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Supplementary Note 1: Theoretical Analysis

Dynamical Systems Description of Cell-fate Transition

As a popular and basic description, the stochastic transition of cell-fate can be modeled

by over-damped Langevin equation (OLE)
dX, = —VU(X,)dt + V2edW,, (1)

where X, denotes the gene expression vector at time ¢, W, denotes the standard Wiener
process, accounting for the noise in gene expression dynamics and € represents the noise
amplitude of the system. Typically, the potential field U(x) possesses several local
minimals or potential wells, corresponding to the attractors of cell fate (Supplementary
Fig. Ma).

Under small or moderate noise, the dynamical system will exhibit metastability prop-
erty [0]. In most of the time, the gene expression of a single cell fluctuates gently around
the attractors (Supplementary Fig. Ob). Driven by the noise or differentiation signal,
switches between multiple macroscopic cell states may occur eventually [, 2, B, 4], creat-
ing the transition cells that are often traveling across the saddle point (also known as the
transition state 5, B] or intermediate state[{]) between attractor basins (Supplementary
Fig. M-ab).

Such metastability naturally introduces multi-scale model reduction (or coarse-graining)
approaches to simplify the model computation and representation. When ¢ is small, the
famous Kramers’ reaction rate theory [8] establishes the quantitative relations between
switch rate k;; from attractor S; to S; with potential barrier height AU, stating that

~AU/z - Following rigorous analysis [9], the original OLE dynamics can then be

kij o< e
upscaled as a Markov jump process, whose discrete states correspond to the attractors
of OLE, and jump rate between states specified by k;;.

It is thus interesting and important to investigate how the computational model of
cell-fate transition can be combined with single-cell data analysis [I0]. As shown in
Supplementary Fig. [-c, following Lafon and Coifman’s results [I1], the diffusion map
random walk (DMRW) constructed on single-cell expression data [I2, I3] yields the
continuous limit which is exactly described by OLE dynamics. As a deeper exploration,

below we will show in mathematically rigorous manner, that the coarse-grained Markov

Chain of DMRW by MuTrans is consistent with the OLE model reduction by Kramers’



reaction rate theory, in the continuum limit and zero noise limit. As the result of
such comprehensive understandings, various concepts in single-cell data analysis and
computational modeling of cell-fate transition, can be therefore unified through MuTrans

implementation (Id).
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Supplementary Fig. 1: Dynamical system modeling of cell-fate transition and theoretical
properties of MuTrans. (a) The notion of stable and transition cells modeled by double-
well potential. (b) Typical gene expression dynamics of stable and transition cells in OLE
model. (¢) The theoretical consistency analysis of MuTrans. Despite the independence
of methodology, the coarse-grained dynamics by MuTrans applied on Diffusion Map
is mathematically equivalent to Kramers’ reaction rate theory for OLE that serves for
model reduction purposes. (d) The connections between data analysis and dynamical
model concepts established by MuTrans.



Mathematical Analysis of MuTrans and OLE Consistency

To demonstrate the consistency, the key assumption on single-cell data is as follows,
which is also the basis for the discussion by Lafon and Coifman about the continuum

limit of Diffusion Map [I1].

Assumption. The single-cell data points Xi,Xs, ..., %, € R? are the i.i.d. samples from
U@

the distribution p(x), with the Boltzmann-Gibbs form p(x) = e = .

In MuTrans, the microscopic cell-cell dynamics p(z,y) is constructed in the similar
form with the diffusion map. The key procedure to construct the diffusion map is to
define the weight function on the edge between data points x and y, in the scaled heat-

kernel form,

ks(z,y)
Wso(T,y) = —r~, 0<a<l
a5 (z)qs (y)
where
1 a—y|2
ka(z,y) = —e™ @,z = (4m0)"? 2)

and gs5(x) = >_, 5 ks(z,y), here S denotes the whole sets of data points. The transition
probability of diffusion-map random walk is therefore defined as

o w(S,DJ(x? y)
p&,a(xay) - dé,a<x) )

where dsq(x) = ZyES W o(x,y). The backward operator of the process can also be
defined as T,”%¢(x) 2 >y Psa(T,y)B(y).

The continuum limit of diffusion map process mainly involves two limits, the large-
sample limit n — oo in the first step and the small band-width limit 6 — 0 in the second
step.

To find the limit of n — oo, the central technique is the law of large numbers, stat-
ing that £ " | f(z;) = [ f(z)p(z)dz under appropriate conditions for the measurable

function f and the random variable. Applying to the expression of ’T‘S’O‘gb x), we have
b

1 TP — 4 0WT “W)ks(x,y)ply)dy
am 7y ) J @ W)ks(x,y)p(y)dy

(3)
where
s = [ kst 9)ot0)dy

To find the limit of 6 — 0, the following lemma is important, which can also be

obtained from Laplace integral formula.



Lemma 1. For the smooth function ¢(x), we have

| ksl 5)0(0) = o) + (A0(0) + hw)ola) + O(*2),

where h(z) is independent of ¢(x).

Applying the lemma to Equation (B) and collecting the leading orders, we find the
O(1) term is ¢(x), and the O(9) term A(j’f_l;a) — A \When a = 0.5, we arrive at the

pl—a

famous conclusion by Lafon and Coifman [I1], connecting the dynamics of diffusion-map

random walk and over-damped Langevin equaion,

Theorem 2. [71]

lim lim e6~ (T2 = Dg(x) = —VU - V + eAg,

d—0n—oo0

where the limiting operator correspond to the infinitesimal generator of SDE
dX, = —VU(X,)dt + V2edW, (4)

whose invariant distribution is exactly p(x).

The theorem suggests if the data-points are sampled from the invariant distribution
of SDE (@), then we can recover the original dynamics directly from data when inspecting
the random walk defined by diffusion maps with time step O(¢§). This result coincides
with the intuitions to construct Brownian motion by invariant principle [I4], since the
space correlation scale from Gaussian kernel ks(z, %) is O(v/3), matching with time scale
of O(4). From this perspective, the microscopic p(z,y) constructed in our single-cell
algorithm reflects the over-damped Langevin dynamics underlying the cell-fate decision
process.

Next we move further by asking the following question. As discussed, MuTrans
can provide with a natural way for the multi-scale reduction of diffusion map random
walk. On the other hand, the classical way to directly coarse-grain the OLE dynamics
(@) is from Kramers reaction rate formula, by viewing the coarse-grained dynamics as
the discrete-state jump process, with transition rate which directly relates to the barrier
height of U(x). Are the two coarse-graining ways equivalent, if the data is indeed sampled
from the stationary distribution of SDE?

Using MuTrans to study diffusion map dynamics p>®, we can calculate the coarse-

grained transition probability matrix P%, where the transition probability from S; to
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d(;,a(l’)
Zx€S1 d‘S,a (.I)

For simplicity of discussion, below we restrict to the one dimensional case, and assume

PO, d,a o,
P =Y i @)psalzy), pt(x) =

z€S1,y€S>

U(z) is the double-well potential with two local minimum at = a and x = b, plus the
saddle point at x = ¢. We also assume that the stable states S; and Sy are accurate in
MuTrans. Then as the sample number tends to infinity, we have

S Coodinieroo) @5 “(@)05  (¥)ks (2, y) p(x) p(y) ddy

. Ho,o
lim Py = )

n—»00 [° d(z)p(x)dw

where

(2) = 4;°(2) [ 3@k 0)pl0)dy
R
To find the limit as 6 — 0, we need the following lemma.

Lemma 3. For the smooth function f(x,y) on R?, we have

m
\/;//(—OO,C}X[CH_OO) ]C(;(.CE, y)f(:v, Z/)da:dy = f(C, C) 4+ O((S)

This can be shown by considering the Laplace method in R?, since in the integral
region (—oo,c| X [¢,+00) only the point (c,c¢) contributes to the weight in ks(z,y).

Therefore, apply the Taylor’s expansion to f(z,y) around (¢, ¢), and note that the integral

// e*(45)_1(’3*y)2d:cdy — 1// e~ (W)~ g0 a0 26,
(—OO,C}X[C,-&-OO) 2 Qu,v

where Q,, = {(u,v)|u +v < 0,v —u > 0}, through the change of variable u = z — y
and v = x +y. Combined with (), we find the leading order of O(v/9) in the integral of
lemma B. Hence, we conclude that

2—2a
. ™ N, 1Y (C)
(1313(1) \/;P12 O pre(z)da )

—00

Since we consider the state-transition under small noise, after taking the 6 — 0 limit,

we are also interested limit regarding small noise ¢ — 0. Applying the Laplace integral

e U (x

asymptotic for p(z) = e~ ), and pluging in Equation (8), we finally arrive at

Theorem 4.

A5 L
lim lim lim elnd~Y2P%? = U(a) — U(c).

e—=06—0n—o00



The theorem implies the consistency between MuTrans-based coarse-graining and
the Kramers reaction rate formula for OLE. Consider a continuous-time, two-state jump
process with generator Q. Then if we sample the trajectory with fixed time increment
At, a discrete-time Markov chain can be induced, with transition probability matrix

(TPM) P(At) = exp(AtQ). Conversely, we have Q = lima; o P(ft)_l, which is the

original definition of infinitesimal generator. Then the results in Theorem B suggest
that when resolving the coarse-grained TPM with time scale O(\/g), the limiting jump
process asymptotically correspond to the reduced state-transition process directly from
the original SDE by Kramers reaction rate, as the noise of the system ¢ — 0.

Through the theoretical analysis above, we therefore conclude that MuTrans can
reflect the multi-level dynamics of the single-cell transcriptome data modeled by the

over-damped Langevin equation, in a quantitatively consistent way.

Further Discussions

Presently, the interplay between single-cell data analysis and dynamical models in com-
putational biology can be realized in two diverging ways, namely the model-based ap-
proach and data-based approach respectively.

The model-based approach assumes the existence of a generative model (commonly a
continuous dynamical systems) where the single-cell data is sampled from, and analyze
the gene expression dynamics via fitting dozens of parameters in computational model.
For example, by modeling the gene regulation network with ordinary differential equation
(ODE), Ocone et al. [IA] proposed a framework to reconstruct the gene regulatory
dynamics from single-cell snapshot data. Subsequently, SCUBA [I6] involved the fitting
of a bifurcating ODE system to describe the gene expression dynamics in time-series
data. SCOUP [I7] inferred the cell lineage and pseudotime via the parameter estimation
for the conceived Ornstein-Uhlenbeck process, which was a special class of stochastic
differential equation (SDE). The framework had been extended to time-series data with
the consideration of more general Gaussian process dynamics [IR, 19, 20). Recently,
partial differential equation (PDE) models were also adopted to simulate the pseudo-
dynamics (population density evolution) in the single-cell RNAseq time series [21].

On the other hand, data-based approach directly defines stochastic dynamics on data
points, yielding discrete models in both space and time. For instance, diffusion map
and diffusion pseudotime [[3] were among the earliest proposals to construct stochastic

dynamics directly on single-cell data. The population balance analysis (PBA) method



[22] also utilized discrete random walk on the cellular graph to infer cell state dynamics,
and discussed in detail the relationship between the constructed random walks and the
continuous partial differential equation. In addition, the Topographer [23] and Palantir
[4] also applied the discrete Markov chain model to gain a probabilistic understanding
of the cell fate decision.

