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1 EXPANDED MATERIALS AND METHODS 

A. Custom Monte-Carlo Simulator

A custom Monte-Carlo simulator was developed to simulate reflectance spectra as a function of 

source-detector separation distances given an input set of optical properties of the medium. The 

optical properties considered were the reduced scattering coefficient (µ ’), the absorption 

coefficient (µ ), the anisotropy factor (g1), and the phase function backscatter parameter (γ). An 

open source Monte Carlo simulator50 with wrapper functions49  was used as a starting point, but 

the program’s use of the Henyey-Greenstein probability distribution function (Eq. S1) to model 

the phase function did not allow for variation of the γ parameter. The Henyey-Greenstein 

function is often used as it has an analytical solution to its inverse cumulative distribution 

function (CDF), making it easy to randomly sample via inverse transform sampling67. However, 

the function is only valid when 𝑔" = 	 𝑔%"	[23], meaning 𝛾 = 1/(1 +	 𝑔%). This limitation is 

acceptable when working with diffuse SFDI, as the reflectance in the diffuse domain is invariant 
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to 𝛾26. However, a phase function which can handle variation in 𝛾 is necessary to model sub-

diffuse reflectance, which is dependent on 𝛾23. 

𝑝HG(cos𝜃|𝑔%) =
%
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(%63452"34789:); 5⁄  , (Eq. S1) 

Past solutions to this problem have been to replace the Henyey-Greenstein model with 

Gegenbauer Kernel (GK)32,36,37,51 (Eq. S2).  
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While this model also has an analytical solution to its inverse CDF53, there is no published 

analytical solution mapping this equation’s parameters, 𝛼?@  and 𝑔?@ , to the simulator’s input 

optical properties which affect the phase function, γ and 𝑔%. To overcome this obstacle, we 

generated GK phase functions for a wide range of 𝛼?@  and 𝑔?@  combinations and calculated the 

resulting functions’ γ and 𝑔% values. This was done by first computing 𝑔% and 𝑔" using the  

equations 𝑔% = 	2𝜋∫ 𝑝(𝜃) sin(𝜃) cos(𝜃) 𝑑(𝜃)N
:OP  and 𝑔" = 2𝜋 ∫ 𝑝(𝜃) sin(𝜃) (%

"
(3cos"(𝜃) −N

:OP

1))𝑑(𝜃)[68], using numerical approximations for the integrals with MATLAB’s trapz function. 

These values were then used to calculate γ. We paired the 𝛼?@ ,𝑔?@ combinations with their 

resulting γ,𝑔% combinations in a reverse look-up table ,thus creating a mapping from desired   

γ,𝑔% values to the necessary GK parameters38.  This allowed us to sample the GK phase function 

when running a simulation for a given γ and 𝑔%. It should be noted that the actual values of γ 

and 𝑔% of the GK curve produced using these looked up GK parameters will vary slightly from 

the desired γ,𝑔% values38. Since 𝑔% can be used during Monte Carlo simulations for calculations  



3 

other than sampling the phase function49, it is important that these calculations use the actual 𝑔%

values to produce valid results. 

We also plotted the possible combinations of γ and 𝑔% that could be created (Figure S1 (a)). We 

found that the GK model could only produce valid phase functions when the optical properties 

fell into the approximate bounds of γ > 1 + 0.6g1 and γ < 334 , as marked by the blue lines in 

Figure S1 (a). This did not cover the range of values seen in biological tissue2,21,26,32–35. 

Another past solution for including γ into the Monte Carlo phase function has been to use the 

Modified Henyey-Greenstein (MHG) phase function (Eq. S3)69. This equation does not have an 

analytical CDF but does have an analytical mapping of its parameters, 𝛽 and	 𝑔𝑀𝐻𝐺,  to the 

properties 𝑔% and 𝑔" (Eq. S4, S5)23, and, by extension, γ. We developed and used a look-up table 

in place of an analytical CDF, as was done by Naglič et al.32 However, this phase function model 

is only valid in cases where γ < 1 + g1 [31]. A visual representation of the γ and g1 combinations 

possible with this phase function are shown in Figure S1 (b), with the blue line representing the 

boundary. This also does not cover the range of values seen in biological tissue2,21,26,32–35. 

