
Open Access This file is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and 
reproduction in any medium or format, as long as you give appropriate credit to 

the original author(s) and the source, provide a link to the Creative Commons license, and indicate if 
changes were made. In the cases where the authors are anonymous, such as is the case for the reports of 
anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear 
attribution to the source work.  The images or other third party material in this file are included in the 
article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is 
not included in the article’s Creative Commons license and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. 

Peer Review File

Dissecting transition cells from single-cell transcriptome data 
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Editorial Note: This manuscript has been previously reviewed at another journal that is 
not operating a transparent peer review scheme. This document only contains reviewer 
comments and rebuttal letters for versions considered at Nature Communications.

REVIEWER COMMENTS

Reviewer #2 (Remarks to the Author):

The authors have satisfactorily addressed my comments from my previous reviews and I believe 
the clarifications and additions for scalability, this manuscript is suitable for publication in Nature 
Communications.

Reviewer #3 (Remarks to the Author):

1. SUMMARY

In their manuscript "Dissecting Transition Cells....", Zhou et al propose a new approach for 
analyzing the dynamics of single cell gene expression (transcriptome state) from static scRNAseq 
data. The authors present a method to identify “Transition Cells” – cell that are in the state of 
transitioning between high-dimensional attractor states. Their model is rooted in stochastic 
differential equations (overdamped Langevin equation, OLE) that describes the dynamics of cell 
state transition. They establish a connection between the SDE and the nearest neighbor graph of 
cells in scRNAseq (as shown by Lafon and Coifman [11]). They use the transition matrix estimated 
from the NN-graph of the single-cell data as a proxy for SDE dynamics.

The authors’ main contribution in the method for identifying “transition cells” is the coarse-graining 
the dynamics from cell-cell (actually, transcriptional state - transcriptional state) dynamics to 
attractor-attractor (cluster-cluster) dynamics. In fact, the authors assume that the true global 
dynamics are governed by "coarse" attractor-attractor dynamics and local within-attractor 
dynamics and the observed finer-grained cell-cell transition process is a consequence of this 
system.
In this spirit, the author fit the coarse model to the observed cell-cell transitions (thereby 
determining attractor locations and attractor transition probabilities).

From this fitted model, various dynamics quantities of interest, MPFT, MPPT, and TCS are derived, 
on the basis of which the transition cells are determined. Then genes expressed during the 
transition (based on associated expression can be extracted.

In the remainder of the manuscript the authors demonstrate their method on various scRNAseq 
datasets and also compare the results with existing ad hoc algorithms, such as those that compute 
a pseudotime, etc. to identify transition cells.

Finally, I must also say: Despite the theory used, this work is not a rigorous evaluation of the 
question whether cell fate behavior revealed by single-cell complies with a fundamental theory. Yet 
it is more than the oft observed loosely theory-inspired approach. The theory plays a substantial 
role in the motivation of the method, but not as much as in the epistemological ideal of 
experimental verification of a theory.

=========================================================
2. GENERAL REMARKS

I am most delighted to see an approach that analyzes scRNAseq data in terms of theoretical first 
principles of physics/dynamical systems. This is a refreshing departure from the current flood of 
ad-hoc heuristic methods that lack theoretical justification and are based on some hand-waving 
model, as are the vast majority of single-cell transcriptome anlaysis methods.
[ Unfortunately, the authors do not make this clear upfront to differentiate themselves and only 
calls the latter “intuitive” approaches in the discussion.]



The method is sufficiently well described, but relies too much on details presented in the Methods 
section and even worse in the Supplement. The main text alone is not sufficient to understand the 
overall idea nor the complex implementation (epistemology of the overall framework of having a 
theory and linking scRNAseq data to the theoretical principles).

