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Section 1. Excess Mortality Data
Our data on excess deaths come from two separate datasets provided by the Centers for Disease Control and
Prevention (CDC). We use the first dataset to determine our sample period, which we define as the largest set of

weeks with uninterrupted excess mortality. The second dataset provides weekly counts of total excess deaths and
COVID-19-related deaths.

We obtained the first dataset from the CDC’s estimates of “excess deaths associated with COVID-19” for the US
and Puerto Rico on June 26, 2021. This first dataset is available at:

https://data.cdc.gov/NCHS/Excess-Deaths-Associated-with-COVID-19/xkkf-xrst/

We relied on the CDC’s implementation of the Farrington Surveillance algorithm to compare deaths in 2020 and
2021 to deaths from prior years, as described here:

https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm

According to the CDC’s algorithm, statistically significant excess mortality commenced in week 13 of 2020 (the
week beginning on March 22, 2020) and persisted until week 10 of 2021 (the week ending on March 13, 2021).
Week 11 was the first week since the onset of the COVID-19 pandemic in which there was not a statistically
significant excess death toll (based on the data we downloaded on June 26, 2021). We therefore defined our
sample period as March 22, 2020 through March 13, 2021.

Next, we extracted the weekly number of COVID-19 deaths (defined as deaths where ICD-10 code U07.1 was
listed as a contributing cause of death) and the weekly number of deaths above the average (as compared to 2015-
2019) for each age-sex-race/ethnicity category for the time period March 22, 2020 through March 13, 2021. This
second dataset is available at:

https://data.cdc.gov/NCHS/AH-Excess-Deaths-by-Sex-Age-and-Race/m74n-4hbs

To align the CDC’s race/ethnicity categories with the other data sources described below, we recoded them as
follows. The CDC categories non-Hispanic White, non-Hispanic Asian, non-Hispanic American Indian or Alaska
Native, non-Hispanic Native Hawaiian or Other Pacific Islander, or Other were coded as White; the category non-
Hispanic Black was coded as Black; and the category Hispanic was coded as Hispanic.

The number of deaths estimated by the CDC for the most recent weeks of the dataset was adjusted to account for
reporting lags. Because this adjustment is imperfect, it can result in negative values for non-COVID-19 weekly
excess deaths. We therefore set negative values for non-COVID-19 weekly excess deaths reported by the CDC
during the time period April 14, 2021 through March 13, 2021 to zero.

Finally, we calculated the total number of excess deaths and the total number of COVID-19 deaths by summing
across all weeks, for each age-sex-race/ethnicity subgroup. The number of non-COVID-19 excess deaths for each
age-sex-race/ethnicity subgroup was determined by subtracting total COVID-19 deaths from the total number of
excess deaths. In a small number of age-sex-race/ethnicity subgroups, the total number of non-COVID-19 excess
deaths was slightly negative; per CDC methodology, these negative values were set equal to zero.

To calculate excess death rates per 10,000 people in each age-sex-race/ethnicity subgroup, we divided the number
of excess deaths by the subgroup’s population, as estimated by the Health and Retirement Study (HRS) for those
over age 55 and the Panel Study of Income Dynamics (PSID) for younger age groups. The HRS and the PSID
serve as the host databases for the microsimulation model of years of life lost, as described in Section 3 below.

Section 2. COVID-19 Mortality Odds Ratios

We obtained COVID-19 mortality odds ratios (OR) for different risk factors from the most recent update of an
associational study of over 17 million adults using the openSAFELY platform in England (1, 2). These estimates
apply to the entire population that was registered with a general practice using the openSAFELY platform. Thus,
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these estimates are not limited to hospitalized or symptomatic people. COVID-19 deaths are identified as those

where the underlying cause is coded as U07.1 (“COVID-19, virus identified”) or U07.2 (“COVID-19, virus not
identified”) between February 1, 2020 and November 9, 2020. By contrast, the National Center for Health
Statistics did not implement U07.2 for US mortality statistics; instead, all confirmed and suspected COVID-19
deaths are coded as U07.1. The openSAFELY analytic platform includes general practitioner practices that use
electronic health record software SystmOne (1).

Our study employs the reported COVID-19 mortality ORs from Table A2 (fully adjusted COVID-19 deaths 2020)
of Bhaskaran et al. (2021) to calculate a COVID-19 risk score that estimates each individual’s likelihood of dying
from COVID-19, based on comorbidities associated with increased risk of COVID-19 mortality (2). We only
incorporated risk factors that had ORs reported as statistically significant (P < 0.05). In cases where there were
multiple OR estimates that informed a single risk factor modeled by the microsimulation, such as cancer or
diabetes, we used all the OR estimates provided that at least one was statistically significant. The estimates that
we use in our study are listed in the third column of Supplement Table 1.

An individual’s risk score was defined as 1 multiplied by the product of the odds ratios corresponding to their
comorbidities. An individual with no comorbidities thus has a risk score of 1, while an individual with a body
mass index (BMI) of 35 and high blood pressure has a risk score of 1.30 (= 1.44 X 0.90) (Supplement Table 1).
We used the exact OR estimates for the following comorbidities, which were defined analogously in both the
openSAFELY study and our microsimulation: former smoker, high blood pressure, lung disease, heart disease,
stroke, dementia, and BMI categories 30-35, 35-40 and 40+. The OR estimates for diabetes and cancer were
reweighted to match the definitions in the microsimulation. The microsimulation includes a binary measure of
cancer, but the openSAFELY study reports odds ratios for six different cancer groups: two types of cancer
(haematological & non-haematological) crossed with three possible diagnosis windows (diagnosed < 1 year ago,
diagnosed 1-4.9 years ago, and diagnosed 5 or more years ago). We employed the average of the log odds ratios
of those six estimates, weighted by the populations reported in the openSAFELY study. We employed a similar
weighted average for diabetes, which has three reported OR estimates in the openSAFELY study but is measured
with a binary variable in our microsimulation.

The excess death data obtained from the CDC are available only in 5-year age groups. To increase precision, we
used the estimates from Bhaskaran et al. to interpolate the distribution of excess deaths over single years of age
within each 5-year age group. We accomplished this interpolation by first estimating a loglinear model of ORs
provided for age categories in Bhaskaran et al. Age bins were converted to an average age (29 years for 18-39,
44.5 for 40-49, 54.5 for 50-59, 64.5 for 60-69, and 74.5 for 70-79; 80+ group is omitted), and the model was fitted
with age as independent variable and the log COVID-19 mortality OR as dependent variable:

logOR = a + BAGE + e

This regression yielded the estimates & = —5.845 (95% CI, —6.148to — 5.542) and £ = 0.105 (95% ClI,
0.101 to 0.110). We then applied the predicted value to each individual’s COVID-19 mortality risk score.

Finally, our COVID-19 risk score also accounts for whether the individual resides in a nursing home, since
nursing home deaths represent a large share of total deaths. To calculate the odds ratio for this comorbidity, we
first obtained data on the number of COVID-19 deaths among residents in certified Medicare skilled nursing
facilities/Medicaid nursing facilities. Data from the Centers for Medicare & Medicaid Services (CMS) were
retrieved from:

https://data.cms.gov/Special-Programs-Initiatives-COVID-19-Nursing-Home/COVID-19-Nursing-Home-
Dataset/s2uc-8wxp.

This dataset reported that there were 130,296 COVID-19 deaths among residents of nursing homes between
January 1, 2020 and March 13, 2021. These data allow us to compute the share of total COVID-19 deaths that
occurred in nursing homes. We then solved for the odds ratio that, when applied to our COVID-19 risk score,
yielded a distribution of decedents consistent with this share.
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Section 3. Methods

We rely on an established microsimulation framework to calculate years of life lost (YLLs). The Future Elderly
Model (FEM) and Future Adult Model (FAM) are dynamic microsimulation models based on biennial,
longitudinal, nationally representative survey data for the United States. The FEM and FAM have been validated
extensively with regards to trends in chronic disease prevalence, disease risk factors like BMI and smoking,
functional limitations, quality-of-life, and mortality. The FEM relies primarily on the Health and Retirement
Study (HRS), a nationally representative household survey of Americans over the age of fifty. The FAM is based
on the Panel Study of Income Dynamics (PSID), a nationally representative survey of Americans of all ages. Both
simulations model individuals’ health risk factors, chronic illness incidence, limitations in function, mortality, and
more over the life course. Full details, including model validation, are available in Supplement 2 and Supplement
4. The data and code used to produce the estimates for our study are publicly available from our Subversion
repository:

https://schweb.lahrc.lahealthresearchcloud.org/svn/AIM covid/

Some datasets, such as the survey input data for the simulation (e.g. PSID, HRS), must be retrieved from the
original sources because our Data Use Agreements do not allow us to redistribute them.

Our analysis measures YLLs and quality-adjusted life years (QALYSs) lost relative to baseline. The projected life
expectancy for each excess death is the number of life-years lived in the microsimulation under the assumption of
zero excess deaths. Summing projected life expectancy across all excess deaths then yields the total YLLs.
QALYs lost are calculated by summing the quality-of-life index. Both YLLs and QALY lost are undiscounted.
We use the FAM to estimate YLLs and QALY lost for people ages 25 to 54 in 2020, and the FEM for people
ages 55+ in 2020.

FAM simulations begin in 2009 and are replenished with cohorts of 25-year-olds through 2021. Incoming 25-
year-old simulants are based on PSID respondents but have their sample weights adjusted to match demographic
characteristics from US Census Projections (3). FAM simulations end in 2117. FEM simulations are started in
2016 with individuals ages 51+ as of that year, without replenishing cohorts. FEM simulations end in 2086.
Together, the FEM and FAM include 28,175 simulants, which differ along numerous socioeconomic and health
dimensions and are weighted to be nationally representative of the 223 million US adults ages 25+ and alive as of
July 1, 2020.

To increase precision, the simulations are repeated using 150 Monte Carlo replications and then averaged when
estimating the distributions of future outcomes. To quantify YLLs and QALY lost from COVID-19 and non-
COVID-19 excess deaths, we assign those deaths to individuals in the microsimulation’s output for the 2020
calendar year, based on their demographics and health characteristics. The assignment of excess deaths based on
age-sex-race/ethnicity and health is accomplished by appropriately adjusting the simulants’ weights, and varied
across our three analyses as described below.

The first analysis assumes that all COVID-19 and non-COVID-19 excess deaths occur randomly within each age-
sex-race/ethnicity subgroup. No distinction was made between COVID-19 excess deaths and non-COVID-19
excess deaths. This “Average Risk™ analysis is analogous to calculating YLLs using a life table that adjusts for the
age, sex, and race/ethnicity of the decedent.

The second analysis, which serves as our preferred (baseline) approach, matches the distribution of COVID-19
excess deaths within each subgroup to the mortality odds ratios estimated for each of 12 different COVID-19 risk
factors. Specifically, we assume that COVID-19 excess deaths are distributed in the subgroup in proportion to
individuals’ COVID-19 risk score, which was constructed using COVID-19 mortality odds ratios as described
above. We assume that non-COVID-19 deaths are distributed according to the baseline mortality risk framework
employed in the FEM and FAM. Thus, this approach distinguishes between risk factors associated with COVID-
19 and those associated with non-COVID-19 excess deaths.
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In the third analysis, we assume that all excess deaths (both COVID-19 and non-COVID-19) occur among the
simulants with the highest mortality rate within each subgroup, as estimated by the microsimulation model. This
“Frailty-Based Risk” analysis assumes that only the frailest individuals died. To accomplish this, we first ranked
individuals by mortality risk, as estimated by the FEM and FAM, within their age-sex-race/ethnicity subgroup. In
each age-sex-race/ethnicity subgroup, we then systematically selected the highest mortality risk individuals until
all excess deaths were accounted for. No distinction was made between COVID-19 excess deaths and non-
COVID-19 excess deaths.

Comparing our preferred Individualized Risk analysis to the alternative Frailty-Based Risk and Average Risk
analyses clarifies the extent to which COVID-19 mortality afflicts those with below-average versus average
longevity for their demographic subgroup.

3.1 Measuring outcomes
Years of Life Lost (YLLs)

For the Average Risk, Individualized Risk, and Frailty-Based Risk analyses, YLLs for each excess death are equal
to the number of life-years lived in the microsimulation under the counterfactual assumption of zero excess
deaths. Deaths are determined at 2-year intervals in the microsimulation. For the Average Risk and Individualized
Risk analyses, counterfactual deaths were assumed to occur at the midpoint of the relevant 2-year interval. For the
Frailty-Based Risk analysis, we conservatively assumed that counterfactual deaths occurred at the beginning of
the 2-year interval, which minimizes the potential number of YLLs.

In the period life table analysis reported in Table 1 of the main text, we project life expectancy using 2018 CDC
period life tables that adjust for single year of age, sex, and race/ethnicity. These tables are publicly available
online:

https://ftp.cdc.gov/pub/Health Statistics/NCHS/Publications/NVSR/69-12 (tables 5,6, 8, 9, 11 and 12)

Our YLL estimates are based on e(x), the average number of years of life remaining at exact age x.
Quality-Adjusted Life Years (QALYs) lost

Quality-of-life is measured using the EuroQol five dimensions questionnaire (EQ-5D). These five dimensions are
based on five survey questions that elicit the extent of a respondent’s problems with mobility, self-care, daily
activities, pain, and anxiety/depression. These questions are then weighted using stated preference data to
compute the relative importance of each one and combined to create a single quality-of-life measure that is
anchored at 0 (equivalent to death) and 1 (perfect health) (4). This index is first measured using the Medical
Expenditure Panel Survey (MEPS), and then mapped to the HRS and PSID using variables common to both
databases (Section 9.2 of Supplement 2).

QALYs lost for each excess death is calculated by summing the EQ-5D index over the years for which the
individual is alive in the counterfactual model.

3.2 Assessing uncertainty

We employ two approaches to quantify uncertainty in our analyses. The first stems from uncertainty in the
transition models used for the microsimulation models and the second stems from uncertainty in COVID-19
mortality odds ratio estimates. We employ a nonparametric bootstrap approach to create 50 separate sets of
transition model estimates for use in the microsimulation, each of which is simulated 150 times in a Monte Carlo
fashion (5). Uncertainty in the COVID-19 mortality ORs is incorporated by drawing from a multivariate normal
distribution of the underlying parameters from the logistic model. Distributions of risk factors that consist of
multiple subcategories in Bhaskaran et al. (cancer and diabetes) were created by weighted draws of the underlying
distributions (2). The underlying distribution was based on the variance-covariance matrix from Bhaskaran et al.
(2021), as provided by the authors. These draws are randomly paired with the nonparametric bootstrap transition
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estimates. Results from each bootstrapped simulation are then used to calculate 95% uncertainty intervals around

the mean outcomes.

Section 4. Additional Results

Supplement Table 2 and Supplement Table 3 report the lower and upper bounds of the 95% percent uncertainty
interval corresponding to the estimates presented in Table 1 of the main text, respectively.

Supplement Table 4 and Supplement Table 5 report the lower and upper bounds of the 95% percent uncertainty
interval corresponding to the estimates presented in Table 2 of the main text, respectively.

Supplement Table 6 reports YLLs and QALYSs lost by COVID-19 vs. non-COVID-19 excess deaths and 10-year
age group. Supplement Table 7 and Supplement Table 8 report the lower and upper bounds of the 95%
uncertainty interval corresponding to the estimates presented in Supplement Table 6.

Supplement Figure 1 illustrates the prevalence of COVID-19 related comorbidities in the US population for
different age groups, as estimated by the FEM and FAM. Supplement Figure 2, Supplement Figure 3, and
Supplement Figure 4 present corresponding prevalence estimates separately for Blacks, Hispanics, and Whites.

Supplement Figure 5 shows how the estimated distribution from Figure 2 of the main text varies by sex and
race/ethnicity, for ages 26-64 and ages 65+.

Supplement Figure 6 and Supplement Figure 7 report the corresponding versions of Figure 3 of the main text, for
the Average Risk and Frailty-Based Risk analyses.

Supplement Figure 8 reports the number of quality-adjusted life-years lost per 10,000, by age group, sex, and
race/ethnicity, for the Individualized Risk analysis.

Supplement Figure 9 and Supplement Figure 10 report the corresponding versions of Figure 4 of the main text, for
the Average Risk and Frailty-Based Risk analyses.
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Supplement Table 1. COVID-19 mortality odds ratios for different comorbidities

Comorbidity FEM/FAM definition Odds ratio Source Notes
95% CI)
30 < BMI < 35 | Derived from “How tall are 1.07 (1.03-1.12) | Bhaskaran et al. (2021)
you?” and “How much do you
35 < BMI <40 | weigh?” (FAM) or “About how | 1.44 (1.36-1.54) | Bhaskaran et al. (2021)
tall are you?” and “About how
40 < BMI much do you weigh?” (FEM) 2.11(1.93-2.29) | Bhaskaran et al. (2021)

Former smoker
(excl. current

Derived from “Did you ever
smoke cigarettes?” & “Do you

1.26 (1.22-1.30)

Bhaskaran et al. (2021)

or hypertension?”

smokers) smoke cigarettes?”
High blood “Has a doctor ever told you that | 0.90 (0.87-0.94) | Bhaskaran et al. (2021) Source definition: systolic=
pressure you have high blood pressure 140 mm Hg or diastolic= 90

mm Hg

Lung disease

“Not including asthma, has a
doctor ever told you that you
have chronic lung disease such
as chronic bronchitis or
emphysema?”’

1.66 (1.59-1.73)

Bhaskaran et al. (2021)

Excluding asthma

Heart disease

“Has a doctor ever told you that
you have had a heart attack,
coronary heart disease, angina,
congestive heart failure, or
other heart problems?”

1.23(1.19-1.27)

Bhaskaran et al. (2021)

for Cognitive Status (TICS) or
proxy respondents(6)

Diabetes “Has a doctor ever told you that | 1.41 (1.36-1.46) | Bhaskaran et al. (2021) Weighted average of
you have diabetes or high HbA1¢<58 mmol/mol,
blood sugar?” HbA1c¢>=58 mmol/mol, and
no recent HbA1c measure
Cancer “Has a doctor ever told you 1.12 (1.08-1.16) | Bhaskaran et al. (2021) Weighted average of all
that you have cancer or a haematological and non-
malignant tumor?” (FAM) haematological cancers, with
“Has a doctor ever told you that diagnosis at any time in the
you have cancer or a malignant past
tumor, excluding minor skin
cancer?” (FEM)
Stroke “Has a doctor ever told you that | 1.53 (1.46-1.59) | Bhaskaran et al. (2021)
you have had a stroke?”
Dementia Based on Telephone Interview | 3.62 (3.41-3.84) | Bhaskaran et al. (2021)

Nursing home

“Are you living in a nursing
home or other health care
facility? Def: A nursing home
or other health facility provides
all of the following services for
its residents: dispensing of
medication, 24-hour nursing
assistance and supervision,
personal assistance, and room
& meals.”