𝑝MHG(cos𝜃|𝛽,𝑔WX?) = 𝛽 𝑝HG(cos𝜃|𝑔WX?) + (1 − 𝛽) 
Y
"
cos"𝜃 , (Eq. S3) 

𝑔WX? = 	𝛽𝑔%, (Eq. S4) 

𝑔" = 𝛽𝑔%" +
"
Z
(1 − 	𝛽)    (Eq. S5) 

However, the range covered by the MHG function is complementary to that covered by the GK 

phase function.  We therefore used a case-based method which combined the two phase 

functions, sampling from the GK function when γ > 1 + g1 and sampling from the MHG function 

when γ ≤ 1 +	𝑔%. This allowed us to simulate spectra for combinations of γ and g1 where γ < 
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334, as seen in Figure S1(c), which did cover the range of values seen in biological tissue2,21,26,32–

35. 

Figure S1. γ,g1 combinations covered by each phase function. (a) The GK phase function has a visually 
approximated bound of 1 + 0.6g1 < γ < 3g1. (b) The MHG phase function is only valid in cases where γ ≤ 1 + g1. (c) 

The combined MHG/GK case-based method we present here is able to combine the complementary ranges of (a) 
and (b), allowing it to simulate all combinations of g1 and γ such that γ < 3g1. 

Reflectance vs. distance spectra were simulated using normal incidence and a radially symmetric 

detector with 1.35*106 linearly distributed accumulator bins, each with a size of 10-5 cm, for a 

total simulation radius of 13.5 cm. These spectra were then converted to reflectance vs. spatial 

frequency spectra using the Hankel transform11. 

It should be noted that the incidence angle was low (<9°), but not 0°, so assuming normal 

incidence is an oversimplification. This is an area for possible improvements with our simulation 

algorithm. While not as robustly quantified for sub-diffuse measurements, a study by Tabassum 

et al.70 showed that measurement of diffuse optical properties is robust to variations in angle up 
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to 9°. In our experiments, the results indicate that the simulator is still able to accurately simulate 

the reflectance spectra. 

B. Creating and Measuring Tissue Simulating Phantoms

At the wavelengths used in this study (450 nm, 530 nm, and 620 nm), the beads had an index of 

refraction of 1.61, 1.60, and 1.59, respectively. Each phantom had a diameter of 2 cm and was 5 

cm deep.  

A MATLAB algorithm by Maetzler et al55, which utilized Mie theory, was used to calculate the 

optical properties of phantoms with various microbead diameters and dilutions. These microbead 

parameters were chosen to yield phantoms with a wide range of optical property values. The 

theoretical optical properties for two of the phantoms at the three wavelengths used in this study 

can be seen in Figure S2(a) and (b). Figure S2(a) shows the properties for the reference phantom, 

which was one of the phantoms in which γ ≤ 1 + 	 𝑔%, while Figure S2(b) shows the optical 

properties of one of the phantoms in which γ > 1 + 	𝑔%. In the former scenario, γ decreases with 

wavelength, while in the latter, γ increases with wavelength.  

A comparison of the MHG/GK hybrid phase function to the HG, MHG, and Mie phase functions 

for these two phantoms at a wavelength of 530 nm can be seen in Figure S2. Since for Figure S2 

(c), g1 and γ fall within the range of MHG, the MHG/GK phase function is the same as the MHG 

phase function. Conversely, in Figure S2 (d), g1 and γ fall outside the range of MHG but within 

the range of GK, and the MHG/GK method samples the GK phase function. In both scenarios, 

the MHG/GK phase function is able to represent the Mie phase function well. Figure 2(d) also 
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shows oscillations in the Mie theory phase function, which makes the Mie phase function 

difficult to sample. 