A strength is also that the authors made the code and datasets available online, which allowed me 
to check and analyze a few things myself.
The nice attempt to ground the work on a theoretical foundation makes this work stand out from 
among all the other computer science/statistics driven, ad hoc, heuristic and often rather 
pedestrian approaches. Nevertheless, this work by necessity (insufficient data, general lack of 
knowledge of system equations in biology) and thus, understandably, still had to employ a lot of 
ad hoc heuristics in the data preprocessing to connect the theory to the data.

Therefore, in evaluating the strength of this ms. one has to divide the assessment of quality of the 
innovation into two parts: (A) THE SCIENTIFIC THEORY: Is the grounding on first principles of 
non-equilibrium state transitions “correct” (the equation ....)? and (B) THE DATA ANALYTICS: Once 
we accepted the theoretical foundation, is the heuristics in connecting the theory to the data,, 
given all imperfection of experimental reality, appropriate? Moreover, in (C) I will comment on 
specific points in the application of the new method to published data sets .

=========================================================
3. SPECIFIC CONCERNS

(A) SCIENTIFIC THEORY: <sorry, symbols got messed up in this textbox...>
----------------------

A1. As said, it is truly refreshing to see a single-cell RNAseq analysis method that is motivated by 
scientific first principle: The stochastic non-linear dynamical and non-equilibrium systems 
framework. This affords this work a substantial strength and differentiation from all the other 
single-cell transcriptomics papers that (with a few notable exceptions) employ ad hoc 
computational/statistical heuristics and clever algorithmic hacks. The grand question here is: Is 
the assumption that allowed the use of the theory correct?
I have some doubts– but the authors’ assumption is also a profound proposition that at least need 
careful introduction, justification, and if possible, even evaluation – none of which is provided.
Specifically, the authors assume a gradient system, thermodynamic equilibrium in which detailed 
balance is satisfied:
They start, without explicit motivation, with the premise:
dX = -grad(U(x)) dt + noise. (where noise is sqrt(2epsilon)*dW) )

Accordingly, they assume delta(U) to be related to the transition rate via Kramer’s theory; and 
assume that the probability distribution is related to U via Boltzmann-Gibbs.
This is already much assumed here. It is an approximation, albeit it may be a good one, but the 
author must be explicit about all this.
Thus, the authors could have started more generally with the dynamical systems description where 
the (overdamped) driving force is not a gradient of a potential. Then we have instead:
dX=F(x) dt + noise.
Then, one can assume that F(x) has a component that is a gradient field of some potential, V(x):
F(x)=-grad(V(x)) + f(x).
Note that V(x) is not the same as U(x) as used by the authors, but may approximate it (e.g. see 
PMID: 22933187)
If [grad(V(x)), f(x)]=0, then and only then is V(x) related to the transition rate for the transition 
xi xj via "P(x_i x_j )=exp (- V/ )" – according to Freidlin-Wentzell.

the STEADY-STATE probability 
(x) via the Boltzmann: -ln(U(x)) = P(X).
In other words, the authors assume detailed balance and thermodynamic equilibrium and steady-
state distribution (of cells).
Living systems are open, far-from thermodynamic equilibrium systems that exhibit multiple non-



equilibrium stable stead-states (“attractors”). For the underlying molecular processes, i.e. at the 
“microscopic” level, detailed balance is violated.
Thus, in non- overcome for attractor 
transition, is not the same as that determined by the probability density (Boltzmann), which is for 
steady-state and thermal noise, and is not for the Freidlin-Wentzell-quasi-potential for large 
perturbation-driven transitions not necessarily in steady-state. Thus, it seems that the authors 
also tacitly collapse the notion of non-equilibrium fluctuations, such as random bursts in gene 
expression (“gene expression noise”) with thermal noise.