In general, the model-based methods provide more mechanism understandings, while
tend to be problem-restrictive and computation-expensive; on the contrary, the data-
based methods usually provide more robust and scalable results, comprising with the
sacrifice of model interpretability.

MuTrans combines the advantages of both approaches by constructing a data-based
cell-cell random walk in the first step, and interpreting and decomposing the dynamics
from a multi-scale stochastic model perspective, to perform cell clustering, lineage in-

ference and transition cells/genes analysis in a consistent and mathematically rigorous

way.



Supplementary Note 2: Algorithm Details

As an appendix to main text, in this part we present the MuTrans along with downstream
Transcendental algorithm and the large-scale dataset pre-processing module DECLARE
with more technical details, with the framework outlined in Supplementary Fig. B.
The central task of MuTrans is to extract three key dynamical information from
single-cell transcriptome data, namely
K
e The attractor basins S = |J Sk,

k=1

e The mutual transition probabilities among attractor basins P KxK s
e The relative cell positions within attractors (membership function) pg(z).

To this end, we use {Sk, ]52-]', pr(z)} to induce two random walk transition probability

matrix (rwTPM) on
e cluster-cluster resolution, p(z,y), which relies on Sy and 152-]-,
e cell-cluster resolution, p(z, y), which relies on P;; and pg(z).

Then we optimize {S, Py, pi()} to ensure that the two model-based rw TPM § and
p best approximate the cell-cell resolution rw TPM p, which is directly constructed from
single-cell data via a diffusion-like kernel.

Finally, the downstream analysis (Transcendental) is performed on the obtained op-
timal {S}, P;;, pi(x)} to visualize the cell-fate dynamical manifold, infer the cell lineage

and dissect transition cells and relevant genes.
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Supplementary Fig. 2: Framework of MuTrans. By unifying three rwTPM p,p and p
across cell-cell, cluster-cluster and cell-cluster resolutions, MuTrans extracts a coarse-
grained Markov Chain representing original dynamics, with attractor basins S; and
mutual conversion probability p, and specifies the relative positions of single cells within
attractor basins via membership function pg(x). The extracted quantities are then used
in downstream analysis such as dynamical manifold construction, cell lineage inference
or transition cells and genes analysis.
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Construction of Microscopic Cellular Random Walk

We begin to construct the random walk on the cell-cell level by defining a similarity
function g(z,y) in Gaussian kernel form, expressed as g(z,y) = 6_%, where m(z, y)
is the metric between cell x and y, and o(x) is the local standard deviation of the Gaus-
sian kernel concentrated around cell. In our algorithm, the choice of metric m can be
either Euclidean, correlation or cosine, and the value of o can be obtained by the per-
plexity parameter as in tSNE. Based on the Gaussian kernel similarity, we then introduce
the weight function w(zx,y) between any pair of cells by making g(z,y) symmetric, i.e,

w(z,y) = %(g(x,y) + g(y,x)). The weighted random walk with w(z,y) can hence be
modeled as the Markov chain with transition probability p(z,y) such that

placy) = e de) = Y wle. ).

Here p(x,y) denotes the probability that the cell currently in state x will switch to
the state y in one step of the random walk. Such microscopic random walk yields an

equilibrium probability distribution u(z) = Zd(gzz)’ which satisfies the detailed balance

condition that u(x)p(x,y) = pu(y)p(y, z). Under the random walk perspective of single-
cell data, the dynamics of gene expression can be viewed as a series of consecutive
stochastic switches from one cell to another, which is also consistent with the OLE

dynamics ().

Multi-scale Representation of Stochastic Dynamics

The aim of the multi-scale representation algorithm is to dissect the original, microscopic

random walk dynamics {p(z,y),z,y € S} into the multi-scale structure

({8 AP (). € SHE, ).

Here {P,;}; ;-1 defines a coarse-grained Markov chain on the states {S,}X |, which is
the partition of the microscopic space S and corresponds to the concept of attractor
basins of dynamical system. The {pi(z),x € S}, specifies the probability of cell =
belongs to the attractor basin Si, determining the relative position of the cells in the
holistic landscape. The underlying multi-scale structure naturally induces the dynamics
on microscopic cellular level as defined below.

The Cluster-Cluster Resolution Dynamics. The coarse-grained Markov chain

12



with the structure ({Sk}szl, {Py fj:l) naturally induces a dynamics p[S, B;j],

plry) =Y 1Si(x)15j(y)éjugy)a =Y ny). (6)

ij=1 yeS;

Here 1g, () denotes the indicator function of cluster Sy such that 1g,(2) = 1 for cell
z € Sk and 1g, (2) = 0 otherwise. It is worth noting that, although p(z,y) is defined at
the cell-cell level, it is indeed induced from the transitions in cluster-cluster resolution:
from the cluster-cluster transition perspective, the stochastic transition from cell z € S;
to y € S; can be decomposed into a two-stage process; the cell witnesses the switch of

cellular state from cluster S; to S; with probability ]A%-j in the first stage, and then pick

up the cell y in cluster S; according to its relative portion at equilibrium

The Cell-Cluster Resolution Dynamics. Certain dynamics information might
be lost during the coarse-graining, especially regarding the saddle points that represent
the transition cells amid attractor basins, since the cluster-cluster resolution dynamics
in Equation (B) assigns these cells to one specific cluster exclusively. In order to dis-
cover the transition cells in higher resolution, we introduce the membership function
{pe(z),x € S}, to quantify the relative cell positions in the clusters. The element
pr(x) represents the probability that the cell  belongs to cluster Sy and we require that
pr(x) > 0, , pr(x) = 1 for any € S. If the gene expression profile of the cell z is
distinctive to the cluster S, then pg(z) will approach to one as the indicator function
lg,. On the other hand, for the cell possessing mixed lineage identities, its membership
function pi(z) will have several significant positive components, suggesting its potential
origin and destination during the transition process. The idea of membership function
is sometimes referred to ”soft clustering” previously [25], since the boundary among
the discrete clusters are softened by assigning cells the probability belonging to cer-
tain clusters, which takes the value continuously from 0 to 1. With the introduction
of {pi(x),z € S}, we are able to induce a refined microscopic dynamics p[P;;, p(z)]

beyond Equation (B) as

play) = pi(x)pj(y)f’ijﬂ(y), i =Y piy)uy). (7)

i,j=1 K yes

In the current set-up, since the membership of the cell to cluster is no longer exclusive,
the transition from cell x to y can be realized in all the possible channels from any cluster

S; to S; with the weight p;(z)p;(y). Therefore, the dynamics in Equation () recovers

13



information from the cell-cluster resolution.

The Optimal Multi-scale Representation. We aim to find the multi-scale repre-
sentation ({Sk}k LPE i=11pk(T), T € S}szl), whose induced random walks p and p
optimally approximate the original data-driven dynamics p. As pointed out in [26], the
natural choice to measure the distance between Markov chain dynamics is the Hilbert-
Schmidt norm for the operator, defined as [[pll}, = >_, s nggp (x,y), where p is the
invariant distribution of p. Therefore, we first formulate following the optimization

problem to detect the optimal coarse-grained Markov-chain ({Sk} K AP, e 1)

min &[Sk, Byl = B[Sk, By] — P}
(S PG ’ ’ :

K
UsSe=5 sins; =g, forije{l,2. . K} (8)

k=1

K
 Py=1, forije{l,2. K}
=1

The solved optimal ({S i SRR { fie 1) further facilitates the determination of {py(z)}5_,

through
min E )] = ”’]_f)ﬁ“" )] — plf2, .
{Pk(m),OUGS}i{:l Qipk( )i Hpi ij Pk( )] pHu ( )
K
st pu(2) 20, Y pu(e)=1, forke{l,2, ,K}yzeS, (10
k=1

with the initial condition pf(z) = 1g:(z) for any x € S.
The Coarse Graining Procedure. We aim to solve the minimization problem by

the iteration scheme,

P (D) = argmin & [S,(:), Py,
{Pi}E
(t+1) _ o pw (1)
Sy = argmin &[S, P;;’].
{Sk}k 1

We expand the objective function in optimization problem (B) as

m(z) fhi 2 LA
Ska zy Z 2 —i_ ﬂ_PZ —2 Z A_pzj Z ,u(x)p(x>y)7 (12)

T,yeS y 1,7=1 ’uj x€S5;,y€S;

14



Since the objective function yields the quadratic form with respect to {]%j}szl, the
problem can be tackled explicitly

A(t+1 t t p(z) . (t

P = 3 wl@pey), 1@ =5 A= wy).  (13)

zes yest? yest

We can verify that the obtained P satlsfy the constrains in problem (8). The original
problem turns out to be the NP-hard combinatorial optimization. To overcome such
limitation, a heuristic algorithm has been proposed [26] that shared the spirit with K-
means clustering. To present the heuristic method, we rewrite the objective function

as

&1[Sk, P ZZ&’ (; Sk, ;)

i=1 x€S;

where

Ei; Sk, Py) = D ) ul)u(y) <p<x’y) - Pif)

=1 ye j

The update of Si can be achieved by the greedy step
S(tJrl ={zr: k= argmmg(a: Sk : U))}, (14)

where

© 0 K p(x y) ]5'(?) 2
=1 yestt SN

K

The Refinement Procedure. Given the coarse-grained results {S;}5_ | and {P* il

the main obstacle of solving the optimal refinement representation problem (H) arises

from the constraints for pk( ). To overcome the difficulty, we introduce the change of

variable py(z) = eM®)/ Z eM (@) Here the transformed variable {\,(2)}<, € R guar-

antees the constraints that pr(z) >0, Eszl pr(z) = 1, hence they do not subject to any
further constraints. If we define &\ ()] = E[pk(z)], then the refinement problem ()

can be tackled via the classical quasi-Newton method with respect to objective function

Es[Ar(z)] and the variables {\g(2)} .

Construction of Dynamical Manifold

To construct the dynamical manifold in single-cell analysis, challenges arise from the

curse of dimensionality. For the high dimensional transcriptome dataset, the appropriate

15



illustration of dynamical manifold depends on the reasonable low dimensional embedding
of the cells that represents the ordering of cell-fate transition dynamics. To solve the
issue, we define a transition coordinate &(x) on the two-dimension plane, based on the
multi-scale dynamics property.

Our dimension reduction procedure involves two steps. In the initial step, we de-
termine the center positions of each cell clusters, which correspond to the attractors
of corresponding dynamical systems. In the second step, we assign the coordinate to
each individual cell by considering the transition cell information. The initial center-
determination step starts with an appropriate two-dimensional representation x2” of
each cell x, which can be realized by the spectral visualization of stochastic dynamics
combined with MDS techniques, or simply by classical method like Diffusion Maps or
tSNE. Instead of directly utilizing x?? as the cell coordinate in landscape function, we
calculate the center Y}, of cluster S}, by taking the average coordinate over cells within

certain threshold of cluster membership function pf(z), i.e.

2 XL g (@)>hap (7)
Yk _ €S ’
Z 1PZ($)>h2D (3:)

z€eS

ke{l,2,...,K}.