2.45 (2.20-2.69)

CMS (2021)
https://data.cms.gov/Special-
Programs-Initiatives-
COVID-19-Nursing-
Home/COVID-19-Nursing-
Home-Dataset/s2uc-8wxp

Sum of all deaths reported in
“residents_weekly covid 19”
for all locations

The first column lists the 12 COVID-19-related comorbidities accounted for in the Individualized Risk analysis.
The second column describes how the comorbidity is measured in the surveys underlying the Future Elderly
Model and Future Adult Model microsimulations. The third column reports the mortality odds ratio used to
construct the COVID-19 risk score. The odds ratio is obtained either from Bhaskaran et al. (2021) or from a
calibration exercise using nursing home deaths obtained from CMS (2021) (2, 7). BMI: body mass index.




Supplement_1_additional_analyses.revised
Supplement Table 2. Lower bound of 95% uncertainty interval: years of life lost and quality-adjusted life-
years lost due the US COVID-19 pandemic, by age group, sex, and race/ethnicity

Totals Ages 25-64 Ages 65+
Ages 25-64  Ages 65+ Ages 25+ Female Male Female Male
Outcome Black  Hispanic White Black  Hispanic White Black  Hispanic White Black  Hispanic White
Population, thousands
CDC excess deaths
Deaths
COVID-19
Non-COVID-19
Deaths per 10k
COVID-19
Non-COVID-19
Longitudinal outcomes
YLL, thousands
Period life table . . . . . . . . . . . . . . .
Average Risk 5,043 5,354 10,432 428 442 788 768 1,100 1,452 417 375 1,703 391 462 1,921
Individualized Risk 4,560 4,339 8,939 378 407 694 690 1,018 1,313 327 301 1,354 317 387 1,579
Frailty-Based Risk 2,338 1,072 3,465 177 231 229 386 643 573 88 90 291 78 123 325
QALYs lost, thousands
Average Risk 3,951 3,877 7,858 321 338 621 599 871 1,152 287 256 1,239 280 331 1,419
Individualized Risk 3,485 2,990 6,508 274 304 528 525 792 1,016 211 191 933 216 264 1,115
Frailty-Based Risk 1,592 543 2,170 110 152 140 262 471 388 41 44 142 39 67 161
YLL per 10k
Period life table . . . . . . . . . . . . . . .
Average Risk 301 972 468 381 316 134 750 699 251 1,423 1,451 682 1,949 2,280 940
Individualized Risk 272 789 401 337 291 118 674 646 226 1,117 1,163 543 1,596 1,903 774
Frailty-Based Risk 139 195 155 158 166 39 376 408 99 300 346 116 392 606 159
QALYs lost per 10k
Average Risk 235 704 352 286 242 106 585 553 199 980 987 497 1,394 1,634 693
Individualized Risk 208 544 292 244 218 90 513 503 175 719 737 374 1,088 1,295 546
Frailty-Based Risk 95 98 97 98 109 24 256 299 67 140 171 57 197 328 79

This table reports the lower bound of the 95% uncertainty interval for the estimates presented in Table 1 of the

main text. Uncertainty intervals were obtained by performing a non-parametric bootstrap that resampled the data
underlying the Future Elderly Model and Future Adult Model and drew COVID-19 mortality odds ratios from an
independent multivariate normal distribution. YLL: years of life lost. QALYSs: quality-adjusted life-years.
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Supplement Table 3. Upper bound of 95% uncertainty interval: years of life lost and quality-adjusted life-
years lost due the US COVID-19 pandemic, by age group, sex, and race/ethnicity

Totals Ages 25-64 Ages 65+
Ages 25-64  Ages 65+ Ages 25+ Female Male Female Male
Outcome Black  Hispanic White Black  Hispanic White Black  Hispanic White Black  Hispanic White
Population, thousands
CDC excess deaths
Deaths
COVID-19
Non-COVID-19
Deaths per 10k
COVID-19
Non-COVID-19
Longitudinal outcomes
YLL, thousands
Period life table . . . . . . . . . . . . . . .
Average Risk 5,223 5,504 10,692 446 488 812 827 1,214 1,503 453 405 1,774 439 505 2,012
Individualized Risk 4,776 4,485 9,221 400 456 726 750 1,141 1,364 356 335 1,414 358 424 1,671
Frailty-Based Risk 2,605 1,218 3,768 212 292 276 468 799 656 113 111 356 111 167 436
QALYs lost, thousands
Average Risk 4,098 3,991 8,060 335 375 641 641 962 1,195 314 280 1,293 315 364 1,490
Individualized Risk 3,663 3,102 6,732 290 343 556 568 891 1,061 232 222 982 246 294 1,187
Frailty-Based Risk 1,784 637 2,385 131 195 170 320 588 446 56 57 180 61 97 235
YLL per 10k
Period life table . . . . . . . . . . . . . . .
Average Risk 311 996 479 398 348 139 801 767 259 1,529 1,547 706 2,137 2,481 976
Individualized Risk 284 810 413 356 325 124 727 721 235 1,201 1,282 563 1,730 2,093 809
Frailty-Based Risk 155 220 169 189 209 47 454 505 113 383 425 142 538 822 211
QALYs lost per 10k
Average Risk 244 722 361 298 268 109 621 608 206 1,059 1,073 514 1,540 1,786 723
Individualized Risk 218 560 302 259 245 95 550 563 183 783 851 390 1,189 1,447 575
Frailty-Based Risk 106 115 107 117 139 29 311 372 77 190 218 72 296 478 114

This table reports the upper bound of the 95% uncertainty interval for the estimates presented in Table 1 of the

main text. Uncertainty intervals were obtained by performing a non-parametric bootstrap that resampled the data
underlying the Future Elderly Model and Future Adult Model and drew COVID-19 mortality odds ratios from an
independent multivariate normal distribution. YLL: years of life lost. QALYSs: quality-adjusted life-years.
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Supplement Table 4. Lower bound of 95% uncertainty interval: years of life lost and quality-adjusted life-
years lost due the US COVID-19 pandemic, by 10-year age group

Age
Outcome 25+ 25-34 35-44 45-54 55-64 65-74 75-84 85+
Population, thousands
CDC excess deaths
Deaths
COVID-19
Non-COVID-19
Deaths per 10k
COVID-19
Non-COVID-19
Longitudinal outcomes
YLL, thousands
Period life table . . . . . . . .
Average Risk 10,432 867 1,166 1,031 1,954 2,636 1,799 899
Individualized Risk 8,939 824 1,058 965 1,686 2,214 1,481 623
Frailty-Based Risk 3,465 658 683 530 410 564 361 125
QALYs lost, thousands
Average Risk 7,858 704 934 818 1,476 1,963 1,293 603
Individualized Risk 6,508 659 824 751 1,230 1,586 1,011 376
Frailty-Based Risk 2,170 498 478 359 217 294 179 58
YLL per 10k
Period life table . . . . . . . .
Average Risk 468 196 285 254 463 813 1,105 1,371
Individualized Risk 401 187 259 238 400 683 911 949
Frailty-Based Risk 155 149 167 131 97 174 223 192
QALYs lost per 10k
Average Risk 352 159 229 201 350 606 794 919
Individualized Risk 292 149 201 185 292 490 622 573
Frailty-Based Risk 97 113 117 89 52 91 110 90

This table reports the lower bound of the 95% uncertainty interval for the estimates presented in Table 2 of the
main text. Uncertainty intervals were obtained by performing a non-parametric bootstrap that resampled the data
underlying the Future Elderly Model and Future Adult Model and drew COVID-19 mortality odds ratios from an
independent multivariate normal distribution. YLL: years of life lost. QALYSs: quality-adjusted life-years.
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Supplement Table 5. Upper bound of 95% uncertainty interval: years of life lost and quality-adjusted life-
years lost due the US COVID-19 pandemic, by 10-year age group

Age
Outcome 25+ 25-34 35-44 45-54 55-64 65-74 75-84 85+
Population, thousands
CDC excess deaths
Deaths
COVID-19
Non-COVID-19
Deaths per 10k
COVID-19
Non-COVID-19
Longitudinal outcomes
YLL, thousands
Period life table . . . . . . . .
Average Risk 10,692 905 1,222 1,106 2,015 2,722 1,864 938
Individualized Risk 9,221 867 1,124 1,043 1,768 2,299 1,555 652
Frailty-Based Risk 3,768 727 778 648 508 666 415 158
QALYs lost, thousands
Average Risk 8,060 735 981 877 1,526 2,032 1,346 631
Individualized Risk 6,732 693 878 812 1,301 1,653 1,071 395
Frailty-Based Risk 2,385 551 547 442 283 362 213 75
YLL per 10k
Period life table . . . . . . . .
Average Risk 479 205 299 273 477 839 1,152 1,445
Individualized Risk 413 196 275 257 418 708 959 1,005
Frailty-Based Risk 169 165 190 160 120 206 256 241
QALYs lost per 10k
Average Risk 361 166 240 216 361 626 832 972
Individualized Risk 302 157 215 200 308 509 661 609
Frailty-Based Risk 107 125 134 109 67 111 131 114

This table reports the upper bound of the 95% uncertainty interval for the estimates presented in Table 2 of the
main text. Uncertainty intervals were obtained by performing a non-parametric bootstrap that resampled the data
underlying the Future Elderly Model and Future Adult Model and drew COVID-19 mortality odds ratios from an
independent multivariate normal distribution. YLL: years of life lost. QALYSs: quality-adjusted life-years.
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Supplement Table 6. Individualized Risk analysis: years of life lost and quality-adjusted life-years lost due
to the US COVID-19 pandemic, by COVID-19 vs. non-COVID-19 excess deaths and 10-year age group

Age
Outcome 25+ 25-34 35-44 45-54 55-64 65-74 75-84 85+
Population, thousands 223,092 44,195 40,899 40,589 42,228 32,432 16,228 6,522
CDC excess deaths
Deaths 740,247 18,136 29,977 34,455 91,427 180,021 197,977 188,254
CovID-19 545,324 3,669 9,362 26,150 66,545 120,318 151,569 167,711
Non-COVID-19 194,923 14,467 20,615 8,305 24,882 59,703 46,408 20,543
Deaths per 10k 33.2 4.1 7.3 8.5 21.7 55.5 122.0 288.6
COVID-19 24.4 .8 2.3 6.4 15.8 37.1 93.4 257.1
Non-COVID-19 8.7 3.3 5.0 2.0 5.9 18.4 28.6 31.5
Longitudinal outcomes
YLL, thousands
COVID-19 deaths 5,973 180 363 775 1,330 1,592 1,170 562
Non-COVID-19 deaths 3,108 665 728 229 397 665 348 76
QALYs lost, thousands
COVID-19 deaths 4,313 146 288 606 981 1,150 803 340
Non-COVID-19 deaths 2,307 531 563 176 285 470 238 46
YLL per 10k
COVID-19 deaths 268 41 89 191 315 491 721 861
Non-COVID-19 deaths 139 151 178 57 94 205 214 116
QALYs lost per 10k
COVID-19 deaths 193 33 70 149 232 354 495 521
Non-COVID-19 deaths 103 120 138 43 67 145 147 70

This table reports the years of life lost (YLLs) and quality-adjusted life-years (QALY's) lost over the time period
March 22, 2020 through March 13, 2021 as a result of the US COVID-19 pandemic. We report 95% uncertainty
intervals in Tables 7-8 of Supplement 1. Population data were obtained from the Health and Retirement Study and
the Panel Study of Income Dynamics. The longitudinal outcomes estimates presented in this table are based on
the number of COVID and non-COVID excess deaths reported by the Centers for Disease Control and Prevention
(CDC), which are reproduced in the second row. The YLLs and QALY lost estimates for the Individualized Risk
analysis are derived from the Future Elderly Model and the Future Adult Model, which use microsimulation to
produce individual-level forecasts of mortality and quality-of-life for the US population ages 25+ (Figure 1 of the
main text). The Individualized Risk analysis assigns all COVID-19-related excess deaths within the age-sex-
race/ethnicity subgroup in proportion to estimates of COVID-19 comorbidity mortality odds ratios, and assigns
non-COVID-19-related deaths in proportion to the 2020 (pre-COVID-19) annual mortality hazard projected by

the microsimulation.
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Supplement Table 7. Lower bound of 95% uncertainty interval: Individualized Risk analysis: years of life

lost and quality-adjusted life-years lost due the US COVID-19 pandemic, by COVID-19 vs. non-COVID-19
excess deaths and 10-year age group

Age

Outcome 25+ 25-34 35-44 45-54 55-64 65-74 75-84 85+

Population, thousands
CDC excess deaths
Deaths
COVID-19
Non-COVID-19
Deaths per 10k
COVID-19
Non-COVID-19
Longitudinal outcomes
YLL, thousands
COVID-19 deaths 5,879 176 351 746 1,300 1,560 1,142 548
Non-COVID-19 deaths 3,050 648 706 219 385 652 338 73
QALYs lost, thousands
COVID-19 deaths 4,239 142 277 583 955 1,124 780 331
Non-COVID-19 deaths 2,262 517 545 168 274 460 230 44
YLL per 10k
COVID-19 deaths 264 40 86 184 308 482 703 836
Non-COVID-19 deaths 137 147 173 54 91 201 208 112
QALYs lost per 10k
COVID-19 deaths 190 32 68 144 226 347 480 504
Non-COVID-19 deaths 101 117 133 41 65 142 141 68

This table reports the lower bound of the 95% uncertainty interval for the estimates presented in Table 6 of
Supplement 1. Uncertainty intervals were obtained by performing a non-parametric bootstrap that resampled the
data underlying the Future Elderly Model and Future Adult Model and drew COVID-19 mortality odds ratios
from an independent multivariate normal distribution. YLL: years of life lost. QALYSs: quality-adjusted life-years.
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Supplement Table 8. Upper bound of 95% uncertainty interval: Individualized Risk analysis: years of life
lost and quality-adjusted life-years lost due the US COVID-19 pandemic, by COVID-19 vs. non-COVID-19
excess deaths and 10-year age group

Age

Outcome 25+ 25-34 35-44 45-54 55-64 65-74 75-84 85+

Population, thousands
CDC excess deaths
Deaths
COVID-19
Non-COVID-19
Deaths per 10k
COVID-19
Non-COVID-19
Longitudinal outcomes
YLL, thousands
COVID-19 deaths 6,066 185 376 804 1,360 1,624 1,199 576
Non-COVID-19 deaths 3,165 683 749 240 410 678 357 78
QALYs lost, thousands
COVID-19 deaths 4,387 150 298 629 1,007 1,176 826 348
Non-COVID-19 deaths 2,353 544 581 184 295 480 246 48
YLL per 10k
COVID-19 deaths 272 42 92 198 322 500 740 887
Non-COVID-19 deaths 142 154 183 59 97 209 221 120
QALYs lost per 10k
COVID-19 deaths 197 34 73 155 238 362 510 538
Non-COVID-19 deaths 105 123 142 45 70 148 152 73

This table reports the upper bound of the 95% uncertainty interval for the estimates presented in Table 6 of
Supplement 1. Uncertainty intervals were obtained by performing a non-parametric bootstrap that resampled the
data underlying the Future Elderly Model and Future Adult Model and drew COVID-19 mortality odds ratios
from an independent multivariate normal distribution. YLL: years of life lost. QALYSs: quality-adjusted life-years.
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Supplement Figure 1. Prevalence of risk factors in 2020 that are positively associated with COVID-19
mortality
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Prevalence in 2020, % (95% Cl)
Age Former Lung Heart In nursing Any positive
(years) BMI30-35 BMI35-40 BMI40+ smoker disease disease Diabetes Cancer Stroke Dementia home risk factor
25-34 20.7 8.9 3.0 30.4 3.0 3.0 2.2 13 0.9 . . 57.0
(20.4-21.0) (8.6-9.2) (2.8-3.2) (29.4-31.4) (2.7-3.3) (2.7-3.3) (1.9-25) (1.0-16) (0.8-1.0) . . (56.2- 57.8)
35-44 23.8 10.9 5.1 33.8 5.6 73 7.1 2.9 1.5 . . 66.0
(23.4-24.2) (10.6-11.2) (4.7-5.5) (32.9-34.7) (5.1-6.1) (6.8-7.8) (6.4-7.8) (2.5-3.3) (13-1.7) . . (65.4 - 66.6)
45-54 24.0 11.0 4.9 29.8 7.2 12.4 12.9 5.1 2.3 . . 68.3
(23.5-24.5) (10.7-11.3) (4.5-5.3) (29.1-30.5) (6.5-7.9) (11.6-13.2) (12.0-13.8) (4.5-5.7) (2.0-2.6) . . (67.6 - 69.0)
55-64 24.5 12.2 7.5 37.9 10.8 17.5 26.3 12.8 6.3 1.2 0.3 80.6
(23.9-25.1) (11.6-12.8) (6.8-8.2) (35.9-39.9) (9.6-12.0) (16.5-18.5) (24.8-27.8) (11.4-14.2) (5.4-7.2) (0.8-1.6) (0.2-0.4) (79.0-82.2)
65-74 23.2 9.6 4.8 41.7 12.4 27.7 32.8 20.7 9.8 3.0 0.9 84.9
(22.1-24.3) (9.0-10.2) (4.2-5.4) (39.4-44.0) (11.3-13.5) (25.9-29.5) (31.2-34.4) (19.5-21.9) (8.9-10.7) (2.8-3.2) (0.8-1.0) (83.8-86.0)
75-84 18.6 6.1 2.3 46.7 15.0 39.5 34.0 27.9 17.4 10.7 4.6 89.8
(17.9-19.3) (5.6-6.6) (1.8-2.8) (44.1-49.3) (14.1-15.9) (37.5-41.5) (32.3-35.7) (26.3-29.5) (15.6-19.2) (10.1-11.3) (4.1-5.1) (88.8-90.8)
85+ 9.0 2.0 0.4 44.5 15.0 50.5 27.5 29.9 26.7 34.6 24.8 93.8

(8.2-9.8) (16-2.4) (0.3-0.5) (40.8-48.2) (13.4-16.6) (47.8-53.2) (25.1-29.9) (27.6-32.2) (24.9- 28.5) (33.0-36.2) (22.9- 26.7) (92.6- 95.0)