Figure S2. (a) and (b) Theoretical optical properties of the reference phantom and one of the experimental 
phantoms, calculated using Maetzler’s Mie theory program. The values are highlighted with red circles and labels at 

450 nm, 530 nm, and 620 nm. (c) and (d) Comparisons of HG, MHG, and MHG/GK phase functions to the Mie 
phase function for these phantoms at a wavelength of 530 nm. In (a), g1 = 0.1 and γ = 0.99, while in (b) g1 = 0.93 

and γ = 2.14. Since the optical properties of (c) fall within the range of MHG, the MHG and MHG/GK phase 
function are the same, so their plots overlap directly. In this case, MHG/GK matches Mie better than HG and just as 

well as MHG. In (d), the optical properties fall outside of the range that MHG can properly model, and the 
MHG/HK method uses the GK phase function instead. In this case, MHG/GK matches Mie better than both HG and 

MHG. 

The theoretical optical properties for the five phantoms used to create the experimental dataset 
can be seen in Figure S3. Note that this includes the phantom shown in Figure S2(b). 
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Figure S3. Theoretical (a) µs’ values, (b) γ values and (c) g1 values of the five phantoms used to form the 
experimental dataset plotted against wavelength, as calculated using Maetzler’s Mie theory program. The values are 

highlighted with red circles and labels at 450 nm, 530 nm, and 620 nm. 
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Reconstructed white light images of the six polystyrene bead phantoms and their optical properties 

at 530 nm can be seen in Figure S4 (a). For each phantom, the spectra of a 200 x 200 square pixel 

area were averaged together to form one averaged spectrum. The colored squares indicate the area 

from which their spectra were averaged. The square area was chosen to avoid edge effects of the 

phantom as well as any image glare. An example of the averaged reflectance spectra from each of 

the phantoms at 530 nm can be seen in the dotted lines of Figure S4 (b), where the color of the 

dots matches the color of the square from which it came. 

In order to provide more insight into the quality of the Monte Carlo model with MHG/GK phase 

function sampling, we include the simulated spectra of these phantoms at this wavelength, shown 

by the dashed lines in Figure S4 (b). The phantom represented by the red lines is the reference 

phantom, and the measured and simulated spectra match exactly, as expected. The other 

phantoms also line up very well, albeit not perfectly. This indicates that the calibration is not able 
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to perfectly match the simulated spectra with the measured spectra in every situation, and that the 

forward model is not able to account for all aspects of the experimental measurements.  

Figure S4. (a) Reconstructed white light images of the six phantoms used for this study, each with different µs’ and 
γ value combinations. The phantoms look similar to the naked eye but are microstructurally very different from each 
other. The phantoms’ µs’ and γ values at 530 nm are shown here.  The colored squares show the box areas that were 
averaged together for each phantom to create the respective phantom’s average spectrum. (b) The resulting average 
spectra for these six phantoms at 530 nm, plotted in dotted lines, with each plot matching the color of the box from 

which it was created. The phantom marked in red was used as the reference phantom. Using the remaining five 
phantoms at three different wavelengths resulted in 15 experimental sd-SFDI reflectance spectra, each with a unique 
combination of µs’ and γ. Plotted in dashed lines is the corresponding Monte Carlo simulations for each of these six 
phantoms at a wavelength of 530 nm. The matching of the reference phantom is trivial, but the other phantoms also 

match well. 

C. Step-by-Step Co-registration

Figure S5 offers a step-by-step visualization of the co-registration process between H&E and sd-

SFDI heatmaps, using one of the skin cancer tissue samples as an example. This example created 

a dermis mask for the tissue sample. After the optical property heatmap (Figure S5 (a)) and 

digital histology image are created, the histology image is marked by a board certified 

dermatologist to highlight the tissue subtype regions of interest (Figure S5 (b)). The histology 

image is then rotated, scaled, mirrored, and translated (using MATLAB’s imrotate, imresize, flip, 
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and imtranslate, respectively) to co-register the histology image to the heatmap (Figure S5 (c)). 

