.* 2018, Shats *et al.* 2011, Smith *et al.* 2018). Two-sided Spearman's correlation test was applied, rho and p
- value are shown.

Horizontal marker expression log2FC Cell exp. Signif TFAP2A H/A n TFAP2B H/A ns Π NKAIN₂ \ddot{H} Ī SOSTDC1 ns H GRIA3 H n SLC32A1 ns H/A **ZNF385D** \star H/A $\ddot{}$ ESRRB
GAD2 H/R
 H/A $\mathop{\sf ns}_{\bm{\ast}\bm{\ast}}$ \mathbf{I} MEGF11 Ū \dddot{H} $\begin{array}{c}\n\vdots \\
\downarrow \\
\downarrow\n\end{array}$ CACNG3 ns LHX1
TMOD1 ns ns \mathbf{I} PLXNA2 H/A $\mathop{\sf ns}_*$ I ELAVL4 $H/G/A$ ELAVL4 *
ONECUT1 ****
CABP1 ns H
H
H/A/B \Box CABP1 ns
CACNG7 ns H ONECUT3 ns H/C $\frac{1}{2}$ DRD2
TNR ns ns TNR ns
CNTNAP2 ns
LNP1 *** LNP₁ Ĥ C_{1QL1} ns Н $\frac{1}{2}$ $\overline{2}$ $\overline{\bullet}$ expression **RET21 ĸĸĸĸĸĸŖĸĸ**
ŖIJIJIJIJIJIJIJIJIJ
ĿIJIJIJIJIJIJIJ $\begin{array}{c|c}\n1 & 2 & 3\n\end{array}$ -1 0

Bipolar marker expression

- C: Cone
-
- o: Oone
R: Rod
PanPh: Pan-Photoreceptor
- **G: Ganglion**
- M: Müller glia
- A: Amacrine
- H: Horizontal
- **B: Bipolar**

Expression in normal developing retina of ganglion markers upregulated in subtype 2 tumors

Supplementary Fig. 4 | Retinal cell gene expression analysis in the two subtypes of retinoblastoma.

- **a,** The expression of retinal cell-associated genes is presented as a heatmap, for three fetal retinas, 26 subtype 1 tumors and 31 subtype 2 tumors. A heatmap was constructed for each retinal cell type, indicating the level of expression, the statistical significance (Signif.) and the log2 fold change (log2FC) of expression between subtype 2 and subtype 1 tumors. It is also indicated whether the gene is expressed by more than one retinal cell type (Cell exp.). The complete list of markers is given in Supplementary Table 3. Limma moderated t-test was used for the analysis of gene expression, BH correction was applied, exact p values are provided in Supplementary Table 3. **b**, Expression of ganglion markers, displayed in Figure 3e, in the normal developing retina
- 10 according to cell types (single-cell RNA-seg data from Lu *et al.*, 2020³⁸). For each gene and
- each cell type, a pseudo-dot plot is provided. At each age (x-axis), the dot size is proportional
- to the percentage of expressing cells (i.e. non-zero counts) and its y-coordinate indicates the
- mean expression.
- For the markers of all cell types, the online tool can be used to visualize their expression:
- cone: [https://retinoblastoma-retina-markers.curie.fr/cone,](https://retinoblastoma-retina-markers.curie.fr/cone)
- rod: [https://retinoblastoma-retina-markers.curie.fr/rod,](https://retinoblastoma-retina-markers.curie.fr/rod)
- pan-photoreceptor: [https://retinoblastoma-retina-markers.curie.fr/pan-photoreceptor,](https://retinoblastoma-retina-markers.curie.fr/pan-photoreceptor)
- ganglion: [https://retinoblastoma-retina-markers.curie.fr/ganglion,](https://retinoblastoma-retina-markers.curie.fr/ganglion)
- muller glia: [https://retinoblastoma-retina-markers.curie.fr/muller,](https://retinoblastoma-retina-markers.curie.fr/muller)
- amacrine: [https://retinoblastoma-retina-markers.curie.fr/amacrine,](https://retinoblastoma-retina-markers.curie.fr/amacrine)
- horizontal: [https://retinoblastoma-retina-markers.curie.fr/horizontal,](https://retinoblastoma-retina-markers.curie.fr/horizontal)
- bipolar:<https://retinoblastoma-retina-markers.curie.fr/bipolar>

CRX

ARR3

 $\mathbf d$

OTX2

RXRG

EBF3

THRB

SOX11

 $\begin{array}{c} \stackrel{\circ}{\circ} \\ \text{tSNE_1} \end{array}$

CRX

GAP43

12

B

 $\frac{1}{2}$

Supplementary Fig. 5 | Data related to single-cell RNA-seq of a subtype 2 retinoblastoma (RBSC11).