This figure reports the prevalence of different risk factors in the US adult population ages 25+ as of July 1, 2020.
The estimates are produced by the Future Adult Model and the Future Elderly Model. The category “any positive
risk factor” includes individuals who have at least one of the risk factors listed in the figure. 95% uncertainty
intervals are given in parentheses. BMI: body mass index.
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Supplement Figure 2. Black population: prevalence of risk factors in 2020 that are positively associated

with COVID-19 mortality
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Prevalence in 2020, % (95% Cl)
Age Former Lung Heart In nursing Any positive
(years) BMI30-35 BMI35-40 BMI40+ smoker disease disease Diabetes Cancer Stroke Dementia home risk factor
25-34 26.9 15.9 6.5 27.6 35 4.3 2.0 0.4 2.1 68.2
(26.4-27.4) (15.3-16.5) (6.1-6.9) (26.2-29.0) (3.0-4.0) (3.9-47) (1.6-2.4) (0.2-0.6) (1.9-2.3) (67.4 - 69.0)
35-44 27.9 16.6 9.7 26.7 8.4 10.0 10.4 15 2.4 73.5
(27.2-28.6) (16.0-17.2) (9.2-10.2) (25.6- 27.8) (7.6-9.2) (9.3-10.7) (9.6-11.2) (1.1-1.9) (1.9-2.9) (72.7-74.3)
45-54 28.4 15.8 9.0 22.1 10.3 13.9 16.8 3.2 4.4 73.7
(27.7-29.1) (15.2-16.4) (8.4-9.6) (21.3-22.9) (9.5-11.1) (12.9-14.9) (15.5-18.1) (2.4-4.0) (3.7-5.1) . (72.8-74.6)
55-64 26.8 14.9 10.8 37.1 8.9 17.7 34.6 10.9 9.7 3.4 0.3 85.5
(25.6-28.0) (14.0-15.8) (9.3-12.3) (34.0- 40.2) (7.4-10.4) (15.6-19.8) (31.4-37.8) (8.9-129) (7.6-11.8) (2.2-4.6) (0.2-0.4) (84.1-86.9)
65-74 24.6 13.1 7.1 44.6 13.7 29.5 47.1 18.8 17.7 10.2 14 90.5
(22.7-26.5) (11.6- 14.6) (5.9-8.3) (39.6-49.6) (11.6-15.8) (24.8-34.2) (42.9-51.3) (16.1-21.5) (14.9-20.5) (8.6-11.8) (0.9-1.9) (88.9-92.1)
75-84 22.4 7.6 2.8 44.6 15.2 37.3 51.2 22.3 21.3 27.3 5.7 94.7
(20.2-24.6) (5.8-9.4) (1.6-4.0) (40.6-48.6) (10.5-19.9) (31.5-43.1) (44.9-57.5) (18.8-25.8) (18.3-24.3) (23.7-30.9) (3.8-7.6) (92.6-96.8)
85+ 11.5 3.0 1.0 39.8 12.1 42.1 40.0 26.5 315 62.7 24.8 96.7
(8.6-14.4) (1.8-4.2) (0.4-1.6) (30.3-49.3) (8.4-15.8) (36.1-48.1) (33.2-46.8) (21.7-31.3) (25.5-37.5) (57.9-67.5) (21.0-28.6) (95.4-98.0)

This figure reports the prevalence of different risk factors in the US adult Black population ages 25+ as of July 1,
2020. The estimates are produced by the Future Adult Model and the Future Elderly Model. The category “any

positive risk factor” includes individuals who have at least one of the risk factors listed in the figure. 95%
uncertainty intervals are given in parentheses. BMI: body mass index.
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Supplement Figure 3. Hispanic population: prevalence of risk factors in 2020 that are positively associated
with COVID-19 mortality
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Prevalence in 2020, % (95% Cl)
Age Former Lung Heart In nursing Any positive
(years) BMI30-35 BMI35-40 BMI40+ smoker disease disease Diabetes Cancer Stroke Dementia home risk factor
25-34 21.7 10.5 3.9 29.5 11 2.2 4.0 0.4 0.2 57.0
(21.1-22.3) (10.0-11.0) (3.5-4.3) (27.2-31.8) (0.7-1.5) (1.8-2.6) (3.3-4.7) (0.1-0.7) (0.1-0.3) (55.1-58.9)
35-44 26.3 12.5 5.4 334 35 4.6 8.4 1.4 1.8 66.4
(25.3-27.3) (11.6-13.4) (4.7-6.1) (31.4-35.4) (2.6-4.4) (3.6-56) (6.2-10.6) (0.7-2.1) (1.5-2.1) (64.5 - 68.3)
45-54 25.6 11.5 4.3 26.2 33 7.1 17.9 2.2 1.2 66.5
(24.5-26.7) (10.6-12.4) (3.7-4.9) (24.7-27.7) (2.4-4.2) (55-87) (145-213) (1.2-3.2) (0.7-1.7) . (64.7 - 68.3)
55-64 26.8 13.0 7.7 40.1 7.7 14.4 41.2 10.0 6.8 2.7 0.3 84.6
(25.4-28.2) (11.6- 14.4) (5.4-10.0) (36.7-43.5) (5.8-9.6) (11.8-17.0) (35.9-46.5) (7.1-12.9) (49-87) (1.7-3.7) (0.1-0.5) (81.8-87.4)
65-74 27.4 11.3 4.3 42.4 10.9 25.0 52.8 15.5 10.6 7.8 0.7 90.2
(24.7-30.1) (9.6-13.0) (2.8-5.8) (37.4-47.4) (6.6-15.2) (19.3-30.7) (47.8-57.8) (11.4-19.6) (6.9-14.3) (6.3-9.3) (0.3-1.1) (88.0-92.4)
75-84 18.4 5.0 14 43.7 10.3 35.1 53.4 17.6 15.5 27.9 4.6 93.5
(13.5-23.3) (2.7-7.3) (0.4-2.4) (34.7-52.7) (6.8-13.8) (28.8-41.4) (42.9-63.9) (12.1-23.1) (10.8-20.2) (24.5-31.3) (2.7-6.5) (91.1-95.9)
85+ 10.8 2.4 0.3 41.0 10.9 35.2 40.2 19.7 22.4 62.9 214 93.4
(6.8-14.8) (1.1-3.7) (0.1-0.5) (32.8-49.2) (7.3-14.5) (27.5-42.9) (29.4-51.0) (13.5-25.9) (15.6-29.2) (56.8-69.0) (17.0- 25.8) (89.7-97.1)

This figure reports the prevalence of different risk factors in the US adult Hispanic population ages 25+ as of July
1, 2020. The estimates are produced by the Future Adult Model and the Future Elderly Model. The category “any
positive risk factor” includes individuals who have at least one of the risk factors listed in the figure. 95%

uncertainty intervals are given in parentheses. BMI: body mass index.
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Supplement Figure 4. White population: prevalence of risk factors in 2020 that are positively associated
with COVID-19 mortality
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Prevalence in 2020, % (95% Cl)
Age Former Lung Heart In nursing Any positive
(years) BMI30-35 BMI35-40 BMI40+ smoker disease disease Diabetes Cancer Stroke Dementia home risk factor
25-34 19.1 6.9 1.9 313 3.6 29 1.7 1.8 0.9 . . 54.5
(18.8-19.4) (6.7-7.1) (1.7-2.1) (30.2-32.4) (3.3-3.9) (2.6-3.2) (1.5-1.9) (1.5-2.1) (0.8-1.0) . ) (53.8-55.2)
35-44 22.3 9.4 4.1 353 5.7 7.6 6.0 3.6 13 . . 64.4
(21.9-22.7) (9.1-9.7) (3.7-4.5) (34.2-36.4) (5.1-6.3) (7.1-81) (55-6.5) (3.0-4.2) (1.1-1.5) . i (63.8- 65.0)
45-54 22.8 10.1 44 32.0 7.6 13.4 11.0 6.1 2.2 . . 67.8
(22.3-23.3) (9.8-10.4) (4.0-4.8) (31.2-32.8) (6.8-8.4) (12.5-14.3) (10.3-11.7) (5.3-6.9) (1.9-2.5) . (67.1- 68.5)
55-64 23.7 11.6 7.0 37.7 11.6 18.0 22.6 13.5 5.7 0.7 0.3 79.2
(22.9-24.5) (10.8-12.4) (6.1-7.9) (35.1-40.3) (10.2-13.0) (16.7-19.3) (20.9-24.3) (11.8-15.2) (4.8-6.6) (0.3-1.1) (0.2-0.4) (77.3-81.1)
65-74 22.6 9.0 4.6 41.3 12.4 27.8 28.9 21.5 8.7 1.6 0.9 83.7
(21.5-23.7) (8.3-9.7) (3.8-5.4) (38.8-43.8) (11.2-13.6) (26.0-29.6) (27.0-30.8) (20.2-22.8) (7.8-9.6) (1.4-1.8) (0.7-1.1) (82.4-85.0)
75-84 18.2 6.0 2.3 47.2 15.5 40.1 30.5 29.4 17.1 7.5 4.5 88.9
(17.3-19.1) (5.5-6.5) (1.7-2.9) (44.3-50.1) (14.4-16.6) (37.9-42.3) (28.7-32.3) (27.6-31.2) (15.3-18.9) (6.9-8.1) (4.1-4.9) (87.7-90.1)
85+ 8.6 1.9 0.4 45.1 15.6 52.5 25.5 31.0 26.6 30.0 25.0 93.6

(7.7-95)  (1.5-2.3) (0.2-0.6) (41.3-48.9) (13.9-17.3) (49.4- 55.6) (23.1- 27.9) (28.5-33.5) (24.8-28.4) (28.2-31.8) (23.2- 26.8) (92.3 - 94.9)

This figure reports the prevalence of different risk factors in the US adult White population ages 25+ as of July 1,
2020. The estimates are produced by the Future Adult Model and the Future Elderly Model. The category “any
positive risk factor” includes individuals who have at least one of the risk factors listed in the figure. 95%
uncertainty intervals are given in parentheses. BMI: body mass index.
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Supplement Figure 5. Predicted years of life lost due to the US COVID-19 pandemic, relative to average life
expectancy in the decedent’s age-sex-race/ethnicity subgroup, by age group, sex, and race/ethnicity
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This figure reports the distribution of the number of years of life lost (YLLs) due the US COVID-19 pandemic,
relative to the decedent’s age-, sex-, and race/ethnicity-adjusted life expectancy as reported in the 2018 period life
table from the Centers for Disease Control and Prevention (CDC). An x-axis value of 0 indicates that the
decedent’s YLLs, which are estimated by microsimulation under the Individualized Risk analysis assumptions,
are equal to the average CDC life expectancy in their age-sex-race/ethnicity subgroup. Values greater than zero
correspond to decedents with YLLs above the average CDC life expectancy for their subgroup, while values less
than zero correspond to individuals with YLLs below the average CDC life expectancy. The dashed vertical lines
report medians of the distributions. 95% uncertainty intervals are given in parentheses. LE: life expectancy.
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Supplement Figure 6. Average Risk analysis: number of quality-adjusted life-years lost per 10,000, by age
group and comorbidity

230 (225-236)

i iti Age
No chronic conditions 848 (810-887) g
I 25-64
BMI 30-35 254 (248-260) . 65+

675 (659-691)

245 (238-251)
596 (574-618)

BMI 35-40

226 (216-237)
492 (452-533)

BMI 40+

234 (229-239)

Former smoker
699 (685-714)

197 (190-204)
510 (490-529)

Current smoker

277 (270-284
High blood pressure ( )
701 (689-714)

156 (148-163)

Lung di
ung disease 446 (431-461)

209 (200-217)
614 (595-633)

Heart disease

281 (269-293)
644 (624-663)

Diabetes

207 (194-221)
595 (576-615)

Cancer

221 (204-238)
574 (548-599)

Stroke

454 (352-557)
773 (759-788)

Dementia

259 (217-302)
574 (559-589)

0 250 500 750 1000 1250 1500 1750 2000
QALYs lost per 10,000

In nursing home

This figure reports the number of quality-adjusted life-years (QALY's) lost from the COVID-19 pandemic among
US adults ages 25-64 and ages 65+, by comorbidity, over the time period March 22, 2020 through March 13,
2021. 95% uncertainty intervals are given in parentheses. The estimates are produced by the microsimulation
model’s Average Risk analysis, which assumes that each excess death occurred randomly within the 5-year age,
sex, and race/ethnicity category that corresponds to that death. Estimates for dementia and living in a nursing
home pertain only to ages 55+. Non-COVID-19-related excess deaths are assumed to occur based on the (pre-
COVID-19) mortality probabilities projected by the microsimulation. BMI: Body Mass Index.
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Supplement Figure 7. Frailty-Based Risk analysis: number of quality-adjusted life-years lost per 10,000, by
age group and comorbidity
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This figure reports the number of quality-adjusted life-years (QALY's) lost from the COVID-19 pandemic among
US adults ages 25-64 and ages 65+, by comorbidity, over the time period March 22, 2020 through March 13,
2021. 95% uncertainty intervals are given in parentheses. The estimates are produced by the microsimulation
model’s Frailty-Based Risk analysis, which assigns all excess deaths within the subgroup to the individuals with
the highest annual mortality hazard projected by the microsimulation. Estimates for dementia and living in a
nursing home pertain only to ages 55+. Non-COVID-19-related excess deaths are assumed to occur based on the
(pre-COVID-19) mortality probabilities projected by the microsimulation. BMI: Body Mass Index.
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Supplement Figure 8. Number of quality-adjusted life-years lost per 10,000, by age group, sex, and

race/ethnicity

Ages 25-64

251 (244-259) ..

Female 231 (218-245) Race/Ethnicity
93 (90-95) I Black

I Hispanic

531 (513-550) m White

Male 533 (503-563)
179 (175-183)
0 250 500 750 1000 1250 1500 1750 2000
Ages 65+

751 (719-783)
Female 794 (737-851)

382 (374-390)

1,138 (1,088-1,189)
Male

561 (546-575)

1,371 (1,295-1,447)

0 250 500 750 1000 1250 1500

QALYs lost per 10,000

1750

2000

This figure reports the number of quality-adjusted life-years (QALYSs) lost per 10,000 among US populations ages
25-64 and 65+, by race/ethnicity and sex, over the time period March 22, 2020 through March 13, 2021 as a result
of the COVID-19 pandemic. 95% uncertainty intervals are given in parentheses. The estimates are produced by
the microsimulation model’s Individualized Risk analysis, which assigns all COVID-19-related excess deaths
within the age-sex-race/ethnicity subgroup in proportion to estimates of COVID-19 comorbidity mortality odds
ratios, and assigns non-COVID-19-related deaths in proportion to the 2020 (pre-COVID-19) annual mortality

hazard projected by the microsimulation.
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Supplement Figure 9. Average Risk analysis: number of quality-adjusted life-years lost per 10,000, by

race/ethnicity and comorbidity
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This figure reports the number of quality-adjusted life-years (QALY's) lost from the COVID-19 pandemic among
US adults ages 25-64 and ages 65+, by comorbidity and race/ethnicity, over the time period March 22, 2020
through March 13, 2021. 95% uncertainty intervals are given in parentheses. The estimates are produced by the
microsimulation model’s Average Risk analysis, which assumes that each excess death occurred randomly within
the 5-year age, sex, and race/ethnicity category that corresponds to that death. Estimates for dementia and living
in a nursing home pertain only to ages 55+. Non-COVID-19-related excess deaths are assumed to occur based on
the (pre-COVID-19) mortality probabilities projected by the microsimulation. BMI: Body Mass Index.
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Supplement Figure 10. Frailty-Based Risk analysis: number of quality-adjusted life-years lost per 10,000,
by race/ethnicity and comorbidity
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This figure reports the number of quality-adjusted life-years (QALY's) lost from the COVID-19 pandemic among
US adults ages 25-64 and ages 65+, by comorbidity and race/ethnicity, over the time period March 22, 2020
through March 13, 2021. 95% uncertainty intervals are given in parentheses. The estimates are produced by the
microsimulation model’s Frailty-Based Risk analysis, which assigns all excess deaths within the subgroup to the
individuals with the highest annual mortality hazard projected by the microsimulation. Estimates for dementia and
living in a nursing home pertain only to ages 55+. Non-COVID-19-related excess deaths are assumed to occur
based on the (pre-COVID-19) mortality probabilities projected by the microsimulation. BMI: Body Mass Index.
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This appendix describes technical details to support the paper ”Measuring the COVID-19
Mortality Burden in the United States: A Microsimulation Study”. In addition to
outcomes described in the paper, the microsimulation provides additional outcomes (e.g. medical
expenditures and social security benefits). As the data sources and models are intricately connected,
we report all data sources and methodology to provide a complete picture of the microsimulation to
the reader. However, the sections that are most relevant to this paper are: section [I]for an overview;
data source sections (PSID), (HRS), and (MEPS); sections [3| and |4] for estimation of
the transition model and the model for new cohorts, respectively; section [6] for the implementation;
section [7] for validation strategies; and section [§] for baseline forecasts.



1 Functioning of the dynamic model

1.1 Background

The Future Elderly Model (FEM) is a microsimulation model originally developed out of an effort
to examine health and health care costs among the elderly Medicare population (age 65+). A
description of the previous incarnation of the model can be found in Goldman et al. (2004)). The
original work was founded by the Centers for Medicare and Medicaid Services and carried out by
a team of researchers composed of Dana P. Goldman, Paul G. Shekelle, Jayanta Bhattacharya,
Michael Hurd, Geoffrey F. Joyce, Darius N. Lakdawalla, Dawn H. Matsui, Sydne J. Newberry,
Constantijn W. A. Panis and Baoping Shang.

Since then various extensions have been implemented to the original model. The most recent
version of the FEM now projects health outcomes for all Americans aged 51 and older and uses the
Health and Retirement Study (HRS) as a host dataset rather than the Medicare Current Beneficiary
Survey (MCBS). The work has also been extended to include economic outcomes such as earnings,
labor force participation and pensions. This work was funded by the National Institute on Aging
through its support of the RAND Roybal Center for Health Policy Simulation (P30AG024968),
the Department of Labor through contract J-9-P-2-0033, the National Institutes of Aging through
the RO1 grant “Integrated Retirement Modeling” (RO1AG030824) and the MacArthur Foundation
Research Network on an Aging Society.

This document describes the Future Adult Model (FAM), the development of the model to
forecast Americans aged 25 and older. FAM uses the Panel Survey of Income Dynamics (PSID) as
the host dataset. In addition to modeling health, health care costs, and economic outcomes, FAM
also models life events such as changes in marital status and childbearing. Development of FAM is
supported by the National Institutes of Aging through the USC Roybal Center for Health Policy
Simulation (5P30AG024968-13) and the MacArthur Foundation Research Network on an Aging
Society.

1.2 Overview

The defining characteristic of the model is the modeling of real rather than synthetic cohorts, all
of whom are followed at the individual level. This allows for more heterogeneity in behavior than
would be allowed by a cell-based approach. Also, since the PSID interviews both respondent and
spouse, we can link records to calculate household-level outcomes, which depend on the responses
of both spouses.