Next, the regions of interest for the tissue subtype are traced (Figure S5 (d)), and the traced 

regions are converted into a subtype mask (Figure S5 (e)). This process is repeated for each 

tissue subtype and each tissue sample. 

Figure S5. A step-by-step example showcasing how tissue samples are co-registered to histology images and tissue 
subtype masks are created. (a) An optical property heatmap of a tissue sample is produced using the sd-SFDI system 
and the ANN. Shown here is a γ heatmap. (b) The digital histology slide of the tissue sample is marked by a trained 
pathologist to outline sections of dermis, adipose, and BCC. Zoomed in sections of select marked areas are shown 
here. (c) The marked digital histology image is rotated, scaled, mirrored, and translated to co-register the image to 

the heat map. The co-registered images are shown here using MATLAB’s ‘falsecolor’ display setting. For 
illustrative purposes, we have darkened the faint boundaries of the dermis sections, as this example created a dermis 

mask. (d) The regions of interest for the tissue subtype are traced on the co-registered histology image. In this 
example, the dermis is traced. (e) These tracings are converted into a binary mask. 

The tissue types in the non-outlined areas of interest in the samples mostly include heterogenous 

tissue that cannot be considered strictly one subtype or another, as well as some homogenous areas 

of other tissue types that were not included in this study. These other tissue subtypes include 

sebaceous glands, hair follicles, and epidermis.  

D. Selecting Sub-Diffuse Frequencies vs. Diffuse and Sub-Diffuse Frequencies

When selecting features for the model, we experimented with using only sub-diffuse frequencies, 

instead of using both diffuse and sub-diffuse frequencies. Figure S6 (a) shows the results of the 
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model’s performance on the validation dataset when only using 𝑅(𝑓) at frequencies values above 

0.5 mm-1. Specifically, the frequencies used were 16 evenly spaced values between 0.5 mm-1 and 

1.25 mm-1, inclusively, with a spacing interval of .05 mm-1. This resulted in a mean absolute 

relative error of 12.9% for µs’ and 6.7% for γ. 

Running this same experiment with diffuse and sub-diffuse frequencies (𝑓 = 0.01 mm-1, 0.025 mm-

1, and 24 spatial frequencies evenly spaced between 0.05 and 1.2 mm-1) results in a better model 

performance, as seen in Figure S6 (b). With 𝑅(𝑓) at these frequencies included in the model’s 

feature set, the validation error for µs’ falls to 4.7%. We also see a small improvement in the 

prediction of γ with an error of only 2.8%. With this in mind, we chose to use both the diffuse and 

sub-diffuse frequencies for our final model.  

Figure S6. Results of the machine learning model on the validation dataset when the features used are g1 and (a) 
𝑅(𝑓) at 16 spatial frequencies evenly spaced from 0.5 to 1.2 mm-1, and (b) 𝑅(𝑓) at 𝑓 = 0.01 mm-1, 0.025 mm-1, and 
24 spatial frequencies evenly spaced between 0.05 and 1.2 mm-1. Using only sub-diffuse frequencies as seen in (a) 
results in a mean absolute relative error of 12.9% for µs’ and 6.7% for γ, whereas including the diffuse frequencies 

as seen in (b) reduces this error to 4.7% for µs’ and 2.8% for γ. 
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The sub-diffuse only model was not tested on the experimental dataset, which served as the test 

dataset. We did not want results on the test data to inform the feature selection, as that could result 

in overfitting to the test data. 

D. Calculating Scatter Slope

Scatter slope is a property that has shown potential for identifying cancerous tissue in previous 

work2. The scatter slope, B, of the samples were found by fitting the equation 𝜇`a (𝜆) = 𝜇`a (𝜆P) ∗

( d
de
)2f[2] to the µs’ values of the sample at each of the three wavelengths, with the “reference” 

a

wavelength71, 𝜆P, set equal to 620 nm. 