- 1 **a**, Immunohistochemical staining of CRX (photoreceptor marker), ARR3 (late cone marker)
- 2 and EBF3 (ganglion cell marker) for a new case of retinoblastoma (RBSC11).
- **b**, Quality control of single-cell analysis for RBSC11: UMI counts, number of genes and percentage of mitochondrial genes.
- **c**, Heatmap of SingleR annotation scores derived by reference to the HPCA dataset with clusters superimposed for 1198 single cells in RBSC11.
- **d**, Expression of selected retinal/neuronal genes in RBSC11 shown in 2D t-SNE plots: early
- photoreceptor markers (*OTX2*, *CRX*, *THRB*, *RXRG*); late cone markers (*ARR3*, *GUCA1C*);
- ganglion/neuronal cell markers (*GAP43*, *SOX11*, *UCHL1*, *DCX*, *EBF3*).
- **e**, Expression of selected genes in the normal developing retina according to cell types (single-
- 11 cell RNA-seq data from Lu *et al.*, 2020³⁸) (left panels). For each gene and each cell type, a
- pseudo-dot plot is provided. At each age (x-axis), the dot size is proportional to the percentage
- of expressing cells (i.e. non-zero counts) and its y-coordinate indicates the mean expression.
- Expression of these genes in the seven cell clusters of retinoblastoma RBSC11 (right panels).
- For each cluster, the dot size is proportional to the percentage of expressing cells (i.e. non-
- zero count) and its y-coordinate indicates the mean expression.
- The selected genes are representative of the different cell clusters found in tumor RBSC11.
- Clusters 0 and 2, expressed early photoreceptor/cone markers (e.g. *CRX*) and neuronal/ganglion cell markers (e.g. *EBF3*, *GAP43*).
- Clusters 1 and 4, expressed early photoreceptor/cone markers (e.g. *CRX*) and late cone markers (e.g. *ARR3*).
- Clusters 2 and 4 correspond to G2/M cells (expressing *MKI67*)
- Cluster 3 corresponds to hypoxic cells (of both tumor cell populations) and expressed *BNIP3*.
- Clusters 5 and 6 correspond to normal cells, macrophage/microglia (cluster 5 expressing
- *CD14*), T-lymphocytes (cluster 6 expressing *CD3D*).
- **f,** Co-expression of *CRX*/*EBF3*/*GAP43* in the retinoblastoma sample (RBSC11) (upper panels)
- 27 and the normal developing retina (lower panels). The bar plots represent the abundance of the
- co-expression pattern. When the number of cells displaying co-expression is not zero, the
- proportion and absolute number of co-expressing cells are displayed. For the retinoblastoma
- sample, cells co-expressing the three genes (*CRX*/*EBF3*/*GAP43*) are shown in 2D t-SNE plots.
- The plots can be retrieved from: [https://retinoblastoma-retina-markers.curie.fr/coexp-ExtDat.](https://retinoblastoma-retina-markers.curie.fr/coexp-ExtDat)

Supplementary Fig. 6 | Expression of *TFF1* **and** *EBF3* **in the normal developing retina and in the two subtypes of retinoblastoma.**

 a, Expression of TFF1 and EBF3 and of two cone photoreceptor genes (CRX, ARR3) in the normal developing retina according to cell types (single cell RNA-seq data from Lu *et al.*, 3 2020³⁸) (left panels). For each gene and each cell type, a pseudo-dot plot is provided. At each age (x-axis), the dot size is proportional to the percentage of expressing cells (i.e. non-zero counts) and its y-coordinate indicates the mean expression. TFF1 is not expressed in the normal developing retina. Expression of these genes in the seven cell clusters of retinoblastoma RBSC11 (right panels). For each cluster, the dot size is proportional to the percentage of expressing cells (i.e. non-zero count) and its y-coordinate indicates the mean expression.

 b, Volcano plots showing that TFF1 and EBF3 are among the most significantly upregulated genes in subtype 2 retinoblastoma (blue) compared to subtype 1 (gold) in our series and in 12 two independent transcriptomic retinoblastoma datasets (Kooi et al.¹⁸, McEvoy et al.¹⁶). For the subtype assignment of the tumors of these two series, see Methods and Supplementary Fig. 7. **c**, Boxplots representing the expression of TFF1 and EBF3 in the two subtypes using three

16 independent datasets (this report, Kooi et al.¹⁸, McEvoy et al.¹⁶). In the boxplots, the central 17 mark indicates the median and the bottom and top edges of the box the $25th$ and $75th$ percentiles. Whiskers are the smaller of 1.5 times the interquartile range or the length of the $19-25th$ percentiles to the smallest data point or the 75th percentiles to the largest data point. Data 20 points outside the whiskers are outliers.

Note: a: Fisher's exact test, b Wilcoxon test, c: Chi-square test

Supplementary Fig. 7 | The two retinoblastoma subtypes were different in clinical and molecular features in two additional independent datasets.

- 1 The two retinoblastoma subtypes were identified in two additional independent retinoblastoma
- 2 datasets (Kooi et al. 2015¹⁸, McEvoy et al. 2011¹⁶) using our centroid-based transcriptomic
- 3 predictor (see Methods). For each dataset, clinical (*RB1* germline mutation status, age at
- 4 diagnosis) and molecular (stemness, E2F targets, MYC pathways, interferon responses,
- 5 estimation of abundance of various immune cells) features, and the expression of cone and

 ganglion markers, and of TFF1 were compared between the two subtypes. The features characteristic of each subtype identified in our initial series were found in these two independent series. For germline mutation status and age, the statistical tests used to evaluate the difference between the two subtypes are indicated in the Wilcoxon test was used to evaluate the differences in HALLMARK pathway meta-scores and MCP counter-estimated immune cell abundance between the two subtypes of retinoblastoma; Limma moderated t-test was used for the analysis of gene expression, significance based on adjusted p values is 13 shown. log₂ fold-changes in expression between subtype 2 and subtype 1 are also shown. *p*≥0.1 (ns), *p*<0.1 (.), *p*<0.05 (*), *p*<0.01 (**), *p*<0.001 (***), *p*<0.0001 (****).