The model has three core components:

e The replenishing cohort module predicts the economic and health outcomes of new cohorts
of 25/26 year-olds. This module takes in data from the Panel Survey of Income Dynamics
(PSID) and trends calculated from other sources. It allows us to generate cohorts as the
simulation proceeds, so that we can measure outcomes for the age 25+ population in any
given year.

e The transition module calculates the probabilities of transiting across various health states
and financial outcomes. The module takes as inputs risk factors such as smoking, weight, age
and education, along with lagged health and financial states. This allows for a great deal of
heterogeneity and fairly general feedback effects. The transition probabilities are estimated
from the longitudinal data in the PSID.



e The policy outcomes module aggregates projections of individual-level outcomes into policy
outcomes such as taxes, medical care costs, and disability benefits. This component takes
account of public and private program rules to the extent allowed by the available outcomes.
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Figure 1: Architecture of the FAM

Figure [1| provides a schematic overview of the model. In this example, we start in 2014 with an
initial population aged 254 taken from the PSID. We then predict outcomes using our estimated
transition probabilities (see section . Those who survive make it to the end of that year, at
which point we calculate policy outcomes for the year. We then move to the following time period
(two years later), when a replenishing cohort of 25 and 26 year-olds enters (see section . This
entrance forms the new age 25+ population, which then proceeds through the transition model as
before. This process is repeated until we reach the final year of the simulation.

1.3 Comparison with other microsimulation models of health expendi-
tures

The precursor to the FAM, the FEM, was unique among models that make health expenditure
projections. It was the only model that projected health trends rather than health expenditures.
It was also unique in generating mortality projections based on assumptions about health trends
rather than historical time series.

FAM extends FEM to younger ages, adding additional dimensions to the simulation. Events
over the life course, such as marital status and childbearing are simulated. Labor force participation
is modeled in greater detail, distinguishing between out-of-labor force, unemployed, working part-
time, and working full-time.



1.3.1 CBOLT Model

The Congressional Budget Office (CBO) uses time-series techniques to project health expenditure
growth in the short term and then makes an assumption on long-term growth. They use a long term
growth of excess costs of 2.3 percentage points starting in 2020 for Medicare. They then assume a
reduction in excess cost growth in Medicare of 1.5% through 2083, leaving a rate of 0.9% in 2083.
For non-Medicare spending they assume an annual decline of 4.5%, leading to an excess growth
rate in 2083 of 0.1%.

1.3.2 Centers for Medicare and Medicaid Services

The Centers for Medicare and Medicaid Services (CMS) performs an extrapolation of medical
expenditures over the first ten years, then computes a general equilibrium model for years 25
through 75 and linearly interpolates to identify medical expenditures in years 11 through 24 of their
estimation. The core assumption they use is that excess growth of health expenditures will be one
percentage point higher per year for years 25-75 (that is if nominal GDP growth is 4%, health care
expenditure growth will be 5%).

1.3.3 MINT Model

Modeling Income in the Near Term (MINT) is a microsimulation model developed by the Urban
Institute and others for the Social Security Administration to enable policy analysis of proposed
changes to Social Security benefits and payroll taxes Smith and Favreault| (2013). MINT uses the
Survey of Income and Program Participation (SIPP) as the base data and simulates a range of
outcomes, with a focus on those that will impact Social Security. Recent extensions have included
health insurance coverage and out-of-pocket medical expenditures. Health enters MINT via self-
reported health status and self-reported work limitations. MINT simulates marital status and
fertility.

2 Data sources used for estimation

The Panel Survey of Income Dynamics is the main data source for the model. We estimate models
for assigning characteristics for the replacement cohorts in Replenishing Conditions Module. These
are summarized in Table [II We estimate transition models for the entire PSID population in the
Transition Model Module. Transitioned outcomes are described in Table 2|

2.1 Panel Survey of Income Dynamics

The Panel Survey of Income Dynamics (PSID), waves 1999-2013 are used to estimate the transition
models. PSID interviews occur every two years. We create a dataset of respondents who have
formed their own households, either as single heads of households, cohabitating partners, or married
partners. These heads, wives, and ”"wives” (males are automatically assigned head of household
status by the PSID if they are in a couple) respond to the richest set of PSID questions, including
the health questions that are critical for our purposes.

We use all respondents age 25 and older. When appropriately weighted, the PSID is represen-
tative of U.S. households. We also use the PSID as the host data for full population simulations
that begin in 2009. Respondents age 25 and 26 are used as the basis for the synthetic cohorts that



we generate, used for replenishing the sample in population simulations or as the basis of cohort
scenarios.

The PSID continually adds new cohorts that are descendents (or new partners/spouses of de-
scendents). Consequently, updating the simulation to include more recent data is straightforward.

2.2 Health and Retirement Study

The Health and Retirement Study (HRS), waves 1998-2012 are pooled with the PSID for estimation
of mortality and widowhood models. The HRS has a similar structure to the PSID, with interviews
occurring every two years. The HRS data is harmonized to the PSID for all relevant variables. We
use the dataset created by RAND (RAND HRS, version O) as our basis for the analysis. We use
all cohorts in the analysis. When appropriately weighted, the HRS in 2010 is representative of U.S.
households where at least one member is at least 51. Compared to the PSID, the HRS includes
more older Hispanics and interviews more respondents once they have entered nursing homes.

2.3 Medical Expenditure Panel Survey

The Medical Expenditure Panel Survey (MEPS), beginning in 1996, is a set of large-scale surveys
of families and individuals, their medical providers (doctors, hospitals, pharmacies, etc.), and em-
ployers across the United States. The Household Component (HC) of the MEPS provides data
from individual households and their members, which is supplemented by data from their medical
providers. The Household Component collects data from a representative sub sample of households
drawn from the previous year’s National Health Interview Survey (NHIS). Since NHIS does not
include the institutionalized population, neither does MEPS: this implies that we can only use
the MEPS to estimate medical costs for the non-elderly (25-64) population. Information collected
during household interviews include: demographic characteristics, health conditions, health status,
use of medical services, sources of medical payments, and body weight and height. Each year the
household survey includes approximately 12,000 households or 34,000 individuals. Sample size for
those aged 25-64 is about 15,800 in each year. MEPS has comparable measures of social-economic
(SES) variables as those in PSID, including age, race/ethnicity, educational level, census region,
and marital status. We estimate expenditures and utilization using 2007-2010 data.

See Section for a description. FAM also uses MEPS 2001-2003 data for QALY model esti-
mation.

2.4 Medicare Current Beneficiary Survey

The Medicare Current Beneficiary Survey (MCBS) is a nationally representative sample of aged,
disabled and institutionalized Medicare beneficiaries. The MCBS attempts to interview each re-
spondent twelve times over three years, regardless of whether he or she resides in the community,
a facility, or transitions between community and facility settings. The disabled (under 65 years of
age) and oldest-old (85 years of age or older) are over-sampled. The first round of interviewing
was conducted in 1991. Originally, the survey was a longitudinal sample with periodic supplements
and indefinite periods of participation. In 1994, the MCBS switched to a rotating panel design
with limited periods of participation. Each fall a new panel is introduced, with a target sample
size of 12,000 respondents and each summer a panel is retired. Institutionalized respondents are
interviewed by proxy. The MCBS contains comprehensive self-reported information on the health



status, health care use and expenditures, health insurance coverage, and socioeconomic and demo-
graphic characteristics of the entire spectrum of Medicare beneficiaries. Medicare claims data for
beneficiaries enrolled in fee-for-service plans are also used to provide more accurate information on
health care use and expenditures. MCBS years 2007-2010 are used for estimating medical cost and
enrollment models. See section [5.1] for discussion.

3 Estimation

In this section we describe the approach used to estimate the transition model, the core of the FAM,
and the initial cohort model which is used to rejuvenate the simulation population.

3.1 Transition model

We consider a large set of outcomes for which we model transitions. Table[5]gives the set of outcomes
considered for the transition model along with descriptive statistics and the population at risk when
estimating the relationships.

Since we have a stock sample from the age 25+ population, each respondent goes through
an individual-specific series of intervals. Hence, we have an unbalanced panel over the age range
starting from 25 years old. Denote by j;o the first age at which respondent i is observed and j;r1,
the last age when he is observed. Hence we observe outcomes at ages j; = jio, - - -, Jir-

We first start with discrete outcomes which are absorbing states (e.g. disease diagnostic, mor-
tality, benefit claiming). Record as h; j, , = 1 if the individual outcome m has occurred as of age j;.
We assume the individual-specific component of the hazard can be decomposed in a time invariant
and variant part. The time invariant part is composed of the effect of observed characteristics x;
that are constant over the entire life course and initial conditions h; j, _, (outcomes other than the
outcome m) that are determined before the first age in which each individual is observed The time-
varying part is the effect of previously diagnosed outcomes h; j, 1, on the hazard for mE] We
assume an index of the form 2, j, = @By + hi j,—1,—mVm + i jo,—m¥m. Hence, the latent component
of the hazard is modeled as

i jom = TiBm + hijim1,—mYm + Rijo,—mWm + Qmj; + Eijim (1)

m:]-7"'7M07ji:jiOa"'7ji,Tiai:17"'7N

The term ¢; j, » is a time-varying shock specific to age j;. We assume that this last shock is normally
distributed and uncorrelated across diseases. We approximate a,, ;, with an age spline with knots
at ages 35, 45, 55, 65, and 75. This simplification is made for computational reasons since the
joint estimation with unrestricted age fixed effects for each condition would imply a large number
of parameters. The absorbing outcome, conditional on being at risk, is defined as

hi,ji,m - maX{‘[<h:,j¢,m > 0)7 hi,ji—l,m}

The occurrence of mortality censors observation of other outcomes in a current year.

A number of restrictions are placed on the way feedback is allowed in the model. Table [
documents restrictions placed on the transition model. We also include a set of other controls. A
list of such controls is given in Table [7| along with descriptive statistics.

We have five other types of outcomes:

'With some abuse of notation, j; — 1 denotes the previous age at which the respondent was observed.



1. First, we have binary outcomes which are not an absorbing state, such as starting smoking.
We specify latent indices as in for these outcomes as well but where the lag dependent
outcome also appears as a right-hand side variable. This allows for state-dependence.

2. Second, we have ordered outcomes. These outcomes are also modeled as in recognizing
the observation rule is a function of unknown thresholds ¢,,. Similarly to binary outcomes,
we allow for state-dependence by including the lagged outcome on the right-hand side.

3. The third type of outcomes we consider are censored outcomes, such as financial wealth. For
wealth, there are a non-negligible number of observations with zero and negative wealth. For
these, we consider two part models where the latent variable is specified as in but model
probabilities only when censoring does not occur. In total, we have M outcomes.

4. The fourth type of outcomes are continuous outcomes modeled with ordinary least squares.
For example, we model transitions in log(BMI). We allow for state-dependence by including
the lagged outcome on the right-hand side.

5. The final type of models are categorical, but without an ordering. For example, an individual
can transition to being out of the labor force, unemployed, or working (either full- or part-
time). In situations like this, we utilize a multinomial logit model, including the lagged
outcome on the right-hand side.

The parameters 6; = ({ By Yims Vi gm}%zl , >, can be estimated by maximum likelihood. Given

the normality distribution assumption on the time-varying unobservable, the joint probability of all
time-intervals until failure, right-censoring or death conditional on the initial conditions h; j, —p, is
the product of normal univariate probabilities. Since these sequences, conditional on initial condi-
tions, are also independent across diseases, the joint probability over all disease-specific sequences
is simply the product of those probabilities.

For a given respondent observed from initial age j;o to a last age jp, the probability of the
observed health history is (omitting the conditioning on covariates for notational simplicity)

M—-1 Jt; Jt;
005 hige) = | TT T Pom(@)om O ain s | TT Pryaa (6)
m=1 j=ji J=Jji1
We use the —0 superscript to make explicit the conditioning on h; ;.0 = (Riji.0s- - - Rijig.r) . We

have limited information on outcomes prior to this age. The likelihood is a product of M terms with
the mth term containing only (8., Ym, ¥m,sm). This allows the estimation to be done separately
for each outcome.

3.1.1 Further Details on Specific Transition Models

This section describes the modeling strategy for particular outcomes.

Employment Status Ultimately, we wish to simulate if an individual is out of the labor force,
unemployed, working part-time, or working full-time at time t. We treat the estimation of this
as a two-stage process. In the first stage, we predict if the individual is out of the labor force,
unemployed, or working for pay using a multinomial logit model. Then, conditional on working for
pay, we estimate if the individual is working part- or full-time using a probit model.



Earnings We estimate last calendar year earnings models based on the current employment sta-
tus, controlling for the prior employment status. Of particular concern are individuals with no earn-
ings, representing approximately twenty-five percent of the unemployed and seventy-eight percent
of those out of the labor force. This group is less than 0.5% of the full- and part-time populations.
We use a two-stage process for those out of the labor force and unemployed. The first stage is
a probit that estimates if the individual has any earnings. The second stage is an OLS model of
log(earnings) for those with non-zero earnings. For those working full- or part-time, we estimate
OLS models of log(earnings).

Relationship Status We are interested in three relationship statuses: single, cohabitating, and
married. In each case, we treat the transition from time ¢ to time ¢t 4+ 1 as a two-stage process. In
the first stage, we estimate if the individual will remain in their current status. In the second stage,
we estimate which of the two other states the individual will transition to, conditional on leaving
their current state.

Childbearing We estimate the number of children born in two-years separately for women and
men. We model this using an ordered probit with three categories: no new births, one birth, and
two births. Based on the PSID data, we found the exclusion of three or more births in a two-year
period to be appropriate.

3.1.2 Inverse Hyperbolic Sine Transformation

One problem fitting the wealth distribution is that it has a long right tail and some negative values.
We use a generalization of the inverse hyperbolic sine transform (IHT) presented in [MacKinnon
and Magee| (1990)). First denote the variable of interest y. The hyperbolic sine transform is

y  sinh(z) = exp(z) —Qexp(—x) 2)

The inverse of the hyperbolic sine transform is
z = sinh ™' (y) = h(y) = log(y + (1 +y*)"?)

Consider the inverse transformation. We can generalize such transformation, first allowing for a
shape parameter 6,

r(y) = h(y)/0 (3)
Such that we can specify the regression model as
r(y) = zf +e,e ~ N(0,0%) (4)

A further generalization is to introduce a location parameter w such that the new transformation

becomes
gly) = M ) 5)

where 1 (a) = (1 + a?)"'/2,

We specify in terms of the transformation g. The shape parameters can be estimated from
the concentrated likelihood for 6,w. We can then retrieve 3, o by standard OLS.

Upon estimation, we can simulate

gzx,@+0ﬁ
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where 7 is a standard normal draw. Given this draw, we can retransform using and

h(0(y + w)) = Oh'(Bw)g + h(bw)

;= sinh [0R' (0w)§ + h(Ow)] — Ow
B 6

The included estimates table (estimates FAM.xml) gives parameter estimates for the transition
models.

4 Model for replenishing cohorts

We first discuss the empirical strategy, then present the model and estimation results. The model
for replenishing cohorts integrates information coming from trends among younger cohorts with the
joint distribution of outcomes in the current population of age 25 respondents in the PSID.

4.1 Model and estimation

Assume the latent model for y! = (v, ..., y5)

yi =+ e

where ¢; is normally distributed with mean zero and covariance matrix 2. It will be useful to write
the model as

yi = i+ Lan;,

where Lq is a lower triangular matrix such that LoLg = € and n; = (1;1,...,7:m)" are standard
normal. We observe y; = I'(y}) which is a non-invertible mapping for a subset of the M outcomes.
For example, we have binary, ordered and censored outcomes for which integration is necessary.

The vector p can depend on some variables which have a stable distribution over time z; (say
race, gender and education). This way, estimation preserves the correlation with these outcomes
without having to estimate their correlation with other outcomes. Hence, we can write

i = 23

and the whole analysis is done conditional on z;.

For binary and ordered outcomes, we fix €2,,, ,, = 1 which fixes the scale. Also we fix the location
of the ordered models by fixing thresholds as 7 = —o0, 71 = 0, 7x = 400, where K denotes the
number of categories for a particular outcome. We also fix to zero the correlation between selected
outcomes (say earnings) and their selection indicator. Hence, we consider two-part models for these
outcomes. Because some parameters are naturally bounded, we also re-parameterize the problem
to guarantee an interior solution. In particular, we parameterize

Qo = exp(6m), m=my—1,..., M

Qo = tanh (&) V/ Qnmimn, myn=1,...,N

Tk = XP(Ym) + o1, k=2,..., K,, — 1,m ordered

and estimate the (0 m,Emn, 7x) instead of the original parameters. The parameter values are
estimated using the ¢mp package in Stata (Roodman, 2011)). Table|8| gives parameter estimates for
the indices while Table [9] gives parameter estimates of the covariance matrix in the outcomes.

11



4.2 'Trends for replenishing cohorts

Using the jointly estimated models previously described, we then assign outcomes to the replenishing
cohorts, imposing trends for some health, risk factor, and social outcomes. We currently impose
trends on BMI, education, number of children, marital status, hypertension, and smoking status
for these 25-26 year olds. These trends are estimated using the National Health Interview Survey
(health and risk factors) or the American Community Survey (social outcomes). All trends are

halted after 2029. The trends are shown in Table [10, Table [IT] and Table [I2]

5 Government revenues and expenditures

This gives a limited overview of how revenues and expenditures of the government are computed.

5.1 Medical costs estimation

In the FAM, a cost module links a person’s current state-demographics, economic status, current
health, risk factors, and functional status to 4 types of individual medical spending. The FAM
models: total medical spending (medical spending from all payment sources), Medicare spendingﬂ
Medicaid spending (medical spending paid by Medicaid), and out of pocket spending (medical
spending by the respondent). These estimates are based on pooled weighted least squares regres-
sions of each type of spending on risk factors, self-reported conditions, and functional status, with
spending inflated to constant dollars using the medical component of the consumer price index. We
use the 2007-2010 Medical Expenditure Panel Survey for these regressions for persons not Medicare
eligible, and the 2007-2010 Medicare Current Beneficiary Survey for spending for those that are
eligible for Medicare. Those eligible for Medicare include people eligible due to age (65+) or due to
disability status. Comparisons of prevalences and question wording across these different sources
are provided in Tables [3] and [, respectively.

In the baseline scenario, this spending estimate can be interpreted as the resources consumed
by the individual given the manner in which medicine is practiced in the United States during the
post-part D era (2006-2010). Models are estimated for total, Medicaid, out of pocket spending, and
for the Medicare spending.

Since Medicare spending has numerous components (Parts A and B are considered here), models
are needed to predict enrollment. In 2004, 98.4% of all Medicare enrollees, and 99%+ of aged
enrollees, were in Medicare Part A, and thus we assume that all persons eligible for Medicare
take Part A. We use the 2007-2010 MCBS to model take up of Medicare Part B for both new
enrollees into Medicare, as well as current enrollees without Part B. Estimates are based on weighted
probit regression on various risk factors, demographic, and economic conditions. The PSID starting
population for the FAM does not contain information on Medicare enrollment. Therefore another
model of Part B enrollment for all persons eligible for Medicare is estimated via a probit, and used
in the first year of simulation to assign initial Part B enrollment status. Estimation results are
shown in estimates table. The MCBS data over represents the portion enrolled in Part B, having
a 97% enrollment rate in 2004 instead of the 93.5% rate given by Medicare Trustee’s Report. In
addition to this baseline enrollment probit, we apply an elasticity to premiums of -0.10, based
on the literature and simulation calibration for actual uptake through 2009 (Atherly et al., [2004;

2We estimate annual medical spending paid by specific parts of Medicare (Parts A, B, and D) and sum to get the
total Medicare expenditures.
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Buchmueller, 2006). The premiums are computed using average Part B costs from the previous
time step and the means-testing thresholds established by the ACA.