2 ANALYSIS OF IMPACT OF THICKNESS 

All of the training and validation data was simulated for mediums with infinite thicknesses. The 

tissue simulating phantoms, used for experimental test data, also had thicknesses large enough to 

be considered infinite. The tissue samples, however, varied in thicknesses ranging from roughly 

1-2 mm, which is not thick enough to be considered infinite. This was expected to cause errors in 

the diffuse spatial frequency ranges, where the large absorbing layer (PDMS + India Ink) beneath 

the samples would introduce a high absorption coefficient and attenuate the diffuse spectra. The 

model was trained on a wide range of µ values in part to mitigate the impact of this effect. 

Absorption coefficient does not tend to impact the high spatial frequencies of the sub-diffuse 

regime2, and the penetration depth of sub-diffuse photons is shallower26, so we do not see impact 

from lower thicknesses in the sub-diffuse spatial frequencies. However, the model of this study 

uses reflectance at diffuse frequencies as part of its input, so we analyzed the impact of a low 

thickness on the model’s accuracy. 
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In order to conduct this analysis, we edited our custom Monte Carlo model to include a second 

layer of infinite thickness and absorption, and we changed the original layer to have a thickness of 

only 1 mm, which is on the lower end of the thicknesses of the tissue samples used in this study. 

We simulated an experimental dataset with µs’ values ranging from 1 – 4 mm-1, γ values ranging 

from 0.96 – 2.19, µa of 0.001 mm-1, and g1 values of 0.9. We then ran our model to make predictions 

on this dataset. Plots of the results can be seen in Figure S7. In this scenario, we find a mean 

absolute relative error of |𝜀| = 8.4% for µs’ and |𝜀| = 2.2% for γ.  

Figure S7. Performance results for the model when tested on data simulated to have a thickness of only 1mm. The y 
axis shows the value of the optical property predicted by the model, the x-axis shows the true value, and the straight 
line represents unity. (a) The µs’ results show that the lower thickness introduces a bias to the µs’ predictions, but the 

bias is low. The error in this situation increases to |𝜀| = 8.4%. (b) The γ results show that the lower thickness does 
not have a noticeable impact on the γ predictions, with the model achieving a low error of |𝜀| = 2.2%. These results 
demonstrate that our model is robust to the error introduced when using the model on tissue with finite thickness. 

The reduced thickness of the media increases the error of the µs’ predictions. As can be seen in 

Figure S7 (a), there is an offset bias to all of the µs’ predictions. However, the error rate is still 

fairly low, within 10%. We see in Figure S7 (b) that there is no noticeable consistent bias 

introduced in the predictions for γ, and the error remains low. The parameter γ is primarily 

manifested in the reflectance at higher spatial frequencies, so it is as expected that the 

perturbations of spectra at lower spatial frequencies do not have a large effect on the model’s 

ability to predict γ. Similarly, if we curtailed the 26 spatial frequencies used in this model to only 
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include the 15 spatial frequencies in the sub-diffuse domain, we would expect to see no 

difference between the model’s bias on samples with different thicknesses, since the penetration 

depth of photons in the sub-diffuse is less than half a millimeter25.  

3 ADDITIONAL RESULTS 

A. Phantom Results by Wavelength

Figure S8 shows the results of the ANN optical property measurements as well as the theoretical 

optical properties of the phantoms at each of the three wavelengths used in this study: 450 nm, 

530 nm, and 620 nm. The agreement between the experimental and theoretical measurements 

does not appear to vary with wavelength. 

Figure S8. Experimentally measured and theoretically calculated (a) µs’ values and (b) γ values of the tissue 
mimicking phantoms. Note: several theoretical values overlap. Phantoms are color coded. The agreement between 

the experimental and theoretical measurements remains fairly consistent at each wavelength. 

B. Testing Scatter Slope Measurements

The phantoms created in this study were used to validate the measurement of µs’ and γ. 