Now to be scholarly generous one could argue in support of the authors’ assumption of a gradient 
system with detailed balance: For, one can find for some non-chaotic far-from equilibrium systems 
that |grad(V(x))| >> f(x). How generic this is in living systems, we do not know. Then one can 
assume U
region. (see: PMID: 32275714 )

So here is an intriguing twist: It could well be that the “multiscale approach” takes care of the 
authors’ assumptions. Since quasi-stationary stable states in far-from equilibrium systems, while 
detailed balance is violated at the microscopic scale, it can be is recovered at a larger 
(“mesoscopic”) scale. However, I doubt that this is the reason for the authors multi-scale 
approach, at least they do not elaborate. It is not at all clear how to frame single-cell state 
dynamics with fluctuating cell state (gene expression configuration) in terms of micro and 
mesoscale, so as to justify recovery of detailed balance.

In brief, the authors make rather big (related) assumptions without sufficient justification: (1) 
detailed balance satisfied; (2) potential differences (barrier heights) from Boltzmann STEADY-
STATE probability distribution determines transition probability. BUT The realty is: The 
DEVELOPING cell population in many of the examples clearly are not in NOT in steady state. And 
even in steady-state, since we have thermodynamic non-equilibrium, microscopically, detailed 
balance is violated.

The authors' method, clearly “works” as evidenced by their examples – however approximately 
(there is no benchmark – see below). Therefore, continuing with intellectual generosity here, 
which I think is appropriate in the service of scientific progress, we can accept the authors’ 
assumptions.
--> But at the very least the authors must explicitly state the assumptions (declaring them as 
such) and succinctly and clearly also articulate upfront the possible justification for their 
assumptions, etc... This would much strengthen the ms.

A2. In the same vein, a manifestation of the authors’ subliminal assumption of classical 
thermodynamics, is their use of the term “METASTABLE state” to describe cell state attractors. 
This is confusing! In physics/chemistry Metastability implies that thermodynamic equilibrium is 
only prevented from being reached because of kinetic constraints. Entire living organism can be 
considered a metastable state (see theories of life as anti-catalysis etc). This reveals that the 
authors think in categories of classical thermodynamics. We have to be more precise here and 
operate with concepts independent of classical thermodynamics, but from DYNAMICAL SYSTEMS 
theory – that in a first approximation is independent of the former. Herein cell types have long 
been considered “attractors” (or “attractor states”). Rene Thom and Steve Small introduce this 
term in the late 60s – and we should stick to it and not use the term “metastable” to describe 
attractors in dynamical systems. Another reason is that it is confusing that the term “metastable” 
in medicine and biology has a different meaning: “Metastable” is often used by practitioners to 
indicate a shallow attractor, or even, an instable steady-state – that is, a configuration that while 
stationary, is sensitive to perturbations.

(B) THE COMPUTATIONAL APPLICATION OF THE THEORY TO scRNA-SEQ DATA
------------------------------------------------------------------
Clearly at this second level of novelty of this ms, there are many gaps, but most are due ti the 
intrinsic limitations of biological experimentation, thus generic to the field. Indeed in connecting 
theory with real-world data, even a theory-based paper must admit heuristic approaches, ad hoc 
assumptions... like the flurry of non-theory based computational approaches that we have seen in 



the past years. Here one can have many options for cleaning the data and implementing particualr 
algorithms, and the actual intrinsic merit is hard to establish – since the benchmark is often just: 
what works, works. The burden of demonstrating merit of a choice is therefore in the rigor in the 
latter step. Overall I found the authors’ choices throughout reasonable, but there are a series 
weaknesses that can be addressed.

B1. First and foremost, in the cell clustering, one must a priori decide on a number K of metastable 
states in the dataset. The authors use the "Eigen-Peak Index" as a criteria. (i) Is this a well-
established quantity? I'm only familiar with the "eigengap" from spectral clustering. (ii) Looking at 
the eigen-peak index plots for the various datasets in the paper, it is apparent that the choice of 
clusters is far from clear/obvious. How robust are the results with respect to the number of 
clusters chosen, i.e. if one chooses smaller K, does the algorithm just yield more coarse grained 
dynamics or qualitatively different results?