Since 2006, the Medicare Current Beneficiaries Survey (MCBS) contains data on Medicare Part
D. The data gives the capitated Part D payment and enrollment. When compared to the summary
data presented in the CMS 2007 Trustee Report, the 2006 per capita cost is comparable between
the MCBS and the CMS. However, the enrollment is underestimated in the MCBS, 53% compared
to 64.6% according to CMS.

A cross-sectional probit model is estimated using years 2007-2010 to link demographics, economic
status, current health, and functional status to Part D enrollment - see the estimates table. To
account for both the initial under reporting of Part D enrollment in the MCBS, as well as the CMS
prediction that Part D enrollment will rise to 75% by 2012, the constant in the probit model is
increased by 0.22 in 2006, to 0.56 in 2012 and beyond. The per capita Part D cost in the MCBS
matches well with the cost reported from CMS. An OLS regression using demographic, current
health, and functional status is estimated for Part D costs based on capitated payment amounts.

The Part D enrollment and cost models are implemented in the Medical Cost module. The Part
D enrollment model is executed conditional on the person being eligible for Medicare, and the cost
model is executed conditional on the enrollment model leading a true result, after the Monte Carlo
decision. Otherwise the person has zero Part D cost. The estimated Part D costs are added with
Part A and B costs to obtain total Medicare cost, and any medical cost growth assumptions are
then applied.

6 Implementation

The FAM is implemented in multiple parts. Estimation of the transition and cross sectional models
is performed in Stata. The replenishing cohort model is estimated in Stata using the CMP package
(Roodman)|, 2011)). The simulation is implemented in C++ for speed and flexibility. Currently, the
simulation is run on Linux, Windows, and Mac OS X.

To match the two year structure of the PSID data used to estimate the transition models, the
FAM simulation proceeds in two year increments. The end of each two year step is designed to occur
on July 1st to allow for easier matching to population forecasts from Social Security. A simulation
of the FAM proceeds by first loading a population representative of the age 254+ US population
in 2009, generated from PSID. In two year increments, the FAM applies the transition models for
mortality, health, working, wealth, earnings, and benefit claiming with Monte Carlo decisions to
calculate the new states of the population. Once the simulation begins, trends in mortality are
applied. Separate mortality rate adjustment factors are defined for the under and over 65 age
groups based on the mortality projections from the 2013 SSA Trustees report. The SSA projections
are interpolated through 2090, then extended using GLM with log link through 2150. The average
yearly all-cause mortality reduction between 2020 and 2150 was 1.06% for ages 25-64, and 0.66% for
the 65+ population. The population is also adjusted by immigration forecasts from the US Census
Department, stratified by race and age. If incoming cohorts are being used, the new 25/26 year olds
are added to the population. The number of new 25/26 year olds added is consistent with estimates
from the Census, stratified by race. Once the new states have been determined and new 25/26
year olds added, the cross sectional models for medical costs are performed. Summary variables
are then computed. Computation of medical costs includes the persons that died to account for
end of life costs. To reduce uncertainty due to the Monte Carlo decision rules, the simulation is
performed multiple times (typically 100), and the mean of each summary variable is calculated
across repetitions.
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FAM simulation takes as inputs assumptions regarding the normal retirement age, real medical
cost growth, and interest rates. The default assumptions are taken from the 2010 Social Security
Intermediate scenario, adjusted for no price increases after 2010. Therefore simulation results are
in real 2009 dollars.

Different simulation scenarios are implemented by changing any of the following components:
incoming cohort model, transition models, interventions that adjust the probabilities of specific
transition, and changes to assumptions on future economic conditions.

6.1 Intervention Module

The intervention module can adjust characteristics of individuals when they are first read into
the simulation “init_interventions” or alter transitions within the simulation “interventions.” At
present, init_interventions can act on chronic diseases, ADL/TADL status, program participation,
and some demographic characteristics. Interventions within the simulation can currently act on
mortality, chronic diseases, and some program participation variables.

Interventions can take several forms. The most commonly used is an adjustment to a transition
probability. One can also delay the assignment of a chronic condition or cure an existing chronic
condition. Additional flexibility comes from selecting who is eligible for the intervention. Some
examples might help to make the interventions concrete.

e Example 1: Delay the enrollment into Social Security OASI by two years. In this scenario
claiming of Social Security benefits is transitioned as normal. However, if a person is predicted
to claim their benefits, then that status is not immediately assigned, but is instead assigned
two years later.

e Example 2: Cure hypertension for those with no other chronic diseases. In this scenario any
individual with hypertension (including those who have had hypertension for many years) is
cured (hypertension status is set to 0), as long as they do not have other chronic diseases.
This example uses the individuals chronic disease status as the eligibility criteria for the
intervention.

e Example 3: Reduce the incidence of hypertension for half of men aged 55 to 65 by 10% in the
first year of the simulation, gradually increasing the reduction to 20% after 10 years. This
example begins to show the flexibility in the intervention module. The eligibility criteria are
more complex (half of men in a specific age range are eligible) and the intervention changes
over time. Mathematically, the intervention works by acting on the incidence probability, p.
In the first year of the simulation, the probability is replaced by (1 — 0.5 0.1) p = 0.95p. The
binary outcome is then assigned based on this new probability. Thus, at the population level,
there is a 5% reduction in incidence for men aged 55 to 65, as desired. After 10 years, the
probability for this eligible population becomes (1 — 0.5 % 0.2) p = 0.9p.

More elaborate interventions can be programmed by the user.

7 Validation

We perform data-splitting and external corroboration exercises. Data splitting is a test of the
simulations internal validity that compares simulated outcomes to actual outcomes. External cor-
roboration compares model forecasts to others forecasts.
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7.1 Data Splitting

The data-splitting exercise randomly samples half of the PSID respondent IDs for use in estimating
the transition models. The respondents not used for estimation, but who were present in the PSID
sample in 1999, are then simulated from 1999 through 2013. Demographic, health, and economic
outcomes are compared between the simulated (FAM) and actual (PSID) populations.

Worth noting is how the composition of the population changes in this exercise. In 1999, the
sample represents those 25 and older. Since we follow a fixed cohort, the age of the population will
increase to 39 and older in 2013. This has consequences for some measures in later years where the
eligible population shrinks.

7.1.1 Demographics

Mortality and demographic measures are presented in Tables and [I14] Mortality incidence is
comparable between the simulated and observed populations. Demographic characteristics do not
differ between the two, except for age, which is slightly lower in the simulation population.

7.1.2 Health Outcomes

Binary health outcomes are presented in Table [I5] FAM underestimates the prevalence of IADL
limitations compared to the actual population. Binary outcomes, like diabetes, heart disease, lung
disease and stroke do not differ. FAM overestimates cancer and hypertension compared to the
actual population.

7.1.3 Health Risk Factors

Risk factors are presented in Table[16] FAM overestimates average BMI and underestimates smoking
behavior compared to the actual population. In terms of practical significance, this difference in
average BMI is equivalent to 1.4 pounds for an individual who is 58.

7.1.4 Economic Outcomes

Binary economic outcomes are presented in Table [I71 FAM underpredicts claiming of federal dis-
ability claiming. Social Security retirement claiming, Supplemental Security claiming, and working
for pay are not statistically different between FAM and the actual population.

On the whole, the data-splitting exercise is reassuring. There are differences that will be explored
and improved upon in the future.

7.2 External Corroboration

Finally, we compare FAM population forecasts to Census forecasts of the US population. Here, we
focus on the full PSID population (25 and older) and those 65 and older. For this exercise, we begin
the simulation in 2009 and simulate the full population through 2049. Population projections are
compared to the 2012 Census projections for years 2012 through 2049. See results in Table [I§] By
2049, FAM forecasts for 25 and older remain within 2% of Census forecasts.
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8 Baseline Forecasts

In this section we present baseline forecasts of the Future Adult Model. The figures show data from
the PSID for the 25+ population from 1999 through 2009 and forecasts from the FAM for the 25+
population beginning in 2009.

8.1 Disease Prevalence

Figure [2| depicts the six chronic conditions we project for men. And Figure [3| depicts the historic
and forecasted values for women.

Figure [4] shows historic and forecasted levels for any ADL difficulties, three or more ADL dif-
ficulties, any IADL difficulties, and two or more TADL difficulties for men 25 and older. Figure
shows historic and forecasted levels for any ADL difficulties, three or more ADL difficulties, any
IADL difficulties, and two or more IADL difficulties for women 25 and older.
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10 Tables

Economic Outcomes Health Outcomes Other Outcomes

Work Status BMI Category Education
Earnings Smoking Category  Partnered
Wealth Hypertension Partner Type

Health Insurance

Table 1: Estimated outcomes in replenishing cohorts module
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Standard

Control variable Mean deviation Minimum Maximum
Non-Hispanic black 0.112 0.315 0 1
Hispanic 0.127 0.333 0 1
Single 0.343 0.475 0 1
Cohabitating 0.0540 0.226 0 1
Married 0.603 0.489 0 1
Less than high school 0.133 0.340 0 1
High school/GED /some college/AA 0.552 0.497 0 1
College graduate 0.210 0.407 0 1
More than college 0.105 0.307 0 1
Doctor ever - heart disease 0.141 0.348 0 1
Doctor ever - hypertension 0.248 0.432 0 1
Doctor ever - stroke 0.0295 0.169 0 1
Doctor ever - chronic lung disease 0.0676 0.251 0 1
Doctor ever - cancer 0.0516 0.221 0 1
Doctor ever - diabetes 0.0889 0.285 0 1
Never smoked 0.473 0.499 0 1
Former smoker 0.346 0.476 0 1
Current smoker 0.180 0.385 0 1
No ADL limitations 0.868 0.338 0 1
1 ADL limitation 0.0596 0.237 0 1
2 ADL limitations 0.0262 0.160 0 1
3 or more ADL limitations 0.0459 0.209 0 1
No TADL limitations 0.866 0.340 0 1
1 TADL limitation 0.0858 0.280 0 1
2 or more IADL limitations 0.0481 0.214 0 1
25 < BMI < 30 0.365 0.481 0 1
30 < BMI < 35 0.168 0.374 0 1
35 < BMI < 40 0.0666 0.249 0 1
BMI > 40 0.0379 0.191 0 1
Any Social Security income LCY 0.200 0.400 0 1
Any Disability income LCY 0.0389 0.193 0 1
Any Supplemental Security Income LCY 0.0188 0.136 0 1
Any health insurance LCY 0.876 0.329 0 1
Out of labor force 0.318 0.466 0 1
Unemployed 0.0618 0.241 0 1
Working part-time 0.177 0.381 0 1
Working full-time 0.444 0.497 0 1
Earnings in 1000s capped at 200K 34.01 40.03 0 200
Wealth in 1000s capped at 2 million 270.1 457.3 -1974 2000

Table 7: Descriptive statistics for variables in 2009 PSID ages 25+ sample used as simulation stock
population
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2001 2007 2013

FAM PSID FAM PSID FAM PSID
Outcome mean mean p | mean mean p | mean mean D
] Died 0.014 0.018 0.011 | 0.020 0.023 0.222 | 0.025 0.026 0.671

Table 13: Data-splitting validation of 1999 cohort: Mortality in 2001, 2007, and 2013

2001 2007 2013
FAM PSID FAM  PSID FAM PSID
Outcome mean  mean p | mean  mean p | mean  mean D
Age on July 1st | 49.185 49.022 0.467 | 53.347 53.379 0.887 | 57.150 57.960 0.000
Black 0.100  0.093 0.104 | 0.099 0.088 0.011| 0.099 0.092 0.173
Hispanic 0.078  0.078 0.994 | 0.083 0.085 0.553 | 0.089  0.095 0.250
Male 0.456 0.460 0.543 | 0.454 0.463 0.246 | 0.452 0.458 0.501

Table 14: Data-splitting validation of 1999 cohort: Demographic outcomes in 2001, 2007, and 2013

2001 2007 2013

FAM PSID FAM PSID FAM PSID
Outcome mean mean p | mean mean p | mean mean D
Any ADLs 0.081 0.064 0.000 | 0.110 0.126 0.001 | 0.134 0.142 0.177
Any TADLs 0.103 0.113 0.021 | 0.115 0.130 0.005 | 0.137 0.170 0.000
Cancer 0.037 0.035 0.369 | 0.064 0.054 0.004 | 0.092 0.077 0.002
Diabetes 0.067 0.062 0.136 | 0.099 0.090 0.042 | 0.134 0.127 0.198

Heart Disease 0.102 0.106 0.365 | 0.134 0.152 0.001 | 0.167 0.173 0.356
Hypertension 0.180 0.169 0.051 | 0.274 0.257 0.012 | 0.364 0.344 0.010
Lung Disease 0.038 0.039 0.641 | 0.061 0.058 0.293 | 0.083 0.091 0.112
Stroke 0.021 0.020 0.482 | 0.029 0.032 0.399 | 0.039 0.037 0.466

Table 15: Data-splitting validation of 1999 cohort: Binary health outcomes in 2001, 2007, and 2013
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Figure 2: Historic and Forecasted Chronic Disease Prevalence for Men 25+
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Figure 4: Historic and Forecasted ADL and IADL Prevalence for Men 25+
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Figure 5: Historic and Forecasted ADL and IADL Prevalence for Women 25+
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2001 2007 2013

FAM  PSID FAM  PSID FAM  PSID
Outcome mean  Imean p | mean mean p | mean mean P
BMI 26.820 26.757 0.407 | 27.511 27.440 0.423 | 27.959 27.742 0.033
Current smoker 0.187 0.200 0.018 | 0.157 0.167 0.084 | 0.133 0.146 0.033
Ever smoked 0.474 0.513 0.000 | 0.470 0.525 0.000 | 0.462 0.531 0.000

Table 16: Data-splitting validation of 1999 cohort: Risk factor outcomes in 2001, 2007, and 2013

2001 2007 2013
FAM PSID FAM PSID FAM PSID
Outcome mean mean p | mean Imean p | mean mean D

Claiming SSDI 0.017 0.023 0.004 | 0.020 0.033 0.000 | 0.027 0.049 0.000
Claiming OASI | 0.190 0.192 0.723 | 0.217 0.218 0.887 | 0.279 0.284 0.552
Claiming SSI 0.017 0.016 0.409 | 0.015 0.016 0.439 | 0.015 0.017 0.289
Working for pay | 0.651 0.683 0.000 | 0.625 0.657 0.000 [ 0.595 0.598 0.660

Table 17: Data-splitting validation of 1999 cohort: Binary economic outcomes in 2001, 2007, and
2013

31



NV 03 paredwod snsua)) :sisedar10j uoryendog :g1 9[qeRl,

718 zes L'GLT F'8LT  6V0C
1’18 z'es €L €CLT  LV0T
008 €18 002 TTle  SH0C
LS. 708 L'992 069z  €F0T
LLL 66 8¢9z 8'GOT 1702
G LL 7'6L €092 979z 6E0C
89, 8'8. 1°L5C T65C  LE0C
1°9. ¢ LL 1752 099 GE0T
9¢l R) 605 679  €€0T
&) 8¢l P LVT €6VC 1€0%
1°69 A 9°€vT LGV 620T
'Y 789 L 66T 617 L30T
029 169 6'GET 086 G20z
1'8G 719 LTET 6'€€C  €T0T
8'Gq LG 1'8G¢ 862 1202
s s 6'€2C ¢'GZe  610C
867 380G €61 60zc  LI0T
89¥ LLY LV1T 6¢Tc  GT0C
LT LY 107G 01Tz €10z
807 7P €90 990z 1102
768 9'6¢ 020 1502 600¢
+G9 TeUUIN NV +G9 SUSU0)  +Gg [PWIUIN NV +Gg SNsuo)  I8dx

32



References

Atherly, A., Dowd, B. E., and Feldman, R. (2004). The effect of benefits, premiums, and health
risk on health plan choice in the medicare program. Health services research, 39(4p1):847-864.

Buchmueller, T. (2006). Price and the health plan choices of retirees. Journal of Health Economics,
25(1):81-101.

Goldman, D. P.; Shekelle, P. G., Bhattacharya, J., Hurd, M., and Joyce, G. F. (2004). Health status
and medical treatment of the future elderly. Technical report, DTIC Document.

MacKinnon, J. G. and Magee, L. (1990). Transforming the dependent variable in regression models.
International Economic Review, pages 315-339.

Roodman, D. (2011). Fitting fully observed recursive mixed-process models with cmp. Stata
Journal, 11(2):159-206(48).

Smith, K. and Favreault, M. (2013). A primer on modeling income in the near term, version 7.
Technical report, The Urban Institute.

33



Supplement_3_FAM_estimates.xlsx

Thisfile provides supplementary details for the paper:
Title: Measuring the COVID-19 Mortality Burden in the United States: A Microsimulation Study
Authors: Julian Reif, Hanke Heun-Johnson, Bryan Tysinger, and Darius Lakdawalla

The following sheets contain transition model estimates for relevant variablesin the Future Adult Model, for the population ages 25-54 yearsin 2020.
Binaries
This worksheet reports estimates of the probability of developing a chronic condition (stroke, heart disease, cancer, hypertension, diabetes, and lung disease),

of exercise status, of initiating smoking, and of ceasing smoking.

Ordered probits
This worksheet reports estimates of the probability of changing ADL and IADL status.

oLS
This worksheet reports estimates of how BMI is updated in the microsimulation.