The threshold hsp allow us not only to consider the cells that tightly attracted to the
fixed point in attractor basin S}, but also to include cells that are in the transition
process from or toward the attractor basin. Having determined the position of attractors,
we define the two-dimensional transition coordinate £(x) according to the membership

function pj(x) in different attractor basins, such that

E(z) = pi(2)Y) € R (15)

I

For the cell possessing mixed identities of state S; and S}, its transition coordinate
will lie in the middle of y; and y;. In each attractor basin .S} , we can also obtain the

local covariance matrix Ay of the transition coordinate £(z), i.e.
A = Cov[¢(z)|pr(z) > hap)]

which represents the distribution of cells relevant to the basin. Next, we aim to define the
landscape function that describes the global stochastic transitions among the multiple

attractors in the system. We piece the local information of different attractor basins
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together by fitting a Gaussian mixture model with mixture weight given by p*, the
stationary distribution of coarse-grained dynamics. The probability distribution function

P(z) of the mixture model can be written as

K
P(z) = > N (z Y, Ay),
k=1

where NV(z; Y, A) is the 2-dimension Gaussian probability density function with mean
yr and covariance A,. The landscape function ¢ is defined on the 2-dimension space
for any point z such that ¢(z) = —InP(z) and visualized as the dynamical manifold.
Specifically, the function of individual cell  is calculated as ¢(&(x)).

We argue that the landscape function ¢ and its associated dynamical manifold ac-
commodate rich information about the multi-scale stochastic dynamics during cell fate
decisions. Firstly, the re-arranged transition coordinates &(x) allow typical cells that
are distinctive to certain cell states are positioned in the basin around corresponding
attractors { Y }X_ |, while the transition cells are laid along the connecting path between
attractors across the saddle point, according to membership function pj(z). Secondly,
the relative depth of the attractor basin reflect the stationary distribution i* of coarse-
grained dynamics ({Sg}le, {ﬁ;; i{{j:1>> therefore depicting the relative stability of the
cell state in the stochastic transition dynamics among different states. Moreover, the
flatness of the attractor basin is determined by the local covariance matrix Ay, which
reveals the abundance and distribution of transition cells, and therefore the sharpness
of cell fate switch.

Compared with the existing landscape proposals, distinctive features about our method
arise in two aspects. Firstly, we resolved the curse of dimensionality issue in landscape vi-
sualization by the introduction of transition coordinates, which incorporated multi-scale
dynamics information. In previous attempts, in order to visualize certain energy land-
scape in three-dimension space, the cells were projected onto the two-dimension plane by
applying classical dimension reduction methods like PCA, tSNE or elastic embedding,
which might lack dynamical interpretations. As the improvement, the transition coor-
dinates in our method faithfully reflect the progress of cell development, by assigning
and sorting the transition cells along the connecting path between their departing and
targeting stable states. Secondly, the dynamical manifold in MuTrans purely serves as
the descriptive tool to vividly and accurately demonstrate the dynamical information

about cell fate conversion process. Some previous proposals further utilized the exact
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value of energy landscape to infer the underpinning dynamics, which introduced further
assumptions about the dynamical models. For instance, scEpath [27] inferred the cluster-
cluster transition probability by assuming that the equilibrium distribution yielded the
Boltzmann-Gibbs form with the constructed signaling-entropy energy landscape. Mean-
while, DensityPath [?8] probed the development trajectory with the hypothesis that
the least action path corresponded to the geodesic curve on the density landscape. In
comparison, our multi-scale representation of cell state transition dynamics and the
downstream analysis were all directly and optimally derived from of the original high-
dimension space of gene expression, independent of the visualized dynamical manifold.
Consequently, the inference results toward the transition process by our method might
be applicable to more general cases, and the relevant demonstration-aimed dynamical

manifold seems to be closer to the original idea in Waddington’s metaphor.

The Transcendental Procedure

Following the results of MuTrans, the Transition Cell and Relevant Analysis (Transcen-

dental) procedure performs three tasks relevant to the transition cells
e Inferring the cell lineage (transition trajectory) on cell states level;
e Identifying the transition cells with the defined transition cell score (TCS);

e Distinguishing the transition driver (TD), intermediate-hybrid (IH) or meta-stable

(MS) genes during interested transition process.

Inference of the Cell Lineage.

Beyond the visualization of dynamical manifold, MuTrans also provides more quantita-
tive approaches to infer the cell lineage from the transition dynamics. Based on the Mu-
Trans coarse-grained reduction ({SZ}kK:l, {P;; f’{jﬂ), a cluster-cluster graph G(V, E, W)
naturally emerges, whose nodes {V;}X_ | denote the coarse-grained cell states {S;}X |,
and nonnegative weights W;; on edge E;; can be computed from the cell state transition
probability P;; (described below).Given the initial attractor, a tree-like structure is then
subtracted from G(V, E, W) to represent the cell lineage during development. Depending
on the different choice of weight matrix and tree construction algorithm, Transcendental

provides the following two methods to infer cell lineage, namely the Maximum Proba-

bility Flow Tree (MPFT) and Most Probable Path Tree (MPPT) approaches.
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The Maximum Probability Flow Tree (MPFT). The coarse-grained Markov
chain on cluster-cluster level satisfies the detailed balance condition, i.e. ,[Lff?;; = A;Pfi,
therefore introducing a symmetric probability flow matrix F' defined by Fj; = /l;"fD;;
Here flow Fj; denotes the percentage of cells that are making transitions from state
S; to S%, against all the cells in transition during one-step evolution of coarse-grained
Markov chain. We aim to build a maximum spanning tree of the undirected graph with
weights W = F'| such that the tree possesses the greatest sum of transition probability
flows over all pair of edges, which represents the dominating transition pathways of the
coarse-grained dynamics. In Transcendental implementation, the resulting Maximum
Probability Flow Tree (MPFT) is constructed by employing the Kruskal’s algorithm on
weight matrix F'.

The Most Probable Path Tree (MPPT) Unlike MPFT which seeks to probe a
global tree structure that maximize the total transition flux, Transcendental also provides
the Most Probable Path Tree (MPPT) to represent the transition paths from root state
to every cell state, which is based on the transition path theory [29, B0, 31, B2, B3, 34].

Given the sets of root and ending clusters, denote them as starting set A and the
target set B, respectively. Suppose we already derive the coarse-grained cluster-cluster
scale Markov chain X; with transition probability P.

Below we first define the core concepts in transition path theory as follows which can

be found in previous literatures.

Definition 1 (In-Transition Times [34]). For a given path {X.}, the in-transition times

from set A to B are defined as the union of sets

T = J{tez) <t <t}

ne”

where t2 and t2 are the nth exit and entrance time of set A and B respectively such that
Xia €A, Xz € B, X, € (AUB)® for t) <t<tl.

Definition 2 (Transition Paths [34, B0, B1]). For a given path { X}, the nth transition
path from A to B is
P, = { X[t} <k <8},
The set of all transition paths is defined as & = |J{P.}.
nez

The probability distribution of transition paths is defined as:
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Definition 3 (Probability of Transition Paths [34]). The probability of observing tran-

sition path at state i is defined as

N

AB _ '
i Nﬁoo2N +1 Z b=y Lyery. 16)

and 14y 1s the indicator function with 1i.,p = 1 if the logical variable exp =TRUE, and

0 otherwise.

Here m#P describes the probability that the cell is on a transition path from A to B
and bypassing state S;.

Definition 4 (First Entrance and Last Exit Time). Given the Markov chain {X;}, the

first entrance time 7§ into set A, and the last exit time T, from set A are defined as

=inf{t >0: X, € A},
7, =inf{t > 0: X[ € A}.

where X := X_, is the path of time-reversed process of X;, and XE has the transition

PR — H Ligh
v i

grained Markov chain.

probability matriz = FA’U due to the detailed-balance condition of coarse-

Definition 5 (Committor Function [34]). The forward and backward committor func-

tions are defined as

¢ =Pty <7i), @ =Py >75).
Here P; denotes the probability of the forward process X conditioned on Xo =i and PE

the probability of the reversed process X® conditioned on X = .

Here ¢ denotes the probability that the cell starting from cluster S; first enters set
B rather than set A, and ¢, the probability that the cell arriving at cluster S; came last
from set A instead of B.

Committor functions can be computed via linear systems.
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Proposition 5. [3]] The committor functions solve the following linear equations

k
q =0, i€ A,

1€ B.

S Pugy =q;, i¢AUB,
k
q; =1, 1€ A,

¢ =0, i € B.

We can check that g; = 1 — ¢;" for the detailed-balance process. Then we can have

transition paths probability computed as follows.

Proposition 6. [34] The probability of transition paths defined in (I8) can be expressed

as

A

m” = pig; g

To observe the transition paths at state ¢, we pick it with the stationary distribution
i, and require that the path last exit from set A and first enter the set B. This happens
with the probability ¢; and ¢;", respectively.

Similarly, we can define the probability flux of transition paths, which is important to
the detection of development trajectories discussed below. It quantifies the proportion

of cells that are on a transition path from A to B and moving directly from S; to .S;.

Definition 6 (Probability Flux of Transition Paths [34]).

N
. 1
f57 = Jim > (1{Xt=i,xt+1=j} > 1{téSt<t+1§tE}>-
t=1 n

We can also write f;; in terms of committor functions which is used in computation

Proposition 7. [3]] The probability fluz of transition paths can be expressed as

AB 5 -
ij :Mipijqi q;-r~

We therefore define the concept of development trajectories that connect different

attractor basins to quantify the cell lineages.
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Definition 7 (Development Trajectories). A development trajectory wg, = (io, i1, - . . ,in)
from single-cell sets A to B is a path that passes through cell states connecting A and B

without self-interactions such that
io € Ayin, € B,ij € (AUB)C and ij # iy, for0<j#k<n.

To calculate the effective probability development trajectories, we need to eliminate
the effect of detours along transition paths, and therefore define the notion of net tran-

sition paths probability flux as follows

Definition 8 (Net Transition Paths Probability Flux). The net transition paths proba-
bility fluxz of transition paths from state i to j during the transition from set A to B is
defined as

AB AB
1—; = maX{fij - sz‘ ,0}.

With the transition paths probability flux, we can define the capacity for each devel-

opment trajectory (transition path).

Definition 9 (Capacity and Bottleneck [34]). Given the development trajectory wgq =
(0,91, ... ,1y,) from set A to B, ils capacity is defined as
c(war) = OS%QTI}_I i—:ikﬂ'

For all the possible paths connecting A and B, we can calculate their capacities based
on the formula.The relative likelihood of each transition path is defined by the proportion
of its capacity to the sum of all path capacities from A to B, as the numbers shown in
the main text figures. It can be interpreted as the effective proportion of transition flux
along the interested developmental trajectory.

By joining the most probable paths from the predetermined root state S to all the
other states, a tree structure of graph can naturally arise, also known as the shortest
path-tree in graph theory. The connecting path between S and any cell state S} on
the tree coincides with the most probable path from S toward S;. For simplicity and
intuition, we will call the computed shortest path-tree as the Most Probable Path Tree
(MPPT) that reflects the cell lineage.

In the Python package of MuTrans, we use functions in PyYEMMA [35] for the com-

putations in transition path theory.

22



Identification of Transition Cells.

In addition to the MPPT, which describes the stochastic transitions on the cell states
level, we also aim to quantify the cell state transition in the single-cell resolution.

To inspect the transition process from state S} to S7, we first sort the set of cells R;; C
S; U SY that are relevant to specific process through the threshold h,,;, of membership
matrix, such that R;; = {= € S} U S5|min{p;(v), p5(x)} > hmp}. This step ensures that
the cells evolved in the bifurcation to other lineage would be excluded from the analysis
of 57 to S} transition.