B2. It is hard to tell if the results make sense in light of the data, since one can fit any model to 
any data. While the statistical metrics of goodness-of-fit themselves have issues, some qualitative, 
commonly accepted analysis would be appreciated: Plot the found clusters on the UMAP. Plot some 
of the inferred MS/IH/TD genes projected unto the standard UMAP layout. Allow the reader to 
inspect such displays for plausibility. H is would strengthen confidence in the method.

B3. What is the purpose of the "dynamical manifold" (e.g. Fig2 b, Fig3c)? For visualization 
purposes I find it more confusing than helpful. These pseudo-3D plots, while attractive at first 
glance, don't convey much information. The transition path graphs (e.g. Fig. 5c) look more useful 
(keeping in mind that the whole thing is a forced 2D projection with several 
assumptions/simplifications as detailed in the Supplement)

B4. The authors compare their results to existing methods. However, it is very difficult to
determine if one method is "better" than the other, without any ground truth and benchmark 
motivated by it. The highlighted differences might be circumstantial without greater meaning. As a 
side-note: Many of the analyzed datasets have a hierarchical structure of states (developmental 
trees), and the authors explicitly use tree structures for path-finding etc. So their method has an 
obvious advantage on these datasets (by encoding the correct inductive bias for these datasets). 
Hence a better performance (in terms of the expected biology, tree-like attractor structure) is a 
priori expected – and this has nothing to do with the validation of the underlying theory of 
transition states. This caveat shold be addressed by reconfiguring the comparisons to make them 
“fair”.

B5. An obvious competing method is PBA (Weinreb et al), which is based on similar theory (SDEs, 
and "fitting" the SDE to the cell-cell neighbourhood graph). It would be instructive to compare 
results obtained by both methods (PBA being the more "raw" method, while MuTrans applies all 
that coarse graining).
In all, as said above, the methods theoretical foundation per se are important enough that I 
consider MuTrans worthwhile to use because of the rationale and not because it performs better 
than oter methods without a theoretical foundation. The comparison presented here to existing 
(rather ad hoc) methods is difficult, and at some point questionable.

C. SPECIFICS ON THE ANALYSIS OF THE VARIOUS DATA SETS
----------------------------------------------------------
Yet, to emore convincingly establish utility (not to say “correctness”) the method for identifying 
transition cells the application to datasets could be refined/revised, as detailed in the next 
sections. In general, here perhaps we have the situation of “less is more”: I suggest to rather 
focus on a few "high-quality" dataset (many cells, clear-cut biology) and analyze them thoroughly 
instead of a superficial analysis of many datasets.

C1. The toy model. Here the authors simulate a system that exhibits two stable states (in a certain 
parameter regime) and infer the underlying structure with their algorithm. This is the only dataset 
where a ground truth is available, but unfortunately the authors failed to recognize the opportunity 
to compare their results against this ground truth.
Several other things remain unclear:



- State transitions are induced by forcing an external parameter of the underlying SDE, i.e. the 
SDE is integrated (simulated) forward in time while slowly (?) changing the external parameter. 
This seems fundamentally different from a scenario where the parameter is fixed in the bistable 
regime, and the SDE solution jumps between the two stable states (triggered by noise). In 
particular this second scenario would allow for transitions in both directions (low->high, high-
>low), hence a more complicated setting for inference; the former scenario allows only one 
transition (easier for inference).
- How many data points (cells) are used here?
- How is the inference algorithm applied? For example, is the number of stable state $K$ fixed to 
$K=2$?
- Are the inferred quantities (transition rates etc) in agreement with the ground truth?