Mortality & nursing home

This worksheet reports estimates of the probability of dying, of one's partner dying, and of living in nursing home (ages 55+ only).
These models are estimated on a combined sample of PSID and HRS respondents.
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Stroke (stroke) Stroke (stroke) Heart disease Heart dlseaﬁe Any exerc_lse Any exerc_lse Cancer (cancre) Cancer (cancre)
coefficients marginal effects (hearte) coefficients (hearte) marginal (anyexe_rmse) (any.exerclse) coefficients marginal effects
effects coefficients marginal effects
coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value
Non-hispanic black 0.136** 0.050 0.001 -0.011 0.040 -0.000 -0.345** 0.018 -0.076 -0.186** 0.048 -0.003
Hispanic -0.015 0.099 -0.000 -0.198** 0.093 -0.005 -0.231*** 0.033 -0.052 -0.352*** 0.117 -0.005
Less than HS/GED 0.134** 0.042 0.001 0.187*** 0.044 0.006 -0.315*** 0.023 -0.072 -0.058 0.053 -0.001
College -0.108** 0.054 -0.001 -0.080* 0.038 -0.002 0.324** 0.020 0.058 0.072* 0.037 0.001
Beyond college -0.225** 0.085 -0.001 -0.063 0.052 -0.002 0.411** 0.030 0.067 0.017 0.051 0.000
Male -0.479 1.025 -0.004 -0.145 0.556 -0.004 0.074*** 0.026 0.015 -0.203 0.884 -0.004
Black male 0.098 0.074 0.001 -0.085 0.053 -0.002 0.030 0.025 0.006 -0.007 0.068 -0.000
Hispanic male -0.230 0.167 -0.001 -0.096 0.099 -0.002 -0.049 0.038 -0.010 0.017 0.126 0.000
Poor as a child 0.012 0.038 0.000 0.044* 0.026 0.001 -0.007 0.012 -0.001 0.052* 0.029 0.001
Wealthy as a child 0.109** 0.049 0.001 0.041 0.033 0.001 -0.083*** 0.015 -0.017 0.011 0.038 0.000
Childhood health - fair -0.046 0.146 -0.000 -0.189* 0.106 -0.004 0.126** 0.055 0.024 -0.058 0.131 -0.001
Childhood health - good -0.137 0.129 -0.001 -0.239** 0.092 -0.006 0.136** 0.048 0.026 -0.072 0.115 -0.001
Childhood health - very good -0.167 0.126 -0.001 -0.355** 0.090 -0.008 0.231** 0.048 0.044 -0.134 0.113 -0.002
Childhood health - excellent -0.200 0.124 -0.002 -0.350*** 0.088 -0.011 0.258*** 0.047 0.053 -0.097 0.111 -0.002
Age spline, less than 35 0.004 0.021 0.000 0.008 0.012 0.000 -0.007** 0.003 -0.001 0.012 0.014 0.000
Age spline, 35 to 44 0.027** 0.014 0.000 0.025** 0.008 0.001 -0.017** 0.003 -0.004 0.018** 0.009 0.000
Age spline, 45 to 54 0.006 0.011 0.000 0.000 0.007 0.000 -0.011** 0.002 -0.002 0.027** 0.008 0.000
Age spline, 55 to 64 0.024** 0.010 0.000 0.016** 0.008 0.000 -0.012*** 0.003 -0.002 0.015** 0.008 0.000
Age spline, 65 to 74 0.006 0.011 0.000 0.025*** 0.009 0.001 -0.016*** 0.003 -0.003 0.015* 0.009 0.000
Age spline, more than 75 0.031** 0.008 0.000 0.032** 0.007 0.001 -0.034** 0.003 -0.007 0.010 0.007 0.000
Male, age spline less than 35 0.014 0.034 0.000 0.004 0.019 0.000 -0.008 0.030 -0.000
Male, age spline 35 to 44 -0.008 0.021 -0.000 0.002 0.012 0.000 0.020 0.018 0.000
Male, age spline 45 to 54 0.018 0.016 0.000 0.026*** 0.010 0.001 0.017 0.013 0.000
Male, age spline 55 to 64 -0.004 0.015 -0.000 -0.004 0.011 -0.000 0.022** 0.011 0.000
Male, age spline 65 to 74 0.003 0.016 0.000 -0.006 0.012 -0.000 -0.004 0.012 -0.000
Male, age spline over 75 -0.010 0.013 -0.000 -0.011 0.011 -0.000 0.013 0.011 0.000
Lag of Doctor ever - heart disease 0.295*** 0.041 0.003
Lag of Doctor ever - cancer 0.102 0.070 0.001
Lag of Doctor ever - hypertension 0.305** 0.038 0.003 0.309** 0.027 0.011
Lag of Doctor ever - diabetes 0.173** 0.047 0.002 0.167*** 0.037 0.006
Lag of Ever smoked cigarettes 0.094** 0.040 0.001 0.085*** 0.027 0.002 0.052* 0.030 0.001
Lag of Current smoker 0.181** 0.046 0.002 0.175*** 0.032 0.006 0.133*** 0.038 0.003
Lag of Any light or heavy physical activity -0.158** 0.039 -0.001 -0.062* 0.030 -0.002 0.969** 0.013 0.273 0.034 0.036 0.001
Log(BMI) spline, BMI < 30 -0.401** 0.141 -0.003 -0.028 0.101 -0.001 -0.052 0.108 -0.001
Log(BMI) spline, BMI > 30 0.315* 0.166 0.003 0.898*** 0.111 0.025 0.515*** 0.136 0.009
Black, Less than HS -0.055 0.065 -0.001 0.122** 0.032 0.023 0.039 0.085 0.001
Black, College -0.018 0.088 -0.001 -0.020 0.039 -0.004 -0.033 0.102 -0.001
Black, Beyond College -0.199 0.155 -0.004 0.041 0.066 0.008 0.017 0.156 0.000
Hispanic, Less than HS -0.116 0.114 -0.003 0.014 0.043 0.003 0.088 0.150 0.002
Hispanic, College 0.249 0.165 0.009 -0.119* 0.069 -0.026 0.287 0.180 0.007
Hispanic, Beyond College 0.392** 0.195 0.017 0.142 0.109 0.026 0.208 0.246 0.005
Lag of married from marriage history 0.105** 0.016 0.022
Lag of cohab 0.020 0.030 0.004
Male, previously married 0.006 0.027 0.001
Male, previously cohabitating 0.038 0.045 0.007
Lag of Doctor ever - chronic lung disease
_cons -1.790** 0.767 2,474 0.478 0.499** 0.112 -2.844** 0.541
note: .01 -**.05-**.1-%
Binaries
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Hypertension (hibpe) Hypertension (hibpe) Diabetes (diabe) Diabetes (diabe) Lung disease Lung dlsea_se Start smoking Start smoking
coefficients marginal effects coefficients marginal effects (lunge) coefficients (lunge) marginal (smoke_.start) (smt_)ke_start)
effects coefficients marginal effects
coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value
Non-hispanic black 0.240** 0.028 0.022 0.026 0.039 0.001 0.016 0.042 0.000 0.139** 0.036 0.003
Hispanic 0.071 0.054 0.006 0.137* 0.073 0.004 -0.092 0.094 -0.002 -0.135** 0.069 -0.003
Less than HS/GED 0.031 0.036 0.003 0.130*** 0.047 0.004 0.243*** 0.045 0.006 0.191*** 0.048 0.005
College -0.039 0.026 -0.003 -0.048 0.040 -0.001 -0.174** 0.047 -0.003 -0.314** 0.036 -0.006
Beyond college -0.098** 0.038 -0.008 -0.063 0.055 -0.001 -0.312** 0.077 -0.005 -0.597** 0.070 -0.008
Male 0.307 0.330 0.027 -0.733 0.620 -0.018 0.107 0.531 0.002 0.507 0.323 0.013
Black male -0.130*** 0.037 -0.010 0.101* 0.052 0.003 0.060 0.057 0.001 0.137*** 0.047 0.004
Hispanic male -0.126** 0.062 -0.010 0.136* 0.081 0.004 -0.167 0.121 -0.003 0.128 0.080 0.003
Poor as a child 0.042** 0.019 0.004 0.023 0.026 0.001 0.030 0.029 0.001 0.008 0.025 0.000
Wealthy as a child 0.009 0.022 0.001 -0.013 0.033 -0.000 0.046 0.036 0.001 0.126*** 0.028 0.003
Childhood health - fair 0.169* 0.089 0.016 0.049 0.117 0.001 -0.062 0.110 -0.001 0.247** 0.124 0.007
Childhood health - good 0.078 0.080 0.007 -0.068 0.105 -0.002 -0.235* 0.098 -0.004 0.140 0.113 0.004
Childhood health - very good 0.013 0.079 0.001 -0.051 0.103 -0.001 -0.323** 0.097 -0.005 0.142 0.112 0.003
Childhood health - excellent -0.021 0.078 -0.002 -0.072 0.102 -0.002 -0.370*** 0.095 -0.008 0.233** 0.111 0.005
Age spline, less than 35 0.037** 0.008 0.003 0.017 0.012 0.000 0.004 0.011 0.000 -0.025*** 0.007 -0.001
Age spline, 35 to 44 0.018** 0.005 0.001 0.018** 0.008 0.000 0.010 0.008 0.000 -0.010* 0.006 -0.000
Age spline, 45 to 54 0.030** 0.005 0.003 0.025** 0.007 0.001 0.020** 0.007 0.000 -0.026** 0.007 -0.001
Age spline, 55 to 64 0.010* 0.006 0.001 0.007 0.007 0.000 0.007 0.008 0.000 -0.036*** 0.009 -0.001
Age spline, 65 to 74 0.006 0.008 0.001 0.005 0.009 0.000 0.009 0.010 0.000 -0.018 0.014 -0.000
Age spline, more than 75 0.020** 0.007 0.002 0.003 0.009 0.000 -0.002 0.009 -0.000 -0.034* 0.018 -0.001
Male, age spline less than 35 -0.005 0.011 -0.000 0.017 0.020 0.000 -0.010 0.018 -0.000 -0.018 0.011 -0.000
Male, age spline 35 to 44 0.002 0.007 0.000 0.028** 0.012 0.001 0.003 0.013 0.000 -0.006 0.009 -0.000
Male, age spline 45 to 54 -0.017** 0.007 -0.001 -0.017* 0.010 -0.000 0.005 0.012 0.000 0.008 0.010 0.000
Male, age spline 55 to 64 0.007 0.008 0.001 0.022** 0.010 0.001 0.015 0.012 0.000 0.010 0.013 0.000
Male, age spline 65 to 74 -0.016 0.011 -0.001 -0.011 0.013 -0.000 0.001 0.014 0.000 -0.025 0.020 -0.001
Male, age spline over 75 -0.008 0.011 -0.001 0.010 0.013 0.000 0.016 0.014 0.000 0.004 0.028 0.000
Lag of Doctor ever - heart disease
Lag of Doctor ever - cancer
Lag of Doctor ever - hypertension
Lag of Doctor ever - diabetes 0.202** 0.035 0.020
Lag of Ever smoked cigarettes 0.058*** 0.019 0.005 0.058** 0.026 0.001 0.269*** 0.032 0.006 1.419** 0.030 0.066
Lag of Current smoker 0.049** 0.024 0.004 0.037 0.034 0.001 0.245** 0.033 0.006
Lag of Any light or heavy physical activity -0.059** 0.023 -0.005 -0.082** 0.030 -0.002 -0.101** 0.032 -0.002 -0.157* 0.030 -0.004
Log(BMI) spline, BMI < 30 0.994** 0.074 0.084 1.719** 0.124 0.043 -0.003 0.107 -0.000 -0.233** 0.091 -0.005
Log(BMI) spline, BMI > 30 0.811** 0.087 0.068 1.230*** 0.098 0.031 0.948** 0.118 0.019 -0.200* 0.118 -0.004
Black, Less than HS -0.034 0.052 -0.003 -0.092 0.068 -0.002 -0.154* 0.068 -0.003 -0.060 0.067 -0.001
Black, College 0.079 0.054 0.007 0.047 0.079 0.001 0.223** 0.091 0.006 0.200** 0.080 0.006
Black, Beyond College 0.137 0.084 0.013 0.005 0.126 0.000 0.312** 0.156 0.009 0.516*** 0.136 0.021
Hispanic, Less than HS -0.158** 0.072 -0.012 -0.139 0.091 -0.003 -0.265* 0.127 -0.004 -0.150 0.093 -0.003
Hispanic, College -0.075 0.107 -0.006 -0.128 0.151 -0.003 0.338* 0.172 0.010 0.317** 0.125 0.010
Hispanic, Beyond College -0.103 0.154 -0.008 -0.230 0.238 -0.004 -0.018 0.367 -0.000 0.085 0.256 0.002

Lag of married from marriage history

Lag of cohab

Male, previously married

Male, previously cohabitating

Lag of Doctor ever - chronic lung disease

_cons -6.503*** 0.337 -8.678*** 0.546 -2.447* 0.476 -1.068*** 0.368
note: .01 -**.05-**.1-%

Binaries
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Stop smoking Stop smoking
(smoke_stop) (smoke_stop)
coefficients marginal effects
coef p-value coef p-value
Non-hispanic black 0.037 0.037 0.010
Hispanic 0.252*** 0.084 0.073
Less than HS/GED -0.234** 0.041 -0.058
College 0.309** 0.042 0.090
Beyond college 0.387** 0.088 0.118
Male -0.311 0.318 -0.082
Black male 0.032 0.047 0.009
Hispanic male 0.069 0.098 0.019
Poor as a child -0.040 0.026 -0.010
Wealthy as a child 0.073** 0.029 0.019
Childhood health - fair 0.037 0.124 0.010
Childhood health - good -0.026 0.113 -0.007
Childhood health - very good -0.009 0.112 -0.002
Childhood health - excellent 0.043 0.111 0.011
Age spline, less than 35 -0.019** 0.008 -0.005
Age spline, 35 to 44 -0.020** 0.006 -0.005
Age spline, 45 to 54 0.021** 0.007 0.006
Age spline, 55 to 64 0.005 0.010 0.001
Age spline, 65 to 74 -0.001 0.016 -0.000
Age spline, more than 75 0.042* 0.025 0.011
Male, age spline less than 35 0.008 0.011 0.002
Male, age spline 35 to 44 0.011 0.009 0.003
Male, age spline 45 to 54 -0.031*** 0.010 -0.008
Male, age spline 55 to 64 0.016 0.013 0.004
Male, age spline 65 to 74 0.031 0.022 0.008
Male, age spline over 75 -0.059 0.042 -0.015
Lag of Doctor ever - heart disease 0.032 0.041 0.008

Lag of Doctor ever - cancer

Lag of Doctor ever - hypertension

Lag of Doctor ever - diabetes 0.072 0.052 0.019
Lag of Ever smoked cigarettes

Lag of Current smoker

Lag of Any light or heavy physical activity 0.116** 0.029 0.029
Log(BMI) spline, BMI < 30 0.217** 0.088 0.057
Log(BMI) spline, BMI > 30 0.172 0.135 0.045
Black, Less than HS 0.132** 0.058 0.036
Black, College -0.205** 0.094 -0.049
Black, Beyond College 0.206 0.196 0.059
Hispanic, Less than HS 0.131 0.106 0.036
Hispanic, College -0.050 0.171 -0.013
Hispanic, Beyond College -0.473 0.293 -0.098

Lag of married from marriage history

Lag of cohab

Male, previously married

Male, previously cohabitating

Lag of Doctor ever - chronic lung disease -0.121** 0.044 -0.030
_cons -1.096*** 0.367

note: .01 -**.05-**.1-%

Binaries



Non-hispanic black

Hispanic

Less than HS/GED

College

Beyond college

Black, Less than HS

Black, College

Black, Beyond College
Hispanic, Less than HS
Hispanic, College

Hispanic, Beyond College
Male

Black male

Hispanic male

Poor as a child

Wealthy as a child

Childhood health - fair
Childhood health - good
Childhood health - very good
Childhood health - excellent
Age spline, less than 35

Age spline, 35 to 44

Age spline, 45 to 54

Age spline, 55 to 64

Age spline, 65 to 74

Age spline, more than 75
Male, age spline less than 35
Male, age spline 35 to 44
Male, age spline 45 to 54
Male, age spline 55 to 64
Male, age spline 65 to 74
Male, age spline over 75

Lag of Doctor ever - heart disease
Lag of Doctor ever - stroke
Lag of Doctor ever - cancer
Lag of Doctor ever - hypertension
Lag of Doctor ever - diabetes
Lag of Doctor ever - chronic lung disease
Lag of one ADL

Lag of two ADLs

Lag of three or more ADLs
Lag of Ever smoked cigarettes
Lag of Current smoker

Lag of Any light or heavy physical activity
Log(BMI) spline, BMI < 30
Log(BMI) spline, BMI > 30

Lag of one IADL

Lag of two or more IADLs
note: .01 -***;.06-*% .1-%

ADL status (adlstat)

coefficients

coef p-value
-0.007 0.024
-0.036 0.048
0.113*** 0.028
-0.177*** 0.025
-0.199*** 0.035
-0.010 0.040
0.023 0.054
0.047 0.084
0.034 0.063
0.265*** 0.095
0.008 0.154
0.271 0.334
0.035 0.033
-0.139** 0.057
0.065*** 0.016
0.056*** 0.020
-0.052 0.064
-0.188*** 0.057
-0.228*** 0.056
-0.267*** 0.055
0.031*** 0.007
0.012** 0.005
0.012*** 0.004
0.008* 0.004
0.019*** 0.005
0.042*** 0.004
-0.013 0.011
0.005 0.007
0.002 0.007
-0.000 0.007
-0.010 0.008
0.007 0.007
0.166*** 0.020
0.222*** 0.037
0.141*** 0.032
0.180*** 0.017
0.136*** 0.022
0.217*** 0.024
1.153*** 0.022
1.633*** 0.029
2.302*** 0.030
0.098*** 0.017
0.166*** 0.020
-0.197*** 0.017
0.173*** 0.062
0.847*** 0.066

coef

0.001

0.004
-0.014

0.019

0.021

0.001
-0.003
-0.006
-0.004
-0.038
-0.001
-0.033
-0.004

0.015
-0.008
-0.007

0.006

0.020

0.025

0.033
-0.004
-0.001
-0.001
-0.001
-0.002
-0.005

0.002
-0.001
-0.000

0.000

0.001
-0.001
-0.022
-0.031
-0.019
-0.023
-0.018
-0.030
-0.270
-0.461
-0.701
-0.012
-0.021

0.026
-0.021
-0.101
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ADL status (adlstat) marginal effects

p-value coef
-0.001
-0.003
0.009
-0.013
-0.014
-0.001
0.002
0.004
0.003
0.024
0.001
0.022
0.003
-0.010
0.005
0.005
-0.004
-0.014
-0.017
-0.021
0.002
0.001
0.001
0.001
0.001
0.003
-0.001
0.000
0.000
-0.000
-0.001
0.001
0.014
0.020
0.012
0.015
0.011
0.019
0.135
0.182
0.174
0.008
0.014
-0.017
0.014
0.066

p-value coef p-value

-0.000
-0.001
0.003
-0.004
-0.005
-0.000
0.001
0.001
0.001
0.009
0.000
0.008
0.001
-0.003
0.002
0.002
-0.001
-0.004
-0.005
-0.007
0.001
0.000
0.000
0.000
0.001
0.001
-0.000
0.000
0.000
-0.000
-0.000
0.000
0.005
0.007
0.004
0.005
0.004
0.007
0.072
0.124
0.169
0.003
0.005
-0.006
0.005
0.023

Ordered probits

coef
-0.000
-0.000
0.002
-0.002
-0.002
-0.000
0.000
0.001
0.000
0.005
0.000
0.004
0.000
-0.002
0.001
0.001
-0.001
-0.002
-0.003
-0.004
0.000
0.000
0.000
0.000
0.000
0.001
-0.000
0.000
0.000
-0.000
-0.000
0.000
0.003
0.004
0.002
0.003
0.002
0.004
0.063
0.154
0.358
0.001
0.003
-0.003
0.002
0.012