To discover transition cells, we define a cell-specific measure, Transition Cell Score

(TCS) 7;5(x) for x € Ryj,

7ij(2) = Lx)
pi (x) + pj ()
From the OLE dynamical model (), 7;; remains one or zero when the cell wanders
around the attractors of S or S%, while 7;; transits from one to zero as the cellular
state switches from S; to S7 along the transition path. Motivated by this intuition, we

arrange all the cells in R;; according to 7;; in descending order, and denote the ordered

1 2 L

that 7i;(tm) = 7i;(2;) for m € {1,2,..., L}, where t,,, = m/L. To deal with the noise in

cells as z Then we define a normalized function 7;;(¢t) on t € [0, 1] such

data, we also use the logistic function

1

l(ta 07 tC) = 1+ 60(t—tc)

(17)
to smooth the reordered 7;;(¢), where the parameter ¢ reflects the steepness of transi-
tion.A larger @ corresponds to a sharper transition.

For the smoothed 7;;, we expect to observe a transition layer in its graph (Supple-
mentary Fig. B), within which the value of 7;; drops from one to zero. Consistent with
the dynamical models description, the cells in transition layer such that |7;; — 0.5] < hy
are therefore defined as transition cells 7;; from state S to S¥. The order of transition
cells reflects the progress of state transition process. The rest of cells in R;; are then
denoted as stable cells M; or M;;, depending on their cluster identity 57 or S7.

It is worth noting that the order of transition cells according to TCS is different from
the well-known pseudotemporal ordering of the cells, which attempt to align all the cells
from data. From stochastic dynamics point of view, the cells that fall deep into the well

of attractor basin will fluctuate around the fixed point, and the concept of order is not
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Supplementary Fig. 3: Illustration of transition cell analysis. The cells are ordered by
the transition cell score (TCS), where a transition cell layer is expected. The TD, MS
and ITH genes are then distinguished based on the Transcendental procedure.

well defined for these cells.

Classification of Marker Genes

Based on the calculated TCS and identified transition cells in the switch from S} to S7,
the Transcendental further classifies the marker genes regarding transition and stable
cells (Supplementary Fig. B). In the first step, all the differentially expressed (DE)
genes between 57 and S} are probed via standard approaches. Next, all the DE genes

are classified into three types based on the following criterion:

e Transition-Driver (TD) Genes, reflecting transient dynamics of transition cells.
The expression of TD genes changes dynamically within the transition cells and
reflect the progress of cell-fate switch, therefore can be considered as the drivers of
transition. To quantify TD genes, we use the correlation between gene expression
and TCS in the transition cells set 7;;. For each DE gene g, let g(z) denote its

expression in cell . The gene expression and TCS correlation is calculated as

> (mij(z) — 7i5)(g9(z) — g)

. x€T;;
Y ) —)? [ (9(x) - 9)?
x€Ti; z€Tij

where the averages 7;; and g are taken over all the transition cells. A larger value
of |C,| suggests that the expression of g is more accordant (either positively or

negatively) with the cell-fate transition dynamics by TCS. Hence we pick all the
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DE genes with |C,| > hyp where hrp is an adjustable threshold, and define the
selected genes as TD genes during transition. The TD genes are ranked based on

the absolute values of correlation coefficients calculated.

e Meta-Stable (MS) Genes, distinguishing the stable cells uniquely. Aside from
dynamical TD genes that highlight the transition cells, Transcendental next probes
the DE genes that are distinctively expressed in stable cells. To this end, for each
DE gene that is non-TD, we perform two groups of DE analysis on M, v.s. 7;; and
M v.s. T respectively. The significantly up-regulated genes in M, or M; are
termed as MS genes, exclusively mark the stable cells in S} or S7. MS are ranked
based on their significance in DE analysis and the top MS genes tend to express

uniquely in stable cells than transition cells.

e Intermediate-Hybrid (IH) Genes, demonstrating the mixed cell-fate identity
of transition cells. The rest DE genes that are non-TD and non-MS, are termed
as [H genes. The IH genes express eminently both in the transition cells and in
the stable cells from one specific cluster (S} or S7), suggesting the resemblance of
transition cells with both cell-fate during the transition. In the sense of IH genes
expression, the transition cells are the mixture of S7 and S7 states cells. The IH
genes are ranked based on their significance in the DE analysis to detect MS genes,
but with the reversed order. The top IH genes tend to express uniformly in both

stable and transition cells.

Overall, above classification of genes resolves the previous discrepancy in defining
transition cells, either from the dynamical [6] or the static [[] perspectives. We argue
that the transition cells may display both transient (dynamical) and hybrid (static)

features, manifesting in the expression of TD or IH genes respectively.

Directionality of Transition

In Transcendental, the directionality of transition is indicated by the tree obtained in
lineage inference. We note that reverting the starting and targeting state does not change
the identification results of transition cells or genes, since we have the relationship for
TCS that 7;j(x) = 1 — 7;;(x) and the metric of transition cells or genes defined above are

invariant under such transformation.
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DECLARE Pre-Processing Module for Large-Scale Dataset

The rapid emerging of large-scale scRNA-seq datasets poses computational challenges
to the trajectory analysis. Therefore we propose an optional pre-processing module
here, named DECLARE (dynamics-preserving cells aggregation) to first coarse-grain
the transition dynamics on the scale of microscopic attractors instead of single-cells to
reduce the computational complexity.

The construction of rw’TPM among microscopic attractors is inspired by the concept

of coarse-graining of Markov Chain defined below.

Definition 10 (Coarse-graining of Markov Chain). Given cell-cell scale Markov chain
{z+} on the state space S with transition probability matriz P = {p(z,y)} and a parti-
tion M = UkK:mle of microscopic attractors, the coarse-graining of {x;} is defined as a

Markov chain {X,} on the state space { M} i with transition probability matriz

N
; 1{33t€Mi7xt+1€Mj}
T = Jim =g ’ .
E 1{wt€Mi}
t=1

where the limit is taken in the almost sure sense, and 1y, is the indicator function.

In DECLARE, we begin with the partition of the state space into Mywith the cluster-
ing of cells in hundreds or thousands of clusters, using methods such as k-means or KNN
network partition. Next, the coarse-grained transition probability matrix can be indeed
calculated analytically instead of through numerical simulations, which is guaranteed by

the following proposition:

Proposition 8. [3]/ The coarse-grained random walk transition probability matrix (cg-
rwTPM) defined by (IR) can be expressed by cell-cell transition probabilities p(z,y) and
its stationary distribution w(z),

>, 2 m(@)p(z,y)

reM; yEMj

B JETCy

zeM;

It is also straightforward to verify that the coarse-grained Markov chain X; with {7};}
has the stationary distribution g with p; = > 7(x).
zeM;
With the calculated Tj; from DECLARE, we can then take it as the input to the

MuTrans as the cell-cell scale rwTPM, to construct dynamical manifold and transition

26



trajectories.

Adjustable Parameters in MuTrans Implementation

Despite that the MuTrans results are consistent with dynamical system model, it does
not directly fit the model parameters or simulate the model trajectory as what has
been done in [36]. This feature reduces the degree of freedom in algorithm and saves
computational costs of MuTrans. As shown in Supplementary Table 0, the majority of
parameters in MuTrans, mainly involves 1) constructing original cell-cell random walk
based on the Gaussian kernel 2) specifying the number of clusters (attractors) or number

of micro states in DECLARE and 3) the threshold to determine transition cells or genes.

Parameters Meaning Default
m(z,y) metric in Gaussian kernel Euclidean
perp perplexity parameter in determining Gaus- | N /2.5
sian kernel
hg threshold of average sharpness parameter to

construct the neighbor graph for MPPT lin-
eage inference

hap threshold of membership function in fitting 0.5
local mean and variance of dynamical mani-
fold

R threshold of membership function to include 0.5
in the interested transition process

hy threshold of difference between TCS and 0.5 0.45
to define transition cells

hrp threshold of correlation to determine TD 0.5
genes

Supplementary Table 1: The major adjustable parameters in MuTrans and Transcen-
dental procedure.

The Choice of Attractor Numbers

The determination of cluster numbers remain the challenging problem in single-cell tran-
scriptome data analysis. In MuTrans implementation, we suggest the following strategies

to choose the number of attractors:

e Given the constructed cell-cell rwTPM, we can calculate the eigenvalues and use
the eigen-peak index (EPI) to provide the reference of attractors number. Suppose

that we have the eigen-values of symmetric cell-cell weight matrix w(z,y) and
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degree d(z), we then sort the eigen-values of normalized weight matrix D :WD 2

as [A1| > [Aa| > -+ > |Ay|. The k—th EPI is defined as

AL
Y

k+1

EPI, =

When a peak of the EPI is observed at index k, we reason that there is an obvious
eigen-gap in the normalized graph Laplacian of the cellular network, and therefore k
is a candidate for the number of clusters. Note that we may observe multiple peaks,

which means that we may choose different k depends on desired our resolutions.

e For assessment, after the implementation of MuTrans, we can inspect the re-ordered
rwTPM across cell-cell, cluster-cluster, and cell-cluster scales, with cells within the
same attractor are aligned together. Ideally, the re-ordered rwTPMs should present
clear block structures since the cellular transition probabilities within the same

attractor are significantly greater than those among cells from different attractors.

e We also combine with prior biological knowledge, marker genes analysis, or compare

with labels in original publication to further validate the results.

Timing and Computation Efficiency of Algorithm

In implementation, the major computation cost of MuTrans involves solving the opti-
mization problem Eq.(8) with number of unknowns (i.e. pg(z)) N * k, where N is the
total number of cells and k is the number of cell clusters. As shown in Supplementary
Table 2 , the upper bound for time complexity of MuTrans is O(N?2k?), which is of the
same order in terms of cell number N with other widely applied clustering or dimen-
sion reduction algorithms (e.g. original tSNE without acceleration). The major obstacle
to boost MuTrans is that the computation complexity also relies quadratically on the

number of cluster k.

Dataset Number of Input Cells | Number of Clusters | Run Time(s)
Simulation 2000 2 31
iPSC 1081 9 269
Lymphoid 2018 10 1328
Human HSC 4118 5 792

Supplementary Table 2: Running time of MuTrans for different dataset on personal
computers. The tolerance for the first order condition in optimization problem is set as
1075 for all datasets.
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In practice, we can adopt the following strategies to speed up the algorithm:

e Coarse-graining the data. For very large dataset, one can apply the DECLARE
module to coarse-grain the data. This will decrease N and k simultaneously in the
computation. Our benchmark in human HSC dataset (main text Figure 6) shows
that the strategy may speed up the computation by one magnitude, while retain

accurate dynamical manifold construction and trajectory analysis.

e Adjusting the stopping criterion in the optimization problem. The default setting
of MuTrans is that the norm of gradient in objective function should be less than
tolerance value 107%. In practice, we find increase the tolerance can boost the
convergence of optimization greatly, without the large change in results regarding
transition cells and genes. For example, as shown in Supplementary Table B,
when the tolerance is set as 107°, the computation time is only one third of the
original time. Out of 25 top identified TD, IH and MS genes in Pre-M to M
transition, only 2 genes are not consistent with the results under 10~% tolerance
setting. When setting the tolerance as 10™* , the computation time efficiency is
boosted by 9 fold, with still more than 75% top TD,IH and genes are consistent with
the previous findings. This observation also suggests the robustness of MuTrans

to probe transition cells and genes.