C2. EMT data. Here, the algorithm is applied to scRNAseq data of EMT. The author report three 
metastable states and analyze the genes involved in the transition process.
- A conventional display of the data (UMAP) would be helpful for this dataset.
- The number of clusters (K=3) is determined by the eigengap of the transition matrix. How robust 
is this? Standard algorithms (e.g. Louvain clustering) based on graph connectivity will yield far 
more clusters (~6 in case of the EMT data).
- What is this third metastable state (besides M and E)? The authors describe it as "low expression 
state". Has this been documented in the original publication of the data? Looking at the dataset 
briefly, to me it seems that these "cells" might either dead or lost most of their RNA content (less 
than 200 genes expressed). Moreover a flurry of recent publications, theoretical modeling (PMID: 
26258068) and experimental (PMID: 26020648 ) have postulated/shown additional intermediate 
states in EMT.

C3. IPSC differentiation induction. Applied to the IPS dataset, MuTrans detects 9 metastable states 
and infers transition paths between these states. The points raised above for the EMT dataset 
apply here to:
- UMAP display of the data, colored by clusters identified to offer the reader a sense of the clusters
- Looking at Figure S7d, the number of clusters $K=9$ seems almost arbitrary. There's an 
"apparent peak" also at k=4, k=7 etc... Furthermore, while the authors choose $K=9$, Figure S7c 
show 8 states!
- about these gene groups (MS/IH/TD): I would expect the "metastable genes" to be "cluster 
markers", i.e. either exclusively expressed in that particular metastable state, or at least show a 
sharp expression change between that metastable state and the neighboring states. However, this 
does not seem to be the case. For example, looking at the M-state and its MS genes (Suppl Table 
S6), MSX2 is expressed all over the place (except day0 and day 1 cells). GATA5 is expressed in 
both M and En states, same as ISL1. On the other hand clear marker genes (MYL4) are not listed 
as MS
- Figure S9, center plot: The distinction between "Stable PS markers" and "Pre-En" ("Pre-M") 
markers seems arbitrary: For example, GATA6 is deemed a PS-marker (although it is expressed in 
Pre-En and Pre-M cells), while BAMB1 (which has pretty much the same expression profile across 
cells) is called a "Pre-M marker".
-The paper form which the data was used also has presented a way to characterize cells in 
transition (“pre-bifurcation”) based on a particular quantity I. The authors could compare to see 
how that quantity relates to the Transition Cell Score (TCS) that they propose.

C4. Myelopoiesis/ Lymphopoiesis
The authors identify 10 metastable states. How robust is this, given the fact that the entire dataset 
only contains 375 cells! I find it hard to believe that this complicated hierarchy in Figure S10 can 
be reliably inferred from this small dataset.
- Similarly, for the lymphoid dataset, the choice of cluster number seems arbitrary; that choice is 
hard to motivate given the EigenPeak plot in Figure S14a. Any subsequent biological interpretation 
(page 13 main text of manuscript) is thus questionable, and should be worded accordingly.

C5. Human HSCs. The number of clusters seems to be chosen as K=5. This seems a reasonable 
choice compared to previous examples (which had far less cells than this dataset).
Some more notes on Comparison: It is hard to compare these various algorithms without some 
known ground truth. Results will always differ slightly, and it is unclear which method (if any) is 



correct. Furthermore, slight differences in preprocessing affects results significantly. Just as one 
example: For the IPSC-dataset, normalizing cells by RNA content (a fairly standard step) resolves 
PAGAs issue of "short-circuiting" ectoderm to later stages.
 











◊































REVIEWERS' COMMENTS

Reviewer #3 (Remarks to the Author):

The authors have adequately addressed my concerns both in the rebuttal letter as well as in the 
revisions of the manuscript.

Minor issues remain:

References (30) and (31) should be switched in order (concerning critical new paragraph around 
lines 121 - 123)

English; please distinguish between transiting (=passing through) Vs. transitioning (=making 
transition from A to B)

Line 243: poor English - do you mean "basins LOCATED BEFORE the bifurcation .."?

Line 257: English: What does "surpassing" mean here exactly?