Unfortunately, the scatter slope power law assumption which has been used for biological tissue2 

does not hold for most of these phantoms, making them unsuitable for validating the 
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measurement of the scatter slope, B. However, two of the phantoms’ µs’ values do follow a 

power law. These two phantoms were used to examine the accuracy of measuring and 

calculating B. This analysis is limited by the small sample size. Another limitation is that one of 

these two phantoms is the reference phantom, so µs’ predictions on this phantom may be overly 

optimistic.  

 The result of fitting the scatter slope equation to these phantoms can be seen in Figure S9. 

The reference phantom is in red, and the other phantom is in blue. The theoretical B values of the 

reference phantom and the other phantom were 3.66 and 3.04, respectively, while the B values 

found from the experimental µs’ values of these phantoms were 3.67 and 3.69, respectively. 

These values resulted in a mean absolute relative error for of 8.9% for the measurement of B. 

Figure S9. Results of fitting the scatter slope equation to the two of the six phantoms created in this study that 
follow a power law. This analysis is limited by the limited sample size as well as the fact that one of these phantoms 

is the reference phantom (shown in red). Calibrating the reference phantom is trivial, so µs’ predictions and by 
extension B predictions on this phantom may be overly optimistic. Keeping these limitations in mind, the B values 
were measured with a mean absolute relative error of 8.9%. The experimental scatter slope fits can be seen with the 

dotted lines, and the theoretical fits can be seen in the solid lines. 
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C. Quantitative Non-Linear Fit Results

There are many limitations to comparing the accuracy of the ANN to the non-linear fit method, 

particularly because the latter was developed over a narrower range of optical properties (γ ≤

1 +	𝑔%)26,31 than the former. Keeping these limitations in mind, we provide an attempt to 

compare the quantitative results of the ANN to the non-linear fit method. The non-linear fit 

method was applied to the same experimental dataset as the ANN, and the mean absolute relative 

error was calculated using the values predicted with Mie theory for truth values, as was done for 

the ANN quantitative analysis.  The results of this experiment can be seen in Figure S10. The 

method was able to find µs’ with an error of 22.8% and γ with an error of 22.1%.  

Figure S10. Accuracy of our implementation of the non-linear fit method when run on the average spectrum from 
each of the sd-SFDI phantom images, where the x-axis is the true optical property, the y-axis is the predicted optical 
property, and the dotted green line represents unity. Accuracy plots are shown for (a) µs’ and (b) γ. The mean absolute 

relative error was 22.8% for µs’ and 22.1% for γ. 

The ANN therefore outperformed the non-linear fit method in both speed and accuracy. 

However, this result comes with many caveats. The implementation of fitting the non-linear 

equation to the measured spectra and finding the optical properties may not have matched that 
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used by the previous papers that have used this method2,6,26. For example, our implementation 

used the MATLAB function lsqnonlin to conduct the non-linear fit on the semi-empirical 

equation, but the functions used by previous papers is not listed. The non-linear fit method may 

also require better tuning of the parameters of the semi-empirical equation, [η, ζ1-4], to account 

for differences between our experimental set-up and that of other labs, which fell outside the 

scope of this study. For this study we used the values reported by Kanick et al.26 for ζ1-4 and 

manually chose a value of η that empirically matched the semi-empirical curves to the phantom 

data (η = 0.007).  

At least two different versions of the non-linear fit method have been recorded. Kanick et al. 

applied the non-linear fit to only high frequency data (𝑓 > 0.5	mm-1) using only the sub-diffuse 

semi-empirical equation26, whereas McClatchy et al. applied the non-linear fit to the 

measurements at all frequencies using a hybrid sub-diffuse/diffuse semi-empirical equation2. 

Since the focus of this study is primarily on the ANN’s gains in speed, we chose to compare 

against the former version as it was the faster of the two methods2,26. 