First Order Tolerance | Run Time(s) | Number of Inconsistent Top Genes
107° 269
107° 91 2
10~ 38 6

Supplementary Table 3: Effect of changing first order tolerance on algorithm performance
in iPSC dataset.
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Supplementary Note 3: Data Analysis Details

The Simulation Dataset

To test consistency of our method with models of multi-scale dynamics, we simulate
the stochastic state-transition process based on 1)a saddle-node bifurcation model in
the regime of intermediate noise level 2) the over-damped Langevin systems confined
in multiple potential wells. The full scripts to simulate the data is available at https:
//github.com/cliffzhou92/MuTrans-release with two Matlab live script notebooks

provided for reproducible analysis results.

Saddle-node Bifurcation

The model assumed that characteristic gene expression level of the cell x; was confined
by the conceived potential field V' (z, A) from the gene regulatory network, which was

influenced by both the extrinsic signal A and stochastic noise with amplitude o.

dry = =0,V (4, \)dt + /20d W,

D1
Here we chose the potential function V' (z, \) = 100 (}lx‘l — %xz + )\x) and the noise level
o = 40. As shown in Figure 2a of main text,the saddle-node bifurcation occurs at A = —2
and A = 2, and within the range A € [—2, 2] the systems exhibit two stable fixed points
and one unstable saddle-point, which correspond to the stable and transition cell state
respectively.

As shown in the blue-colored simulation trajectory in Figure 2a of main text, the
presence of noise in the gene expression drives the cell state switch prior to the bifurcation
point at A = 2.

To generate simulation data, we used Euler-Maruyama method to solve the SDEs
with initial condition xy = 2.1038, time step 107, and took the 2,000 cells near phase-
transition points on the bifurcation plot to construct rwTPM as the input to MuTrans.
The script to reproduce simulation and analysis for this dataset is available at https://
github.com/cliffzhou92/MuTrans-release/blob/main/Example/example_saddle_node.

mlx
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Back-and-forth Transitions in Potential Fields

To have back-and-forth transitions among potential wells, we simulated the over-damped

Langevin systems with sufficiently large noise o
dXt = —VV(Xt)dt + V QO'th,

Here the potential filed V(x) has multiple local minimums representing different attrac-

tors of dynamical system. Specifically we chose

e Double-Well Potential. V(z1,22) = 3(21 — 1)* + 523, where we have two stable

points (—1,0) and (1,0), and one saddle point in-between (0, 0).
We chose noise amplitude ¢ = 2 and simulated system with Euler-Maruyama
methods of time step 1072 and initial condition zo = (1,0). 2,001 samples from

simulation trajectories are given as the snapshot input to MuTrans.

From Supplementary Fig. H(c), we observe the obvious peak at K = 2, and the
attractor membership function has the gradual transition through saddle points as
shown in (d). The script to reproduce simulation and analysis for this dataset is
available at https://github.com/cliffzhou92/MuTrans-release/blob/main/Example/

example_double_well.mlIx

e Tipple-Well Potential.

1 5
V() = Besp(—a? — (3 — 3)?) — Bexp(—f — (13~ )
1
—5exp(—(23 — 1)? — 23) — Sexp(—(z] + 1)? — 23) + 0.227 + 0.2(vy — =)*

3

The three stable points are around (—1.05,0.04), (1.05,0.04) and (0, 1.54), the three
order-1 saddles between attractor basins are (—0.6,1.1), (0.6,1.1) and (0,—0.3),
and the order-2 saddle (maxima) is at (0, 0.52).

We simulated system with Euler-Maruyama methods of time step 1072 and initial
condition zy = (—1,0). 2,001 samples from simulation trajectories are given as
the snapshot input to MuTrans. From Supplementary Fig. B(f), we observe the
obvious peak at K = 3.
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We let noise amplitude o change to generate different datasets, and re-run Mu-
Trans to inspect the coarse-grained transition probabilities. The main text results
corresponded to o = 0.8. With the increase of noise level, the transition probabili-
ties between different attractors (off-diagonal elements) become larger. In addition,
the direct transition from attractor 1 to 3 becomes more frequent than the transi-
tions involving attractor 2. These observations are consistent with previous studies
about this triple potential-well system [37]. The script to reproduce simulation
and analysis for this dataset is available at https://github.com/cliffzhou9d2/

MuTrans-release/blob/main/Example/example_triple_well.mlx
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Supplementary Fig. 4: Supplementary for main text Figure 2.(a-b) Simulation tra-
jectories in double-well potential field and time-series display. (c) EPI index. (d)
Membership function of right attractor calculated by MuTrans. The cells near saddle
point have around 0.5 values. (e) Coarse-grained rwTPM. (f) EPI index for triple-well
dataset shown in main text Figure 2. (g-i) Coarse-grained rw TPM with noise amplitude
o=0.8,1.2,1.5.
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The EMT Dataset

The EMT data analyzed in main text was from GSE110357 with 354 cells sequenced
by Smart-Seq2 platform. Prior to MuTrans analysis, we selected 1500 highly variable
genes using vst method in Seurat pipeline. Following the strategy in original publica-
tion [BR], cells with large portion of ERCC gene expression (more than 2 percent of
all gene counts) are filtered out .We further kept cells with least 200 genes expressed
and 100,000 counts. The log-transformed and scaled data is then taken as the in-
put to MuTrans. The Jupyter notebook file to reproduce analysis results for EMT
data is available at https://github.com/cliffzhou92/MuTrans-release/blob/main/
Example/example-emt-raw.ipynb. For this dataset, UMAP was computed based on 50
neighbors in Scanpy.

Guided by EPI (Supplementary Fig. H(b)), MuTrans found five attractors in the
dataset as depicted in (c). Compared with Leiden clustering results (a), MuTrans de-
tected two attractors in mesenchymal cells. Marker gene analysis (d-e) found that each
attractor expressed unique genes. Inspecting the known E/M/hybrid states markers (f)
in original publication [38], we found that attractor 3 expressed pure epithelial marker
Epcam (therefore annotated as E), attractor 0 and 4 expressed pure mesenchymal makers
MMp19 and Aspn, attractor 1 express both E hybrid marker Krt5 and M hybrid mark-
ers Zeb2/Prrx1 (denoted as Intermediate Cell State 1, ICS1), and attractor 2 express M
hybrid markers (denoted as ICS2).
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Supplementary Fig. 5: Supplementary analysis results of EMT dataset to main text
Figure 3. (a) Leiden clustering results of EMT dataset with UMAP projection. (b)The

EPI (eigen-peak index) for this data.
Attractors and transition entropy calculated by MuTrans.

We observe an apparent peak at k

(d-e) Marker gene analysis
and plot of each MuTrans attractor.(f) Violin plot of previously known markers for

E/M/hybrid states in each attractor, annotating the cell type.
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The Early iPSC Differentiation Dataset

The iPSC data analyzed in main text was from https://www.pnas.org/highwire/
filestream/29285/field_highwire_adjunct_files/1/pnas.1621412114.sd02.x1sx.
We analyzed the 1,081 cells collected in first three days of induction experiment to inspect
bifurcation dynamics with data log transformed. The processed input gene expression
matrix and script to reproduce all the supplementary results for iPSC data is available
at https://github.com/cliffzhou92/MuTrans-release. The UMAP dimensional re-
duction of this data was computed in Scanpy with 60 neighbors.

In Supplementary Fig. B, we displayed the MuTrans results with more details. In
UMAP projection of the data, we showed cells colored by MuTrans probed attractors
(K =9, corresponds to the apparent peak in EPI (g)) versus the Leiden clustering results
with default resolution parameter, where seven clusters were found. The difference was
mainly about the additional attractors in epiblast and ectoderm defined by MuTrans
in the earliest stage, while other cell types were quite consistent with Leiden, reflecting
the difference of resolutions.We also presented the cell lineage inferred by Most Probable
Path Tree (MPPT) or transition paths analysis.

To show the robustness toward choosing the number of attractors K, we re-ran Mu-
Trans with K = 7 (which is another peak shown in EPI (g)), as results displayed in
Supplementary Fig. B (h). Interestingly, the attractors are highly consistent with Leiden
clustering results in (c¢). The results regarding transition paths and transition entropy
trend during the bifurcation is similar to K = 9 as shown in (e-f) and main text Figure
4f.

Next, in Supplementary Table @ we listed the MS, IH and TD genes during Pre-M to
M commitment, used in plotting the trend in Figure 4h of main text. The top enriched
GO terms for each group of genes were obtained from http://geneontology.org/. In
Supplementary Fig. [@, we plotted the most significant M state MS genes TBX2 and
ISL1 (which only highly-expressed in stable cells of M state), as well as the top-rank TH
gene TBX20 (expressed both in transition cells and stable cells of M state). In (d), we
used violin plot to show the difference of gene expression distribution between MS and
IH genes.

Finally, we summarized the overall gene expression patterns in the En/M bifurcation
from PS state as in Supplementary Fig. B. Within the PS attractor basin, we further
classified three types of cells based on their membership functions: 1) the stable PS
cells 2) the cells that have larger membership in Pre-M attractor (called Pre-M-bifur
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cells) 3) the cells that have larger membership in Pre-En attractor (called Pre-En-bifur
cells). With the genes expression statistical test for each group of cells (the test also
including "negative markers” that are uniquely down-regulated), we found certain genes
that might be used to predict the cells fate into either Pre-En or Pre-M attractor, and

denoted them as bifur-prediction genes in PS attractor.
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Supplementary Fig. 6: Dynamical system analysis of early iPSC differentiation data
by MuTrans. (a-c) UMAP projection of the dataset with cells colored by MuTrans
attractors (k = 9), collection time and Leiden clustering results. (d) Inferred maximum
probability flow tree (MPFT) as cell lineage. (e) Violin plots of MuTrans cell transition
entropies in each attractor. (f) Box plots of MuTrans cell transition entropies (n = 1081
cells) in each cell collection time, corresponding to the violin plot in main text Figure
4f. Box plots indicate median (middle line), 25th, 75th percentile (box), 5th and 95th
percentile (whiskers) and the outliers (single points). The number of cells in each box
(collection times) are n =231, 166, 93, 211,122 and 258 respectively. (g) EPI index of
the dataset. (h) Re-analysis of the dataset with k selected as 7.
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Genes Group

Genes Name

Top GO Terms

Pre-M-state MS genes

T NANOG MIXL1 SOX17

endodermal cell differentia-
tion; endoderm formation

Pre-M-state TH genes

KIT VEGFA LEFTY1 NOTCH1
NOTCH2 PDGFB PDGFA

positive  regulation  of
MAPK cascade; positive
regulation of phosphatidyli-
nositol 3-kinase signaling

TD  genes
regulated)

(down-

PARD3 FOXC1 NUMB FGFR1
FOXH1 TUBB TGFB1 GATA4
SIRPA FGF8 FGF10 BMPR1A
TGFBR2 BMP2 FZD7 PTX1
FZD1 ACVRI1B DKK1 FZD4
ENG BMPR2 EVX1 ALCAM
ACVR2A EOMES EPCAM GSC
GATA6 RPL35A PTX2

negative regulation of car-
diac muscle cell differentia-
tion; negative regulation of
cell fate commitment