IADL status (iadlstat)

coefficients
p-value coef p-value

-0.093*** 0.023
-0.002 0.044
0.085*** 0.028
-0.149*** 0.023
-0.123*** 0.032
0.019 0.040
0.001 0.053
-0.074 0.084
-0.041 0.059
0.238*** 0.085
-0.015 0.129
0.027 0.304
0.110*** 0.032
0.038 0.053
0.057*** 0.016
0.056*** 0.019
-0.053 0.062
-0.191*** 0.055
-0.207*** 0.054
-0.282*** 0.053
0.021*** 0.006
0.013*** 0.004
0.016*** 0.004
0.001 0.004
0.007 0.005
0.025*** 0.004
-0.008 0.010
-0.008 0.007
0.004 0.007
0.006 0.007
-0.003 0.008
0.013* 0.007
0.152*** 0.020
0.156*** 0.037
0.163*** 0.031
0.188*** 0.017
0.119*** 0.022
0.218*** 0.024
0.532*** 0.024
0.715*** 0.032
0.835*** 0.034
0.071*** 0.016
0.187*** 0.019
-0.155*** 0.017
0.015 0.058
0.453*** 0.067
0.922*** 0.020
1.414*** 0.029

coef
0.012
0.000
-0.012
0.019
0.015
-0.002
-0.000
0.009
0.005
-0.037
0.002
-0.004
-0.016
-0.005
-0.008
-0.008
0.007
0.023
0.026
0.039
-0.003
-0.002
-0.002
-0.000
-0.001
-0.003
0.001
0.001
-0.001
-0.001
0.000
-0.002
-0.022
-0.023
-0.024
-0.027
-0.017
-0.033
-0.099
-0.150
-0.185
-0.009
-0.027
0.022
-0.002
-0.060
-0.206
-0.390

IADL status (iadlstat) marginal effects

p-value

coef
-0.009
-0.000
0.009
-0.014
-0.012
0.002
0.000
-0.007
-0.004
0.028
-0.001
0.003
0.012
0.004
0.006
0.006
-0.005
-0.018
-0.020
-0.029
0.002
0.001
0.002
0.000
0.001
0.003
-0.001
-0.001
0.000
0.001
-0.000
0.001
0.017
0.017
0.018
0.020
0.013
0.025
0.070
0.101
0.122
0.007
0.020
-0.017
0.002
0.046
0.135
0.214

p-value

coef
-0.003
-0.000
0.003
-0.004
-0.003
0.001
0.000
-0.002
-0.001
0.010
-0.000
0.001
0.004
0.001
0.002
0.002
-0.002
-0.005
-0.006
-0.009
0.001
0.000
0.000
0.000
0.000
0.001
-0.000
-0.000
0.000
0.000
-0.000
0.000
0.005
0.006
0.006
0.007
0.004
0.009
0.029
0.048
0.063
0.002
0.007
-0.005
0.000
0.014
0.071
0.175

p-value



Non-hispanic black

Hispanic

Less than HS/GED

College

Beyond college

Black, Less than HS

Black, College

Black, Beyond College
Hispanic, Less than HS
Hispanic, College

Hispanic, Beyond College
Male

Black male

Hispanic male

Poor as a child

Wealthy as a child

Childhood health - fair
Childhood health - good
Childhood health - very good
Childhood health - excellent
Age spline, less than 35
Age spline, 35 to 44

Age spline, 45 to 54

Age spline, 55 to 64

Age spline, 65 to 74

Age spline, more than 75
Lag of log(BMI) spline, BMI < 30
Lag of log(BMI) spline, BMI > 30
Lag of married from marriage history
Lag of cohab

Male, previously married
Male, previously cohabitating
_cons

note: .01 -***; .05-* .1-7%;

Log(BMI) (logbmi)

coefficients
coef p-value
0.009*** 0.001
0.004** 0.002
0.000 0.001
-0.007*** 0.001
-0.007*** 0.001
-0.005*** 0.002
0.006*** 0.002
0.007** 0.003
-0.002 0.003
0.005 0.004
-0.005 0.005
-0.003* 0.001
-0.009*** 0.001
-0.005** 0.002
0.002** 0.001
-0.001* 0.001
0.003 0.003
0.001 0.003
-0.000 0.003
-0.001 0.003
-0.000 0.000
-0.000** 0.000
-0.000*** 0.000
-0.000 0.000
-0.001*** 0.000
-0.002*** 0.000
0.918*** 0.002
0.879*** 0.003
-0.007*** 0.001
-0.003* 0.002
0.007*** 0.001
0.003 0.002
0.296*** 0.010

Supplement_3_FAM_estimates.xlsx

Log(BMI) (logbmi)
marginal effects

coef p-value
0.009
0.004
0.000
-0.007
-0.007
-0.005
0.006
0.007
-0.002
0.005
-0.005
-0.003
-0.009
-0.005
0.002
-0.001
0.003
0.001
-0.000
-0.001
-0.000
-0.000
-0.000
-0.000
-0.001
-0.002
0.918
0.879
-0.007
-0.003
0.007
0.003

OoLS



Non-hispanic black

Hispanic

Less than HS or GED education
College degree or higher

Male

Black male

Hispanic male

Age spline, less than 35

Age spline, 35 to 44

Age spline, 45 to 54

Age spline, 55 to 64

Age spline, 65 to 74

Age spline, 75 to 84

Age spline, more than 85

Male, age spline less than 35
Male, age spline 35 to 44

Male, age spline 45 to 54

Male, age spline 55 to 64

Male, age spline 65 to 74

Male, age spline 75 to 84

Male, age spline over 85

Lag of Doctor ever - heart disease
Lag of Doctor ever - stroke

Lag of Doctor ever - cancer

Lag of Doctor ever - hypertension
Lag of Doctor ever - diabetes
Lag of Doctor ever - chronic lung disease
Lag of one ADL

Lag of two ADLs

Lag of three or more ADLs

Lag of Current smoker

Male, less than high school
Male, college or more

Age spline, less than 65

Age spline, more than 75

Male, less than 65

Male, age 65 to 74

Male, age more than 75

Black, age spline less than 65
Black, age spline 65 to 74
Black, age spline over 75
Hispanic, age spline less than 65
Hispanic, age spline 65 to 74
Hispanic, age spline over 75
Black male, less than 65

Black male, 65 to 74

Black male, over 75

Hispanic male, less than 65
Hispanic male, 65 to 74
Hispanic male, over 75

Lag of Widowed: most recent spouse died
_cons

note: .01 -***;.05-**.1-%

Died (died)
coefficients

coef p-value
0.047** 0.020
-0.109*** 0.031
0.048*** 0.019
-0.056*** 0.019
-0.403 0.602
0.057* 0.029
0.055 0.045
-0.008 0.015
0.032** 0.012
0.016** 0.007
0.024*** 0.004
0.032*** 0.003
0.048** 0.003
0.064** 0.003
0.022 0.021
-0.026 0.016
0.015 0.011
0.001 0.006
0.001 0.005
-0.007 0.004
0.013** 0.005
0.188*** 0.012
0.221*** 0.016
0.408** 0.014
0.127** 0.012
0.227** 0.013
0.349*** 0.015
0.265** 0.017
0.405** 0.022
0.809** 0.017
0.306*** 0.016
0.009 0.027
-0.049* 0.027
-2.971% 0.432

Died (died) marginal

effects

coef
0.002
-0.004
0.002
-0.002
-0.015
0.002
0.002
-0.000
0.001
0.001
0.001
0.001
0.002
0.002
0.001
-0.001
0.001
0.000
0.000
-0.000
0.000
0.008
0.010
0.022
0.005
0.010
0.018
0.013
0.023
0.067
0.015
0.000
-0.002

p-value

Supplement_3_FAM_estimates.xlsx

Partner died
(part_died)
coefficients
coef p-value
0.385 0.275
0.090 0.465
0.142* 0.056
-0.160*** 0.053
0.132 0.308
0.108 0.482
1.247 0.825
0.061** 0.009
-0.029 0.095
0.137 0.088
0.032*** 0.003
0.017* 0.010
-0.010 0.006
-0.019 0.015
0.025* 0.013
0.000 0.005
-0.044** 0.020
0.064** 0.029
-0.001 0.009
-0.014 0.034
0.035 0.050
-0.007 0.010
0.028 0.034
-0.024 0.042
-0.035* 0.019
0.111 0.073
-0.049 0.073
4417 0.183

Mortality & nursinghome

Partner died
(part_died) marginal
effects

coef

0.005
0.001
0.002
-0.001
0.001
0.001
0.059

0.001

-0.000
0.001
0.000
0.000

-0.000

-0.000
0.000
0.000

-0.000
0.001

-0.000

-0.000
0.000

-0.000
0.000

-0.000

-0.000
0.001

-0.000

R live in nursing
home at interview

coef
-0.238**
-0.353**
0.043
-0.044*
-0.100***
0.417**
0.224**

-0.018
0.045***
0.040***

-0.044*
0.351***

-0.055*
-0.056*
0.148**
-0.071*
0.384***
0.707***
1.225**
0.127*

0.061***

0.241*
-3.201***

(nhmliv) coefficients

p-value

0.039
0.055
0.027
0.027
0.027
0.061
0.089

0.037
0.009
0.005

0.024
0.027
0.028
0.023
0.026
0.035
0.031
0.037
0.028
0.037

0.002

0.024
0.342

R live in nursing
home at interview
(nhmliv) marginal

effects

coef p-value

-0.002
-0.003
0.001
-0.001
-0.001
0.008
0.004

-0.000
0.001
0.000

-0.001
0.006
-0.001
-0.001
0.002
-0.001
0.007
0.021
0.067
0.002

0.001

0.004
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This appendix describes technical details to support the paper ”Measuring the COVID-19
Mortality Burden in the United States: A Microsimulation Study”. In addition to
outcomes described in the paper, the microsimulation provides additional outcomes (e.g. medical
expenditures and social security benefits). As the data sources and models are intricately connected,
we report all data sources and methodology to provide a complete picture of the microsimulation
to the reader. However, the sections that are most relevant to this paper are: section [I| for an
overview; data source sections (HRS), (NHIS), (MEPS), and |3| (trends and baseline
scenario); sections {4| and |5 for estimation of the transition model and the model for new cohorts,
respectively; section |8 for the implementation; sections [9.1| and for a historical background of
the development of transition models and QALY measures; sections and for validation
strategies; and section [11] for baseline forecasts.

1 Functioning of the dynamic model

1.1 Background

The Future Elderly Model (FEM) is a microsimulation model originally developed out of an effort
to examine health and health care costs among the elderly Medicare population (age 65+). A
description of the previous incarnation of the model can be found in (Goldman et al. (2004). The
original work was founded by the Centers for Medicare and Medicaid Services and carried out by
a team of researchers composed of Dana P. Goldman, Paul G. Shekelle, Jayanta Bhattacharya,
Michael Hurd, Geoffrey F. Joyce, Darius N. Lakdawalla, Dawn H. Matsui, Sydne J. Newberry,
Constantijn W. A. Panis and Baoping Shang.

Since then various extensions have been implemented to the original model. The most recent
version now projects health outcomes for all Americans aged 51 and older and uses the Health
and Retirement Study (HRS) as a host dataset rather than the Medicare Current Beneficiary
Survey (MCBS). The work has also been extended to include economic outcomes such as earnings,
labor force participation and pensions. This work was funded by the National Institute on Aging
through its support of the RAND Roybal Center for Health Policy Simulation (P30AG024968),
the Department of Labor through contract J-9-P-2-0033, the National Institutes of Aging through
the RO1 grant “Integrated Retirement Modeling” (R01AG030824) and the MacArthur Foundation
Research Network on an Aging Society. Finally, the computer code of the model was transferred
from Stata to C++. This report incorporates these new development efforts in the description of
the model.

1.2 Overview

The defining characteristic of the model is the modeling of real rather than synthetic cohorts, all
of whom are followed at the individual level. This allows for more heterogeneity in behavior than
would be allowed by a cell-based approach. Also, since the HRS interviews both respondent and
spouse, we can link records to calculate household-level outcomes such as net income and Social
Security retirement benefits, which depend on the outcomes of both spouses. The omission of the
population younger than age 51 sacrifices little generality, since the bulk of expenditure on the public
programs we consider occurs after age 50. However, we may fail to capture behavioral responses
among the young.
The model has three core components:



e The initial cohort module predicts the economic and health outcomes of new cohorts of 51/52
year-olds. This module takes in data from the Health and Retirement Study (HRS) and trends
calculated from other sources. It allows us to “generate” cohorts as the simulation proceeds,
so that we can measure outcomes for the age 51+ population in any given year.

e The transition module calculates the probabilities of transiting across various health states
and financial outcomes. The module takes as inputs risk factors such as smoking, weight, age
and education, along with lagged health and financial states. This allows for a great deal of
heterogeneity and fairly general feedback effects. The transition probabilities are estimated
from the longitudinal data in the Health and Retirement Study (HRS).

e The policy outcomes module aggregates projections of individual-level outcomes into policy
outcomes such as taxes, medical care costs, pension benefits paid, and disability benefits.
This component takes account of public and private program rules to the extent allowed by
the available outcomes. Because we have access to HRS-linked restricted data from Social
Security records and employer pension plans, we are able to realistically model retirement
benefit receipt.

New age 51/52
2006

New age 51/52
2008

2004 transitions

2006 transitions
y

2008 transiticns

Pop Age
51+, 2004

Pop Alive

Pop Alive N
51+, 2006 ]

51+, 2008

Pop Alive
51+, 2010

»
L

Y

h 4 A 4
Policy Policy
Outcomes Outcomes
2006 2008

Figure 1: Architecture of the FEM

Figure[l| provides a schematic overview of the model. We start in 2004 with an initial population
aged b1+ taken from the HRS. We then predict outcomes using our estimated transition probabilities
(see section . Those who survive make it to the end of that year, at which point we calculate
policy outcomes for the year. We then move to the following time period (two years later), when
a new cohort of 51 and 52 year-olds enters (see section . This entrance forms the new age 51+
population, which then proceeds through the transition model as before. This process is repeated
until we reach the final year of the simulation.

1.3 Comparison with other prominent microsimulation models of health
expenditures
The FEM is unique among existing models that make health expenditure projections. It is the only

model that projects health trends rather than health expenditures. It is also the only model that
generates mortality out of assumptions on health trends rather than historical time series.



1.3.1 CBOLT Model

The Congressional Budget Office (CBO) uses time-series techniques to project health expenditure
growth in the short term and then makes an assumption on long-term growth. They use a long term
growth of excess costs of 2.3 percentage points starting in 2020 for Medicare. They then assume a
reduction in excess cost growth in Medicare of 1.5% through 2083, leaving a rate of 0.9% in 2083.
For non-Medicare spending they assume an annual decline of 4.5%, leading to an excess growth
rate in 2083 of 0.1%.

1.3.2 Centers for Medicare and Medicaid Services

The Centers for Medicare and Medicaid Services (CMS) performs an extrapolation of medical
expenditures over the first ten years, then computes a general equilibrium model for years 25
through 75 and linearly interpolates to identify medical expenditures in years 11 through 24 of their
estimation. The core assumption they use is that excess growth of health expenditures will be one
percentage point higher per year for years 25-75 (that is if nominal GDP growth is 4%, health care
expenditure growth will be 5%).

2 Data sources used for estimation

The Health and Retirement Study is the main data source for the model. We supplemented this
data with merged Social Security covered earnings histories and data on health trends and health
care costs coming from 3 major health surveys in the U.S. We describe these surveys below and the
samples we selected for the analysis. We first list the variables used in the analysis. We then give
details on the data sources.

Estimated Outcomes in Initial Conditions Model

Economic Outcomes Health Outcomes
Employment Hypertension
Earnings Heart Disease
Wealth Self-Reported Health
Defined Contribution Pension Wealth BMI Status

Pension Plan Type Smoking Status
AIME Functional Status

Social Security Quarters of Coverage
Health Insurance



Estimated Outcomes in/from Transition Model

Economic Outcomes Health Outcomes Other Outcomes
Employment Death Income Tax Revenue
Earnings Heart Social Security Revenue
Wealth Stroke Medicare Revenue
Demographics Cancer Medical Expenses
Health Insurance Hypertension Medicare Part A Expenses
Disability Insurance Claim Diabetes Medicare Part B Expenses
Defined Benefit Claim Lung Disease Medicare Part B Enrollment
SSI Claim Nursing Home Medicare Part D Enrollment
Social Security Claim BMI OASI Enrollment

Smoking Status DI enrollment

ADL Limitations SSI enrollment
TADL Limitations Medicaid Enrollment
Medicaid Expenditures

2.1 Health and Retirement Study

The Health and Retirement Study (HRS) waves 2000-2008 are used to estimate the transition
model. Interviews occur every two years. We use the dataset created by RAND (RAND HRS,
version K) as our basis for the analysis. We use all cohorts in the analysis and consider sampling
weights whenever appropriate. When appropriately weighted, the HRS in 2004 is representative of
U.S. households where at least one member is at least 51. The HRS is also used as the host data
for the simulation (pop 51+ in 2004) and for new cohorts (aged 51 and 52 in 2004).

The HRS adds new cohorts every six years. Until recently, the latest available cohort had been
added in 2004, which is why that is the FEM’s base year. The FEM is currently being updated to
use the newly released 2010 data.

2.2 Social Security covered earnings files

To get information on Social Security entitlements of respondents, we match the HRS data to the
Social Security Covered Earnings files of 1992, 1993, 1998, 2004 and 2006 which provides information
on earning histories of respondents as well as their entitlement to future Social Security benefits.
We then construct the average indexed monthly earnings (AIME), the basis for the determination
of benefit levels, from these earning histories. The AIME is constructed by first indexing using the
National Wage Index (NWI) to the wage level when the respondent turns age 60. If this occurs
after 2008, we project the evolution of the NWI using the average annual rate of change of the last
20 years (2.9% nominal). We then take the 35 highest years (if less than 35 years are available,
remaining years are considered zero earning years) and take the average. We then convert back this
annual amount on a monthly basis and convert back to $2004 U.S. dollars using the CPI. Quarters
of coverage, which determine eligibility to Social Security, are defined as the sum of posted quarters
to the file. A worker is eligible for Social Security if he has accumulated at least 40 quarters of
coverage. A worker roughly accumulates a quarter of coverage for every $4000 of coverage earnings
up to a maximum of 4 per year. Not all respondents agree to have their record matched. Hence,
there is the potential for non-representativeness. However, recent studies show that the extent of
non-representativeness is quite small and that appropriate weighting using HRS weights mostly
corrects for this problem (Kapteyn et al., 2006).