Lines 481-484 ff: Too complex and speculative...OSCILLATION and GROWING CELLS are two 
fundamentally different types of departure from (quasi-) stationarity. The first is much harder to
accommodate and comprehend intuitively in terms of potential functions because it deals with 
non-hyperbolic attractors... And I am not sure RNA velocity is the solution, since it is itself fraught 
with issues and makes many more assumptions. Also it is not clear what "cell-cell scale" means. 
Please simplify (just mention cell cycle and cell proliferation as other non-stationarity effects not 
considered, and reduce the speculation on possible solutions - it only distracts.. (but the point on 
the non-stationarity due to cell growth is good.)

I would have hoped that the authors drop the Myelopoiesis/Lymphopoiesis data set since due to 
the small number of cells, I am not confident about the data analysis there and here - but that is 
the author's choice. They also could more explicitly warn the reader.

 



Reviewer #3 (Remarks to the Author): 
 
The authors have adequately addressed my concerns both in the rebuttal letter as well as in the 
revisions of the manuscript. 
 
Author’s Response: Thank you again for the careful reading and insightful comments on our 
manuscript. In this round of revision, we have followed all the suggestions to fix the minor issues 
and did a thorough proofreading of the whole draft.  
 
The changes are highlighted with red colors in the manuscript, and the line numbers indicated 
below are accurate under the merged pdf files.  
 
Minor issues remain: 
 
References (30) and (31) should be switched in order (concerning critical new paragraph around 
lines 121 - 123) 
 
Author’s Response: Thank you for finding this mistake. We have switched their orders in the 
revised manuscript (line 124-126) and run the additional check of the references.  
 
English; please distinguish between transiting (=passing through) Vs. transitioning (=making 
transition from A to B) 
 
Author’s Response: Thank you for the nice suggestion. We changed word transiting to 
transitioning at line 206. 
 
Line 243: poor English - do you mean "basins LOCATED BEFORE the bifurcation .."? 
 
Author’s Response: Sorry for the confusions We changed the sentence as “Two attractor basins, 
locating before the bifurcation of…” (line 252) 
 
Line 257: English: What does "surpassing" mean here exactly? 
 
Author’s Response: Sorry for the confusions. We modified the sentence as  “…by passing 
through the pre-En attractor basins first.” (line 266) 
 
Lines 481-484 : Too complex and speculative...OSCILLATION and GROWING CELLS are two 
fundamentally different types of departure from (quasi-) stationarity. The first is much harder to 
accommodate and comprehend intuitively in terms of potential functions because it deals with 
non-hyperbolic attractors... And I am not sure RNA velocity is the solution, since it is itself 



fraught with issues and makes many more assumptions. Also it is not clear what "cell-cell scale" 
means. Please simplify (just mention cell cycle and cell proliferation as other non-stationarity 
effects not considered, and reduce the speculation on possible solutions - it only distracts.. (but 
the point on the non-stationarity due to cell growth is good.) 
 
Author’s Response: Sorry for the confusions here and thanks for the nice suggestion. In this 
revision, we followed the suggestion to remove the previous point #1 and the excessive claims, 
and instead only mentioned that non-stationary effects due to cell cycle and cell growth were not 
considered by our current method (line 500-501). 
 
I would have hoped that the authors drop the Myelopoiesis/Lymphopoiesis data set since due to 
the small number of cells, I am not confident about the data analysis there and here - but that is 
the author's choice. They also could more explicitly warn the reader. 
 
Author’s Response: Thank you for pointing out this and the helpful suggestions. The datasets 
were suggested by one of the reviewers in the previous rounds to study if the method can deal with 
datasets from different platforms and datasets with different properties. For myelopoiesis dataset, 
we mainly focused on the consistency with previous findings and other existing methods, and 
reported the observation that differences between MuTrans attractor basins and original labels 
could be potentially explained by transition cells.  
 
We agree with the reviewer the data analysis is subject to the limited sample size. In the revision, 
we added the following sentences in Discussion to warn the readers: 

 