M-state IH genes

TBX20 KDR WNT4 EMILIN2
TGFB2 PTCH1 INHBA HAND2
BMP4 MYL4 SFRP1 PDGFRB
FZD2 HAND1 MSX1

anatomical structure forma-
tion involved in morpho-
genesis; heart morphogene-
sis; muscle structure devel-

opment
M-state MS genes MSX2 MYL3 GATA5 WNTI11 | cardiac muscle cell my-
ISL1 TBX2 oblast differentiation; reg-

ulation of transcription in-
volved in heart develop-
ment; cardioblast differen-
tiation; endocardial cush-
ion morphogenesis; outflow
tract septum morphogenesis

Supplementary Table 4: (Supplementary to the gene expression trend in Figure 4h of
main text) The list of MS, IH and TD genes in Pre-M to M transition of iPSC data.
The genes marked with red color are top-rank, significant genes used to calculate gene
expression trend in Figure 4h of main text. The selected GO terms for different groups

of genes are also displayed.
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Supplementary Fig. 8: Overall gene analysis toward the bifurcations into En/M states
of iPSC data. (a-top) The schematic illustration of the dynamical manifold during
bifurcations. (a-bottom left) The expression heat map of MS, IH and TD genes during
Pre-En to En transition. The positions of cells (horizontal axis) are aligned with the
schematic dynamical manifold. (a-bottom middle) The gene expression heat map within
the bifurcating PS state. The cells are arranged by transition cells toward En lineage
(left), stable PS cells(middle) and transition cells toward M lineage(right). The genes are
sorted to predict the different groups of cells. (a-bottom right) The expression heatmap of
MS, IH and TD genes during Pre-M to M transition. (b-c)Expression of selected PS bifur-
pred genes plotted in UMAP and MuTrans transition coordinates projection. Within
PS attractor, down-regulation of GATAG6 distinguishes the stable cells with bifurcating
cells. Up-regulation of MESP2 predicts the toward-Pre-M bifurcating cells, and down-
regualation of EMILIN2 predicts the toward-Pre-En bifurcating cells.
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The Myelopoiesis Dataset

The Myelopoiesis data analyzed in main text was from GSE70245, containing 382 cells
sequenced by Fluidigm C1 platform. For comparable analysis with labels in original
publication, we downloaded the 532 feature genes identified by ICGS from https://
static-content.springer.com/esm/art%3A10.1038%2Fnaturel19348/Medialbjects/
41586 2016 BFnaturel9348 MUESM464 ESM.xIsx as the input to MuTrans. We used
tSNE dimensional reduction to remove seven outlier cells. The data matrix is then log
transformed. The script for data processing can be downloaded at https://github.
com/cliffzhou92/MuTrans-release/blob/main/Data/myelopolesis_process.m.

The processed input gene expression matrix and script to reproduce all the supple-
mentary results for EMT data is also available at https://github.com/cliffzhou92/
MiTrans-release.

We displayed the dynamical system analysis results in Supplementary Fig. B and
dynamical manifold in Supplementary Fig. @M. For myelopoiesis dataset we used the
tSNE dimension reduction results as the input 2D embedding to construct transition
coordinates and the subsequent landscape. In Supplementary Fig. @0 (c-e), we com-
pared the discrepancy between MuTrans results and the original labels generated by
ICGS method in [39], and find the difference mainly stemmed from the transition cells
recognized by MuTrans. The ICGS clustering tends to assign transition cells into either
of the attractors during cell-fate switch.

In Supplementary Table B and Supplementary Fig. [, we provided the Transcen-
dental genes list during Multi-Lin to Gran transition as the supplementary to Figure 5c¢
of main text. The Transcendental results for HSPC to Meg transition was also displayed

in Supplementary Fig. [ and Supplementary Table B.
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Supplementary Fig. 9: Dynamical system analysis of myelopoiesis data by MuTrans. (a)
The rwTPMs constructed from cell-cell (left), cluster-cluster (middle) and cell-cluster
(right) resolutions. Note that while cluster-cluster resolution keeps the main block struc-
ture of original cell-cell resolution rwTPM, the cell-cluster resolution TPM recovers finer
details (illustrated by the red circles). (b) The obtained cell-cluster assignment (left),
cluster-cluster transition probability matrix (middle) and cell-cluster membership matrix
(right) through optimization, which jointly induce the optimal rwTPMs at cluster-cluster
and cell-cluster resolution in (a). (¢) The EPI (eigen-peak index) for this data. We ob-
serve an apparent peak at k = 10, which is the cluster number we choose in MuTrans for
this dataset. (d) The inferred transition paths from HSPC to gran or mono cell fates.

43



(a) (b)

A HSPCT A
HSPC2
Multi-lineage
® Meg
Eryth
MDP N
N mg:g-interm E ®e o
2 - .o 3
o
e g
£
[}
(6]
)
&,
% ‘.,
K
> >
tSNE1 Component 1
(c) (d)
HSPC1
® HSPC2
Meg ®
y, ® Enth o e ¢
\P’ i Multi-lin \9‘“ [ 1] ~
% e ® MDP ) @ o @™
o) Ly i i Moo 2 2L
) Y : ’I‘ql ® Gran D  §
':‘\ 1\‘-’—:'* Myel - ,‘)
o : G y o s
e -2 -~ - ~
wr D - 9
(e)

;_ 1 —; iFMuTrans
I . _ LI (hae an ICGS

Multi-Lin » Gran HSPC > Meg

Supplementary Fig. 10: Dynamical manifold analysis of myelopoiesis data. (a) The two-
dimensional embedding of single-cell data constructed from the eigen-space of weighted
rwTPMs, colored by MuTrans coarse-grained clusters. (b) The constructed transition co-
ordinates £ as the input to dynamical manifold, based on averaging the two-dimensional
embedding in (a) by membership matrix . (¢) The constructed dynamical manifold with
cells colored by their membership in different clusters, and transition cells in Multilin-
Gran and HSCP-Meg transition marked by dashed squares. (d) The dynamical manifold
with cells colored by the ICGS labels in original paper. (e) Comparison of MuTrans cell
label (colors displayed by cell membership in the clusters) and ICGS label in original
publication. The transition cells are marked with dashed squares. In ICGS clustering,
the transition cells are assigned into either of the attractors in cell-fate switch.
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Genes Group ‘ Genes Name

MultiLin-state MS genes | Car2 Ctla2b Mucl3 Slc22a3 Pitpncl Z{fp488 Vamph
Vezfl Mfsd2b Apoe

MultiLin-state IH genes | Slc45a3 Tgtp2 Angptl Zfp3612 Egrl Ctla2a Ptrf Rgsl
Smimb Zfp9 Jun Zfp65 Myctl Rbpl Cpad Olfr613
Gnbl Malat1 H2-Q4 Fos Gata2 A130077B15Rik Dpysl2
Duspl Fyb Gent2 Zfp36 Calerl Meisl Gprb6 Spns2
Gm17821 Samsnl Gm16702 Tmsb10 Tspanl3 Sytll
Ifitm3 Tmem176b Notch2 Tsc22d1 Gimap6 Serpina3g
Gatal Grk4 Pde4b Vmnlr58 Msi2 Klhl41 Tnfrsf10b
Ms4ab6c Ifitm1 Irf8 Fosb Itga2b Sox4 Cd34 Slamf8 [kz{2
Smcol Ctcfl Pan3

TD genes (up-regulated) | Ltb4rl Ltadh Ltf Lrgl Ly6cl Cfp Chd7 Len2 Cebpe
Ly6c2 Ceacaml Chil3 Tmem38b Lbp Tmemb3 Cd97
Ms4a3 Tmem2 Msrbl Mrgpra2b Chst12 Ly6i Mtl
Cd177 Klk14 Gsr Gstml Mpo Gsn Cedcl25 Camp
Mtusl Tmsb4x Chst1l3 Tmed3 Gpx3 Mpegl Arsb
C3 App Atp6ap2 Atp6vOc Hk3 Bzrapl Atp8b4 Aoah
Cldn15 B430306N03Rik Tifab Tmx4 Bid Gprl4l
B4galntl Aldh3bl Alasl Bd4galt6 Anxa3 Bazla Mo-
gat2 Agpat2 Manf Gpcl Afapl Hoxd11 Clec12a Kctd20
Adssll Tfec Mgst2 Ncaml Clecda2 Mapkl3 Ten2
Hp Ethel Eroll Actnl F10 Elane Tancl Mgstl Tn-
fsf13 Clecha F13al Ncfl Mapkapk3d Dstn Kcenip3
F630028010Rik Hsd11bl Syngr2 Csf2ra Abcal3 Mgl2
Dok3

Gran-state IH genes Plod3 Rhox8 G6pdx Nhsl2 Tuba8 Rasgrp2 Slc28a2
Soatl Prdx5 Rrm2 Pigr Surf4 Tyrobp Rps6kal Cyba
Igsf6 Pgd

Gran-state MS genes Itgh2 Sun2 Fcgr3d Ngp Rgee Pygl 4632428N05Rik Slpi
Pilra Glrx Papss2 Nrgl Synel Siglece Stom Dgat2 Phkb
Ncf4 Med21 Pnkp Plin3 Rps6ka2 Gatm Rab32 Ctsg
Id2 Gea 1700020L24Rik Tshr Trem3 Mefv Prssh7 Pg-
lyrpl Gfil Fgl2 Gas7 Ptgrl Itgam Fam49b Prtn3 Svip
Rhou Neul 4933440MO2Rik Unc93bl Mcempl Mcu
S100a8 Pxylpl Nucbh2 Far2 Pde2a Ptgsl AB124611
Semada Dmkn S100a9 Hvenl Gda GOs2 Sle40al Praml
Prkcb Galns Pilrb2 Trim45 Fam160a2 Tom1 Fam101b
Olrl Mgam Pilrbl Cybb Vcaml Sgms2 Proml Fcnb
1100001G20Rik

Supplementary Table 5: (Supplementary to Supplementary Fig. [ and Figure 5c of
main text.) The list of MS, IH and TD genes in Multi-lineage to Gran transition of
myelopoiesis data, with the orders of appearance corresponding to the positions from
top to bottom in the figure.The genes marked with red color are top genes used to
calculate gene expression trend in Figure 5c¢ of main text.
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Supplementary Fig. 12: Transcendental results of myelopoiesis data for HSPC to Meg
cell transitions.
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Genes Group ‘ Genes Name

HSPC-state MS genes Mnl Mgst1l Prtn3 Pan3 Flt3 Lbp Ifitm1

HSPC-state TH genes Mgst2 Gfil Gstm1l Gvinl Kdm6b Selplg H2-Q4 Tcf712
Widel7 Gm&8979 Ctss Gimapl Gm4070 BC035044 Dntt
Ikztf2 Mecom Sox4 Notch2 Cd34 Gpcl Zfp608 Ctefl
Gent2 Arglul

TD genes (up-regulated) | Nrgn Smim5 Slpi Pbx1 Slc22a3 Tmsb4x Angptl Slcl4al
Ms4a3d Gatal Arrb2 Pdia6

TD genes (down-regulated) | HIf Gimap6 Gm1966 Emb Dusp2 Gml17821 Rtp4
Samsnl Eltdl Gm16287 Gm17757

Meg-state IH genes Fyb Elane Cer2 Zfpm1 Gplba Vezfl Gfilb [cam4 Treml1l
Carl Ctsg F13al F2rl2 Cst7 Pf4 F2r Itga2b Mfsd2b
Rab27b

Meg-state MS genes Ly6c2 Tuba8 Sdpr Sdf211

Supplementary Table 6: (Supplementary to Supplementary Fig. T2.) The list of MS,
IH and TD genes in HSPC to Meg transition of myelopoiesis data, with the orders of
appearance corresponding to the positions from top to bottom in the figure.
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The Lymphoid Lineage Differentiation Dataset

The lymphoid lineage differentiation dataset analyzed in main text is from GSE100037
with cells sequenced by CEL-Seq 2 platform. For quality control, we kept 2,018 cells
with more than 200 genes expressed and 2000 total UMI counts. Prior to MuTrans
analysis, we selected 2000 highly variable genes as the input using vst method in Seurat
pipeline. The processed input gene expression matrix and script to reproduce all the
supplementary results for EMT data is available at https://github.com/cliffzhou92/
MuTrans-release.