It should be noted that previous publications have reported accuracies with the non-linear fit 

method ranging from 10.2  - 23.8% for µs’ and 3.9 – 6% for γ, but these tests were conducted 

over narrower ranges of optical property values, particularly with respect to γ (e.g. µs’ = [1.1 – 

2.5] mm-1, γ = [1.3-1.6] for McClatchy et al.2 and µs’ = [0.4 – 1.8] mm-1, γ = [1.4-1.75] for 

Kanick et al.26 as opposed to this study’s ranges of µs’ = [1.1 – 3.6] mm-1, γ = [0.97 – 2.17]). 

D. Additional Samples and Heatmaps

Our model was used to render heatmaps of µs’ and γ for four tissue samples at wavelengths of 450 

nm, 530 nm, and 620 nm. In addition, the scatter slope, B, of each sample was calculated using the 
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measured µ ’ values at each of the three wavelengths. Figure S11 shows all samples used for tissue 

analysis, as well as all optical property heatmaps. Figure S11 (a) shows the marked histology 

images and the regions of interested translated onto the heatmap shapes. Figure S11 (c-d) shows 

the µ ’ and γ heatmaps, respectively of the samples at each wavelength. Figure S11 (d) shows the 

scatter slope heatmaps for these samples. Some areas of contrast can be seen around the tissue sub-

type regions of interest for all optical property heatmaps. The starkest contrasts can be seen in the 

450 nm and 530 nm. 

The negative B values are concerning. Based on the size distributions of particles in tissue, B 

is typically positive, following the trend of the fractal dimension of the particles72. However, 

similar 

µ ’ vs. 𝜆 power law trends with negative B values can be seen in averaged SFDI skin tissue 

results which have been reported previously. These trends were specifically seen in patients 

whose Fitzpatrick scores ranged from III-V, signifying that they had darker skin tones73. 

While our samples did not come from patients with high Fitzpatrick scores, there could be a 

relation between the absorption of the tissue and the measured B value which would be worth 

exploring further in a future study which also measures absorption. 
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Figure S11. Additional samples and heatmaps. We show here the four skin tissue samples used in this study. (a) 
Marked digital histology slides and tissue sub-type heatmap masks. (b) Demodulated reflectance images at f = 0.1 
mm-1 and 0.7 mm-1. (c) µs’ heatmaps at 450 nm, 530 nm, and 620 nm wavelengths. (d) γ heatmaps at 450 nm, 530

nm, and 620 nm wavelengths. (e) Scatter slope heatmaps. All heatmaps show a level of contrast that aligns with the
boundaries of the different tissue subtypes. 
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E. Additional Data Analysis

 Figure S12 (a-c) shows the box and whisker plots of all measured optical properties for the 

tissue subtypes. Many of the same trends in sub-diffuse optical properties can be seen between 

the different wavelengths, although the trends are most pronounced at 530 nm, suggesting that 

the contrasts seen in the 530 nm heatmaps have the best correlation with the tissue subtype 

regions. Adipose tends to have the highest γ value, while BCC tends to have the lowest µs’ value. 

Figure S12 (d) shows a three-dimensional scatter plot B vs. µa vs. γ for all pixels from each tissue 

sub-type across all samples. We can see three distinct clusters, but the separation between 

clusters does not seem to change noticeably along the z-axis of scatter slope. 
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Figure S12. Additional data analysis of the optical properties of the different tissue subtypes, created with the pixels 
combined for each subtype from all four tissue samples. (a) Box and whisker plots for the µs’ values of the tissue 

subtypes at 450 nm, 530 nm, and 620 nm. (b) Box and whisker plot for the scatter slope of each tissue subtype. (c) 
Box and whisker plots for the γ values of the tissue subtypes at 450 nm, 530 nm, and 620 nm. Similar trends 

between the tissue subtypes can be seen at each wavelength, with BCC generally having the lowest µs’ and lowest γ 
of all the tissue subtypes. Conversely, it appears to have the highest scatter slope. (d) A 3-dimensional scatter plot of 
the scatter slope, γ, and µs’ of all the pixels from each tissue-subtype collected across all samples. Distinct clusters 

with overlap can be seen. 