In Supplementary Fig. I3 we showed the supplementary figures in MuTrans analysis
of the dataset. Of note, from the two-dimension embedding and the dynamical manifold,
we observed that two streams of transition cells can become pDCs — one stream from
lymphoid progenitors and one from the multi-potent progenitor cells that can also give
rise to B cells. For the Pre-B cells, we also witnessed three sources of transition cells: from
Pro-B cells, lymphoid progenitors or multi-potent progenitor cells shared with pDCs. We
listed the gene analysis result in the Pro-B to Pre-B transition in Supplementary Table

[a.
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Supplementary Fig. 13: MuTrans results for the lymphoid lineage differentiation data.
(a) Sorted eigenvalues of cell-cell resolution rwTPM.(b)The rwTPMs constructed from
cell-cell (left), cluster-cluster (middle) and cell-cluster (right) resolutions. Note that
while cluster-cluster resolution keeps the main block structure of original cell-cell reso-
lution rwTPM, the cell-cluster resolution TPM recovers finer details. (c¢) The obtained
cell-cluster assignment (left), cluster-cluster transition probability matrix (middle) and
cell-cluster membership matrix (right) through optimization, which jointly induce the
optimal rwTPMs at cluster-cluster and cell-cluster resolution in (a). (d) The constructed
transition coordinates £ as the input to dynamical manifold, based on averaging the two-
dimensional embedding in (a) by membership matrix . (e) The constructed dynamical
manifold with cells colored by their membership in different clusters.

20



Genes Group

Genes Name

Pro-B-state MS genes

Gm37324 RP23-341H2 Gm43238 Gm4d4443 Ferla
Cacnale Bach2 Hvenl Gml17555 Gm43294 Gm10719
Ikz£f3 Gm42870 Gm26905 Gm10715 Gm10717 Gm21833
Gm13936 Gm31258 Gm21962 Gml7615 Gm29055
Igke Gm37158 Gm21738 Gm37746 F830016B08Rik
Gm37900 Filipll A430073D23Rik Gm42445 Msdal
4930426D05Rik Pim2 Iglc2 Gm37954 Steap4d Gm26870
Atplbl Faml29c¢ Gm21750 Ciita KIf2 Gm10660
Gm44044 Scdl Gm38142 Prkcg A530030E21Rik Ighm
Trib2 Iglvl Nfkbia Gm10800 Pou2f2 Gimap3 Gm37404
Cpm Iglecl Cd74 Gm37951 Bhlhe41 H2-Ob Mme Cd83
Cd2 Gm42519 Gm42653 Gm37403 Gm42513 Lynxl
Ragl Ly6d Cd79b Siglecg Gm37903 Rasgrpl Bankl
Gm37761 Mfhasl Relb Spib Nidl Sertad4 AI838599
Gm43445 H2-Aa Col5a3 Adm Ahnak Gm4117 Cdb55
Krt222 Cybb Gm43305 Blk Cxcrb5 Femr H2-Ebl Cer7
Gimap4 Hck Ifi30

Pro-B-state IH genes

Gm37750 Arl5¢c Tyrobp Ublepl Gnas Cyp4fl8 H2-
DMbl Gm37234 Dnasell3 Rgs2 Ncfl Dok3 Cd19
Grap BC094916 Nkain3 Slfn2 Plscrl Edem3 KIf3
KIhl14 Gm26300 Tifa Gbpl0 Gas7 Ctss Gm15987 Ltb
Gm26740 Ctsh Apba2 Irf8 Chst3 Mid1l Gm44231 Ctsb
Ly86 Tnfrsf13c Nfkbiz Seppl Adgreb Btla Rassf4 Ser-
pinbla Xcrl Cmah Foxol RP24-309B14.1 Kmo Cea-
caml Gm44189 Cd180 Irf4 Clec2d Itgam Atp6v0al Psap
Maf Lipc Etsl Smtnl2 Grb7 RP24-3621L9 Ighd Tmsh4x
Gm9844
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TD genes (up-regulated)

Depdcla Dek Dhfr Ddx21 Dkcl Detppl Dlg2 Dbf4
Cycs Dlgapb Cycl Dntt Dpy30 Drc7 Cripl Dtl Cntln
Mcml10 Mem2 Dtymk Mbd2 Mcm3 Mb21d1l Mcem4
Mcmb Mcem6 Mem7 Cnnd Mki67 Melk Mns1 Mis18bpl
Mif Mogs Mad2l1 Mrpl12 Cmc2 Mrto4 Dut Lyar Mtfr2
Clspn Dynlll Mthfdl Mxd3 E2f2 Cks2 Mybbpla E2f8
Ckslb Mybl2 Ltadh Myll0 Ckapb Ect2 Lrre59 Nadk2
Ckap2l Nasp Lockd Ckap2 Ncapd2 Eifsa Ncapd3 Empl
Cit Lmnbl Ncapg Ncapg2 Eprs Ncaph Ncl Hmbs
Esco2 Hjurp Hist2h2aal Hmgbl Ligl Ndcl Hist1h4i
Hmgb2 Wdhdl Vprebl Vim Ybxl Uspl Urod Ybx3
Ung Ndc80 Hist1h2bc Ydjc Uhrfl Hmgb3 Espll Ube2s
Ube2c Zfp367 Ubacl Neil3 Cepb5 Histlh2ab Zwilch
Nek2 Hmgn2 Tyms Lgalsl Sapcd2 Rrml Etfl Rrm2
Rps271 Nhp2 Rpa2 Cenf Rpal Hmmr Ccne2 Histlhle
Txnll Ccnb2 Ccnel Cend3 Cenbl Nmel Cenpw Set
Rgce Bceatl Ccna2 Aurkb Bfsp2 Sgoll Noal Aurka
Rexo2 Tubbb Cede34 Sgol2a Aunip Histlhlb Cedcl8
Reep4 Ldha Birc5 Hnrnpab Atpifl Nolel Cbx5 Shebpl
Reccl Tubb4b Casch Nopl0O Blm Atp5g3 Shmtl Cenpp
Cdc20 Bok Carnmt1 Hirip3 Bola3 Car2 Atpbgl Cdc25¢
Exol Nopb6 Brcal Tubada Shmt2 Calr Hsp90aal Cad
Brca2 Atpbb Cacybp Rangapl Kpna2 C330027C09Rik
Clgbp Bublb Npm1 Bubl Cdc34 Cenpn Bripl Tubalc
Atplb3 Ranbpl Hells Skal Ezh2 Ntbdc2 Cde4b Tubala
Hspdl Cenpm Slbp
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Pre-B-state IH genes Stag3d Odcl Knstrn Ighg2b Tomm40 Cenpa Hdgf
Gm4950 Psmb3 Ppat Tommb5 Oat Assl Ssx2ip Iglll
Arntl Acslb Prdx6 Cdtl Idh3a Pmfl Psrcl Gm11273
Glol Tmem14c Anxal Pde2a Fabpb Gpsm2 Cdc6 Prdx2
Pnp2 Nucksl Ap3sl Hlfx Slcl6al Srm Tifab Hspel
Ppia Gm10053 Fenl Tmem97 Pitrm1 Kif2¢ Alpl Fkbp4
Sle43al Polr2f Ifrd2 Slc43a3 Fam83d 5730488 B01Rik
Anklel Cdca7 Gnl3 Fam111a I17r Trip13 Adgrg3 Cdkn3
Cenpe Glrxb Ppmlg Tmem119 Tpil Gm6793 Phb2
3110082I17Rik Nudcd2 Gelm Sle20al Adk Iggap3 Tpm4
Pgam1 Pa2g4 H2afz Trim59 Foxml Slc25ab Kntcl Ak2
Gm&225 Cdca3 Orc6 Rad5lapl Plk4 AI506816 Anp32e
Pgp Cdkn2d Pnp Psatl

Pre-B-state MS genes | Cdca8 Gmb611 Tipin Prkar2b Prrll Atad5 Arhgef39
Kif4 Arl6ipl Cdk6 Fut8 Rad51 Pcna Arhgapl9
Gm10184 Gmnn Arhgaplla Gsr Spc24 Tpx2 H2afx
Cdknla Nuf2 Tcf19 Polal Gas213 Ran Clgn Gins2 Gsptl
Suv39hl Gfra2 Atic Plkl Racgapl Stmnl Kif20b Atad2
H2afy Pole Pold2 Pcna-ps2 Tacc3 Pifl Kifl5 Cenpi
Kif14 Cdcab Aspm 2810417H13Rik Tkl Cenpk Cenpf
Kif1l Incenp Smc4 Nup85 Prcl Gm26917 Kif22 Kif18a
Cenpl Stil Asflb Kifl8b Radl8 Smc2 G2e3 Cenph
Nusapl Smtn Spagb Troap Kif23 Fam64a Anln Cdca2
Pbk Top2a Cdkl Cdkn2c¢ Ttk Fbxo5 Spc25

Supplementary Table 7: (Supplementary to Figure 5d of main text) The list of MS, IH
and TD genes in Pro-B to Pre-B transition of lymphoid lineage data.The genes marked
with red color are top genes used to calculate gene expression trend in Figure 5d of main
text.
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The Human HSC Differentiation Dataset

The human HSC differentiation dataset analyzed in main text is from the link https://
github.com/dpeerlab/Palantir/blob/master/data/marrow_sample_scseq_counts.
csv.gz with 4,118 cells sequenced by 10X platform. Prior to MuTrans analysis, we se-
lected 2000 highly variable genes as the input using vst method in Seurat pipeline. The
processed input gene expression matrix after filtering and script to reproduce all the
supplementary results for HSC data is available at https://github.com/cliffzhou92/
MuTrans-release. In Supplementary Fig. 04 we showed the supplementary figures
in MuTrans analysis of the dataset. We also include the usage of python package of
MuTrans in another example Jupyter notebook https://github.com/cliffzhou92/
MuTrans-release/blob/main/Example/example_bone_marrow-new.ipynb, especially on
the DECLARE pre-processing module to speedup the analysis of large-scale data. For
this data, the tSNE dimension reduction plot was computed with 20 principle compo-

nents in Scanpy.
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Supplementary Fig. 14: MuTrans results for the human HSC differentiation data.(a)The
rwTPMs constructed from cell-cell (left), cluster-cluster (middle) and cell-cluster (right)
resolutions. Note that while cluster-cluster resolution keeps the main block structure
of original cell-cell resolution rwTPM, the cell-cluster resolution TPM recovers finer
details. (b) The obtained cell-cluster assignment (left), cluster-cluster transition proba-
bility matrix (middle) and cell-cluster membership matrix (right) through optimization,
which jointly induce the optimal rwTPMs at cluster-cluster and cell-cluster resolution
in (a). (¢) The constructed transition coordinates £ as the input to dynamical manifold,
based on averaging the two-dimensional embedding in (a) by membership matrix. (d)
The constructed dynamical manifold with cells colored by their membership in different
clusters.
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The Blood Differentiation Dataset in Mouse Gastrulation

The dataset analyzed in main text is from the github repository https://github.com/
MarioniLab/EmbryoTimecourse2018. The input expression matrix to MuTrans con-
tains 15,875 single cells sequenced by 10X and the first 50 PCs in the blood system
development. The jupyter notebook to reproduce the figures in main text is available
at https://github.com/cliffzhou92/MuTrans-release. For this dataset, the UMAP

was plotted by setting 10 neighbors with Scanpy.
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Supplementary Note 4: Methods Comparison Details

MuTrans provides the functions to identify and characterize transition cells from single-
cell transcriptome data, and also resolves the progressing of cell-fate transitions in com-
plex lineages. Here we compare MuTrans with other existing approaches (such as pseu-
dotime ordering and cell-fate bias probability) for the detection of transition cells, and

capacity to unravel complex cell lineages during differentiation.

Scrutinizing Bifurcation Dynamics in iPSC Dataset

As shown in Supplementary Fig. [Ha, in this dataset, MuTrans identified the cell-
fate bifurcation dynamics toward En and M state (collected at day3) via two precursor
states (denoted as Pre-En and Pre-M, collected at day 2 and 2.5), which are associated
with streams of transition cells, as well as a minor early bifurcation into ectoderm. The
transition process on dynamical manifold agrees with the trend of experimental collection
time. The results are consistent with the iPSC differentiation process revealed by original
paper.

We applied the existing lineage inference algorithms with the parameters and results

described below.

e For Monocle 3, all the parameters are set as default. The method does not identify
the cell-fate bifurcation dynamics into M and En (Supplementary Fig. [EHb), and

ordering M cells prior to the En cells linearly.

e For DPT, the neighbor parameter is set as 50. The method does not link the
precursor states to mature states in the low dimension manifold (Supplementary

Fig. [Hc), and the computed pseudotime of En is also large than M.

e For PAGA, the graph layout is based on the refinement of diffusion map with max
iteration number 50. The method infers the bifurcation lineage, suggesting the
potential transitions between precursor and mature states, or even between the

mature En and M populations (Supplementary Fig. [3d).

e For RacelD3 and StemID2, the parameters in clustering are set as default and in
lineage tree inference and projection, the number of randomization for cell positions
is set as 500 and p-value cut-off for link is set as 0.1. The projected lineage tree

generated by RacelD3 and StemID2 implies the transition cells between precursor
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and mature states, however the spanning tree does not show the bifurcation lineage

(Supplementary Fig. [He).

For VarID, the number of principle components used is 50, the number of nearest
neighbor is set as 50 and the weight alpha value is set as 0.1. All other parameters
are set as default. The cluster-cluster transition probability indicated by VarID
resolves the bifurcation dynamics (Supplementary Fig. [3f).

For FatelD, the clustering is based on VarID results and the targeting fates are set
as En and M respectively. All other parameters are set as default. As shown in
Supplementary Fig. g , FateID seems not produce the expected differentiation

routes.

For Palantir, the number of diffusion component used is 20 and the number of
waypoints is set as 100. It does not detect branches in this dataset, while its low-
dimensional manifold indeed indicates the bifurcation dynamics. Palantir manifold

suggests the continuous transition from PS to precursor states.

For PBA| the two sink cell fates are picked randomly in M or En states respectively.
To compute mean first passage time (mfpt), we select the initial cell randomly
from epiblast state. Due to lack of prior knowledge, all the cell growth rates are
set as zero. All other parameters are set as default. The cell-fate probabilities on
individual cell level can capture transition cells from Pre-M or Pre-En states to M
or En states, while the distinctions of fates between Pre-En and Pre-M attractors
are not very obvious. The mean first passage time (MFPT) agrees with overall

trend of true collection time.
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Supplementary Fig. 15: Comparison of MuTrans with other lineage inference methods
in iPSC data. All methods take the same pre-processed data matrix as input. (a)
The most probable path tree (MPPT left), dynamical manifold colored with MuTrans
clusters (middle) and experimental collection time (right). (b) Lineage inference and
pseudotime ordering (left) by Monocle 3, shown on the low dimensional reduction of
umap. (c) Lineage inference and pseudotime ordering by diffusion pseudotime (DPT),
shown on the low dimensional reduction of diffusion map. (d) Graph representation of
cells and clusters (left) and DPT (right) by PAGA. The graph representation is based on
the refinement of diffusion map, and clustering is done by Louvain method. (e) Lineage
inference and projection by RacelD3 and StemID2. The colors represents clustering
results by RacelD3, and the spanning tree (black lines) and low-dimension projection
are calculated by StemID2. (f) Lineage inference by the probability graph of VarlD.
The colors represents clustering results by VarlD, and the thickness of lines represents
the value of transition probability. (g) Lineage inference by FatelD plotted on tSNE
dimension reduction. The colors represents clustering results by VarlD, and the lines
represent the inferred routes targeted at En or M. (h) Low dimension manifold and
pseudotime obtained from Palantir. (i) The cell fate probability toward En or M states
and the mean first passage time (mfpt) from stem cells, calculated by PBA.
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Dissecting Complex Lineage in Myelopoiesis Dataset

In this dataset, MuTrans revealed complex branching dynamics mediated by the hub
multi-lineage basin, where multiple streams of transition cells depart (Supplementary

Fig. [@a).

e For Monocle 3, all the parameters are set as default. The method seems not
identify the bifurcations into Gran/Mono or Eryth/Meg lineages. Also the lineage
tree suggests the transition from multi-lineage cells to Gran/Mono lineages is very

sharp, with hardly any transition cells exists (Supplementary Fig. [Gb).

e For DPT, the neighbor parameter is set as 10. The low dimensional manifold or

pseudo time does not resolve the bifurcations (Supplementary Fig. [Bc).

e For PAGA, the graph layout is based on the refinement of diffusion map with max
iteration number 50. The method highlights multi-lineage state as the hub in cell

lineage and resolves the overall bifurcations (Supplementary Fig. I8d).

e For RacelD3 and StemID2, the parameters in clustering are set as default and in
lineage tree inference and projection, the number of randomization for cell positions
is set as 100 and p-value cut-off for link is set as 0.1. The projected lineage
tree suggests transition cells exist between multi-lineage cells and other cell states

(Supplementary Fig. [Be).

e For VarlID, the number of principle components used is 100, the number of nearest
neighbor is set as 10 and the weight alpha value is set as 10. VarID can depict the
overall cell lineage (Supplementary Fig. @Bf).

e For FatelD, the clustering is based on VarID results and the targeting fates are set
as myeolocyte and monocyte respectively. All other parameters are set as default.
FatelD identifies the differentiation route toward Mono lineage (Supplementary

Fig. [@g).

e For Palantir, the number of diffusion component used is 10 and the number of
waypoints is set as 70. It does not detect branches in this dataset by default
setting, and its low-dimensional manifold separates multi-lineage cells into two

disconnected regions (Supplementary Fig. [Gh).
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Supplementary Fig. 16: Comparison of MuTrans with other lineage inference methods
in myelopoiesis data. All methods take the same pre-processed data matrix as input.
(a) The most probable path (left), dynamical manifold colored with MuTrans clusters
(middle) and labels in original publication (right). (b) Lineage inference and pseudotime
ordering (left) by Monocle 3, shown on the low dimensional reduction of umap. (c)
Lineage inference and pseudotime ordering by diffusion pseudotime (DPT), shown on
the low dimensional reduction of diffusion map. (d) Graph representation of cells and
clusters (left) and DPT (right) by PAGA. The graph representation is based on the
refinement of diffusion map, and clustering is done by Louvain method. (e) Lineage
inference and projection by RacelD3 and StemID2. The colors represents clustering
results by RacelD3, and the spanning tree (black lines) and low-dimension projection
are calculated by StemID2. (f) Lineage inference by the probability graph of VarlD.
The colors represents clustering results by VarlD, and the thickness of lines represents
the value of transition probability. (g) Lineage inference by FatelD plotted on tSNE
dimension reduction. The colors represents clustering results by VarlD, and the lines
represent the inferred routes targeted at Gran or Mono. (h) Low dimension manifold
and pseudotime obtained from Palantir.
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Probing Transition Cells in Transitions toward En/M States of
iPSC Dataset

To show the capability of MuTrans to quantitatively distinguish between stable and
transition cells, in Supplementary Fig. @71 we compared with other ways to identify
transition cells in iPSC dataset based pseudotime or cell fate probability. In both Pre-M
to M and Pre-En to En transitions, MuTrans identify the transition cells that are well-
characterized by the expression dynamics of TD, TH and MS genes (Figure 4 in main
text and Supplementary Table @). Here DPT and Monocle 3 pseudotime during the
processes witness the sharp switch-like transitions, resulting in very few transition cells
to be detected between attractors. We also observed that the duration of pseudotime
spent in stable cells is significantly shorter than that in transition cells (indicated by the
Y-label in Supplementary Fig. 7). This is because DPT and Monocle 3 pseudotime is
defined based on manifold distance in low dimensional space instead of cell transition
dynamics. In low dimensional space, the stable cells are crowded together, while the
transition cells are on the paths connecting different clusters of cells. Thus the manifold
distances within stable cells are shorter than the distance along the transition path.
Hence, wide-applied pseudotime might not serve as the natural tool to inspect transition
cells in this dataset. We also compared the ordering of cells produced by Fate ID cell
fate probability and Palantir pseudo time. We found that the two measures change
continuously during the transition, lacking resolutions to distinguish between stable and

transition cells in the interested cell-fate switch.
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Supplementary Fig. 17: Comparison of MuTrans transition cell score (TCS), Monocle
3 pseudotime, diffusion pseudotime(DPT), FateID fate bias probability and Palantir
pseudotime (from top to bottom) to detect transition cells in (a) Pre-En to En and (b)
Pre-M to M transition processes of iPSC data. The y-axis denotes the different measures
and the x-axis represents the cells ordered by the corresponding measures.Green box
indicates the position of MuTrans identified transition cells.

65



MuTrans as a Pseudotime Method

The main functions of MuTrans focus on probing the transition cells between stable states
instead of calculating the pseudotime. However, based on the transition cell analysis of

MuTrans, we can also naturally define a uniform pseudotime ordering,

K
PT(x) = pr()Ly,
k=1
where L;, is the distance between state S, and root state in the inferred lineage. As shown
in Supplementary Table B, measured by the correlation with experimental collection
time of iPSC dataset, the pseudotime ordering generated by MuTrans yields similar
results with diffusion pseudotime (DPT) and has the larger correlation compared with

the pseudotime of Palantir or PBA.

Methods | Corr(Pearson) | Corr(Kendall) | Corr(Spearman)
MuTrans 0.94 0.80 0.93

DPT 0.94 0.84 0.95
Palantir 0.87 0.55 0.72

PBA 0.69 0.57 0.73

Supplementary Table 8: Comparison of MuTrans with DPT and Palantir to calculate
the pseudotime ordering in iPSC data.
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