2.3 National Health Interview Survey

The National Health Interview Survey (NHIS) contains individual-level data on height, weight,
smoking status, self-reported chronic conditions, income, education, and demographic variables. It
is a repeated cross-section done every year for several decades. But the survey design has been
significantly modified several times. Before year 1997, different subgroups of individuals were asked
about different sets of chronic conditions, after year 1997, a selected sub-sample of the adults were
asked a complete set of chronic conditions. The survey questions are quite similar to that in HRS.
As a result, for projecting the trends of chronic conditions for future 51/52 year-olds, we only use
data from 1997 to 2010. A review of survey questions is provided in Table 2] Information on weight
and height were asked every year, while information on smoking was asked in selected years before
year 1997, and has been asked annually since year 1997.

FEM uses NHIS to project prevalence of chronic conditions in future cohorts of 51-52 year olds.
The method is discussed in Sections and 5.1} FEM also relies on the Medical Expenditure Panel
Survey, a subsample of NHIS respondents, for model estimation. See section for a description.

2.4 Medical Expenditure Panel Survey

The Medical Expenditure Panel Survey (MEPS), beginning in 1996, is a set of large-scale surveys
of families and individuals, their medical providers (doctors, hospitals, pharmacies, etc.), and em-
ployers across the United States. The Household Component (HC) of the MEPS provides data
from individual households and their members, which is supplemented by data from their medical
providers. The Household Component collects data from a representative sub sample of households
drawn from the previous year’s National Health Interview Survey (NHIS). Since NHIS does not
include the institutionalized population, neither does MEPS: this implies that we can only use
the MEPS to estimate medical costs for the non-elderly population. Information collected during
household interviews include: demographic characteristics, health conditions, health status, use of
medical services, sources of medical payments, and body weight and height. Each year the house-
hold survey includes approximately 12,000 households or 34,000 individuals. Sample size for those
aged 51-64 is about 4,500. MEPS has comparable measures of social-economic (SES) variables as
those in HRS, including age, race/ethnicity, educational level, census region, and marital status.

FEM uses MEPS years 2000-2010 for cost estimation. See Section for a description. FEM
also uses MEPS 2001 data for QALY model estimation. This is described in Section [4.2]

2.5 Medicare Current Beneficiary Survey

The Medicare Current Beneficiary Survey (MCBS) is a nationally representative sample of aged,
disabled and institutionalized Medicare beneficiaries. The MCBS attempts to interview each re-
spondent twelve times over three years, regardless of whether he or she resides in the community,
a facility, or transitions between community and facility settings. The disabled (under 65 years of
age) and oldest-old (85 years of age or older) are over-sampled. The first round of interviewing
was conducted in 1991. Originally, the survey was a longitudinal sample with periodic supplements
and indefinite periods of participation. In 1994, the MCBS switched to a rotating panel design
with limited periods of participation. Each fall a new panel is introduced, with a target sample
size of 12,000 respondents and each summer a panel is retired. Institutionalized respondents are
interviewed by proxy. The MCBS contains comprehensive self-reported information on the health
status, health care use and expenditures, health insurance coverage, and socioeconomic and demo-
graphic characteristics of the entire spectrum of Medicare beneficiaries. Medicare claims data for



beneficiaries enrolled in fee-for-service plans are also used to provide more accurate information on
health care use and expenditures. MCBS years 1992-2010 are used for estimating medical cost and
enrollment models. See section [6.4] for discussion.

3 Data sources for trends and baseline scenario

Two types of trends need to be projected in the model. First, we need to project trends in the
incoming cohorts (the future new age 51/52 individuals). This includes trends in health and eco-
nomic outcomes. Second, we need to project excess aggregate growth in real income and excess
growth in health spending.

3.1 Data for trends in entering cohorts

We used a multitude of data sources to compute U.S. trends. First, we used NHIS for chronic
conditions and applied the methodology discussed in (Goldman et al., [2004). The method consists
of projecting the experience of younger cohorts into the future until they reach age 51. The pro-
jection method is tailored to the synthetic cohorts observed in NHIS. For example, we observe a
representative sample of age 35 individuals born in 1945 in 1980. We follow their disease patterns
in 1980 to 1981 surveys by then selecting those aged 36 in 1981, accounting for mortality, etc.

We then collected information on other trends, i.e. for obesity and smoking, from other studies
(Honeycutt et al., 2003 Levy, [2006; Poterba et al., 2009; |Ruhm, 2007; Mainous III et al., 2007).
Table [3 presents the sources and Table 4] presents the trends we use in the baseline scenario. Table
presents the prevalence of obesity, hypertension, diabetes, and current smokers in 1978 and 2004,
and the annual rates of change from 1978 to 2004. We refer the readers to the analysis in |Goldman
et al.| (2004) for information on how the trends were constructed.

3.2 Data for other projections

We make two assumptions relating to real growth in wages and medical costs. Firstly, as is done
in the 2009 Social Security Trustees report intermediate cost scenario, we assume a long term
real increase in wages (earnings) of 1.1% per year. Next, following the Centers for Medicare and
Medicaid Services, we assume excess real growth in medical costs (that is additional cost growth
to GDP growth), as 1.5% in 2004, reducing linearly to 1% in 2033, .4% in 2053, and -.2% in 2083.
We also include the Affordable Care Act cost growth targets as an optional cap on medical cost
growth. Baseline medical spending figures presented assume those targets are met. GDP growth in
the near term (through 2019) is based on CBO projections, with the OASDI Trustees assumption
of 2% yearly afterwards.

3.3 Demographic adjustments

We make two adjustments to the weighting in the HRS to match population counts. Since we
deleted some cases from the data and only considered the set of respondents with matched Social
Security records, this takes account of selectivity based on these characteristics. First, we post-
stratify the HRS sample by 5 year age groups, gender and race and rebalance weights using the
Census Bureau 2000-2010 Intercensal Population Estimates. We do this for both the host data set
and the new cohorts. We scale the weights for future new cohorts using 2012 National Population
Projections based on race and gender. Second, we post- stratify the HRS sample of deaths between
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the 2002 and 2004 interview waves by 5 year age groups, gender and race and rebalance weights
based on the Human Mortality Database.

Once the simulation begins, trends in migration and mortality are applied. We use net migration
from the SSA Trustees report intermediate cost scenario. Separate mortality rate adjustment factors
are defined for the under and over 65 age groups based on the mortality projections from the 2013
SSA Trustees report. The SSA projections are interpolated through 2090, then extended using
GLM with log link through 2150. The average yearly all-cause mortality reduction between 2020
and 2150 was 1.06% for ages 25-64, and 0.66% for the 65+ population.

4 Estimation

In this section we describe the approach used to estimate the transition model, the core of the FEM,
and the initial cohort model which is used to rejuvenate the simulation population.

4.1 Transition model

We consider a large set of outcomes for which we model transitions. Table[6]gives the set of outcomes
considered for the transition model along with descriptive statistics and the population at risk when
estimating the relationships.

Since we have a stock sample from the age 51+ population, each respondent goes through
an individual-specific series of intervals. Hence, we have an unbalanced panel over the age range
starting from 51 years old. Denote by j;o the first age at which respondent i is observed and j;r,
the last age when he is observed. Hence we observe outcomes at ages j; = Jio, - .., Jit;-

We first start with discrete outcomes which are absorbing states (e.g. disease diagnostic, mor-
tality, benefit claiming). Record as h; j, ,, = 1 if the individual outcome m has occurred as of age j;.
We assume the individual-specific component of the hazard can be decomposed in a time invariant
and variant part. The time invariant part is composed of the effect of observed characteristics x;
that are constant over the entire life course and initial conditions h; j, —, (outcomes other than
the outcome m) that are determined before the first age in which each individual is observed E]
The time-varying part is the effect of previously diagnosed outcomes h; j,_1,_,, on the hazard for
m.E] We assume an index of the form z,, ;, = 28 + hiji—1,—mYm + Nijo,—m¥m. Hence, the latent
component of the hazard is modeled as

hijim = TibBm + hiji—1,-mYm + i jo,—m¥m + Gmj; + €ijim, (1)

m:17"'7M07ji:jiOa"'7ji,TiaZl:lw"aN

The term ¢; j, » is a time-varying shock specific to age j;. We assume that this last shock is normally
distributed and uncorrelated across diseases. We approximate a,, j, with an age spline. After several
specification checks, knots at age 65 and 75 appear to provide the best fit. This simplification is
made for computational reasons since the joint estimation with unrestricted age fixed effects for
each condition would imply a large number of parameters. The absorbing outcome, conditional on
being at risk, is defined as

hi jim = max{I(h; . .. > 0),h;;—1m}

74,1

1Section explains why the h; j, _, terms are included.
2With some abuse of notation, j; — 1 denotes the previous age at which the respondent was observed.
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The occurrence of mortality censors observation of other outcomes in a current year. Mortality is
recorded from exit interviews.

A number of restrictions are placed on the way feedback is allowed in the model. Table
documents restrictions placed on the transition model. We also include a set of other controls. A
list of such controls is given in Table [§| along with descriptive statistics.

We have three other types of outcomes:

1. First, we have binary outcomes which are not an absorbing state, such as living in a nursing
home. We specify latent indices as in for these outcomes as well but where the lag depen-
dent outcome also appears as a right-hand side variable. This allows for state-dependence.

2. Second, we have ordered outcomes. These outcomes are also modeled as in recognizing
the observation rule is a function of unknown thresholds ¢,,. Similarly to binary outcomes,
we allow for state-dependence by including the lagged outcome on the right-hand side.

3. The third type of outcomes we consider are censored outcomes, earnings and financial wealth.
Earnings are only observed when individuals work. For wealth, there are a non-negligible
number of observations with zero and negative wealth. For these, we consider two part models
where the latent variable is specified as in but model probabilities only when censoring
does not occur. In total, we have M outcomes.

The parameters 6, = ({Bm, Yoy Vs §m}nj\f:l : >, can be estimated by maximum likelihood. Given

the normality distribution assumption on the time-varying unobservable, the joint probability of all
time-intervals until failure, right-censoring or death conditional on the initial conditions h; j, —p, is
the product of normal univariate probabilities. Since these sequences, conditional on initial condi-
tions, are also independent across diseases, the joint probability over all disease-specific sequences
is simply the product of those probabilities.

For a given respondent observed from initial age j;o to a last age jp, the probability of the
observed health history is (omitting the conditioning on covariates for notational simplicity)

M-1 Jr Jt;
li—O(e; hi,jio) — H H Bj’m(9)(1—hij—l,m)(1—hi]’,]bf) X H Pz],M(8>
m=1 j=ji J=Jji1
We use the —0 superscript to make explicit the conditioning on h; ;.0 = (hijg.0s- - - Rijig.n) . We

have limited information on outcomes prior to this age. The likelihood is a product of M terms with
the mth term containing only (8., Ym,¥m,sm). This allows the estimation to be done separately
for each outcome.

4.1.1 Inverse Hyperbolic Sine Transformation

One problem fitting the wealth and earnings distribution is that they have a long right tail and
wealth has some negative values. We use a generalization of the inverse hyperbolic sine transform
(IHT) presented in MacKinnon and Magee (1990)). First denote the variable of interest y. The
hyperbolic sine transform is

exp(w) — exp(—x) (2)

y = sinh(z) = 5

The inverse of the hyperbolic sine transform is

v =sinh™" (y) = h(y) = log(y + (1 +y*)'?)
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Consider the inverse transformation. We can generalize such transformation, first allowing for a
shape parameter 6,

r(y) = h(0y)/0 (3)

Such that we can specify the regression model as
r(y) =B +¢,e ~ N(0,0%) (4)
A further generalization is to introduce a location parameter w such that the new transformation

becomes
s = M0~ .

where 1 (a) = (1 + a?)"1/2,

We specify in terms of the transformation g. The shape parameters can be estimated from
the concentrated likelihood for 8, w. We can then retrieve 3, o by standard OLS.

Upon estimation, we can simulate

G =8+ 07

where 7 is a standard normal draw. Given this draw, we can retransform using and

h(0(y + w)) = Oh'(Bw)g + h(bw)

;= sinh [0h/ (0w)§ + h(0w)] — Ow
B 6

4.2 Quality adjusted life years

As an alternative measure of life expectancy, we compute a quality adjusted life year (QALY)
based on the EQ-5D instrument, a widely-used health-related quality-of-life (HRQoL) measureﬂ.
The scoring system for EQ-5D was first developed by |Dolan (1997)) using a UK sample. Later, a
scoring system based on a US sample was generated (Shaw et al.; 2005). The HRS does not ask the
appropriate questions for computing EQ-5D, but the MEPS does. We use a crosswalk from MEPS
to compute EQ-5D scores for HRS respondents not living in a nursing homeﬂ

The FEM has a more limited specification of functional status than what is available in the HRS.
In order to predict HRQoL for the FEM simulation sample, we needed to build a bridge between
the FEM-type functional status and the predicted EQ-5D score in HRS. We used ordinary least
squares to model the EQ-5D score predicted for non-nursing home in the 1998 HRS as a function
of the six chronic conditions and the FEM-specification of functional status, The results are shown
in Table [16]

The EQ-5D scoring method is based on a community population. Following a suggestion by
Emmett Keeler, if a person is living in a nursing home, the QALY is reduced by 10%. We used
the parameter estimates in Table [16|to predict EQ-5D scores for the entire FEM simulation sample
and reduced nursing home residents’ score by 10%. The resulting scores are representative of the
U.S population (both in community and in nursing homes) ages 51 and over. Table |17 summarizes
the EQ-5D score using this model for the stock FEM simulation sample in 2004.

3Section [9.2.1] gives some background on HRQoL measures.
4Section [9.2.2] describes EQ-5D in MEPS. Details of the crosswalk model development are given in
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5 Model for new cohorts

We first discuss the empirical strategy, then present the model and estimation results. The model
for new cohorts integrates information coming from trends among younger cohorts with the joint
distribution of outcomes in the current population of age 51 respondents in the HRS.

5.1 Information available and empirical strategy

For the transition model, we need to first to obtain outcomes listed in Table [18] Ideally, we need
information on

ft(yih e 7yiM) = ft(Yi)

where t denotes calendar time, and y; = (yi1,...,%in) 1S a vector of outcomes of interest whose
probability distribution at time ¢ is f;(). Information on how the joint distribution evolves over
time is not available. Trends in conditional distributions are rarely reported either.

Generally, we have (from published or unpublished sources) good information on trends for some
moments of each outcome (say a mean or a fraction). That is, we have information on g, (yim),
where g;,,() denotes the marginal probability distribution of outcome m at time ¢.

For example, we know from the NHIS repeated cross-sections that the fraction obese is increasing
by roughly 2% a year among 51 year olds. In statistical jargon this means we have information
on how the mean of the marginal distribution of ;,,, an indicator variable that denotes whether
someone is obese, is evolving over time.

We also have information on the joint distribution at one point in time, say year ¢3. For example,
we can estimate the joint distribution on age 51 respondents in the 1992 wave of the HRS, fi, (y:)-

We make the assumption that only some part of f;(y;) evolves over time. In particular, we will
model the marginal distribution of each outcome allowing for correlation across these marginals.
The correlations will be assumed fixed while the mean of the marginals will be allowed to change
over time.

5.2 Model and estimation

Assume the latent model for y; = (v, ..., vu),

yrzl’b—i_gh

where ¢; is normally distributed with mean zero and covariance matrix €2. It will be useful to write
the model as

i =t + Lan;,
where L is a lower triangular matrix such that LoLg = € and n; = (1;1,...,7m:m)" are standard
normal. We observe y; = I'(y}) which is a non-invertible mapping for a subset of the M outcomes.
For example, we have binary, ordered and censored outcomes for which integration is necessary.
The vector p can depend on some variables which have a stable distribution over time z; (say
race, gender and education). This way, estimation preserves the correlation with these outcomes
without having to estimate their correlation with other outcomes. Hence, we can write

wi = z;3

and the whole analysis is done conditional on z;.
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For binary and ordered outcomes, we fix €2,, ,, = 1 which fixes the scale. Also we fix the location
of the ordered models by fixing thresholds as 7p = —o0, 71 = 0, 7k = +00, where K denotes the
number of categories for a particular outcome. We also fix to zero the correlation between selected
outcomes (say earnings) and their selection indicator. Hence, we consider two-part models for these
outcomes. Because some parameters are naturally bounded, we also re-parameterize the problem
to guarantee an interior solution. In particular, we parameterize

Qo = exp(6m), m=my—1,..., M

Qo = tanh (&) v/ Qnmimn, myn=1,...,N

Tk = XP(Vmk) + Th—1, k=2,..., K, — 1, m ordered

and estimate the (0p,m,&mn, 7x) instead of the original parameters. The parameter values are

estimated using the ¢mp package in Stata (Roodman [2011). Table gives parameter estimates

for the indices while Table 20| gives parameter estimates of the covariance matrix in the outcomes.
To apply trends to the future cohorts, the latent model is written as

yi = i+ Lan;.

Each marginal has a mean change equal to E(y | 1) = (1 + 7)g(p), where 7 is the percent change
in the outcome and g() is a non-linear but monotone mapping. Since it is invertible, we can find
the vector p* where p* = g ' (E(y | n)/(1 + 7)). We use these new intercepts to simulate new
outcomes.

6 Government revenues and expenditures

This gives a limited overview of how revenues and expenditures of the government are computed.
These functions are based on 2004 rules, but we include predicted changes in program rules such
changes based on year of birth (e.g. Normal retirement age).

We cover the following revenues and expenditures:

Revenues Expenditures
Federal Income Tax Social Security Retirement benefits
State and City Income Taxes Social Security Disability benefits
Social Security Payroll Tax Supplementary Security Income (SSI)
Medicare Payroll Tax Medical Care Costs
Property Tax Medicaid

Medicare (parts A, B, and D)

6.1 Social Security benefits

Workers with 40 quarters of coverage and of age 62 are eligible to receive their retirement benefit.
The benefit is calculated based on the Average Indexed Monthly Earnings (AIME) and the age at
which benefits are first received. If an individual claims at his normal retirement age (NRA) (65
for those born prior to 1943, 66 for those between 1943 and 1957, and 67 thereafter), he receives
his Primary Insurance Amount (PTA) as a monthly benefit. The PIA is a piece-wise linear function
of the AIME. If a worker claims prior to his NRA, his benefit is lower than his PIA. If he retires
after the NRA, his benefit is higher. While receiving benefits, earnings are taxed above a certain
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earning disregard level prior to the NRA. An individual is eligible to half of his spouses PIA,
properly adjusted for the claiming age, if that is higher than his/her own retirement benefit. A
surviving spouse is eligible to the deceased spouses PIA. Since we assume prices are constant in our
simulations, we do not adjust benefits for the COLA (Cost of Living Adjustment) which usually
follows inflation. We however adjust the PIA bend points for increases in real wages.

6.2 Disability Insurance benefits

Workers with enough quarters of coverage and under the normal retirement age are eligible for their
PIA (no reduction factor) if they are judged disabled (which we take as the predicted outcome of
DI receipt) and earnings are under a cap called the Substantial Gainful Activity (SGA) limit. This
limit was $9720 in 2004. We ignore the 9 month trial period over a 5 year window in which the
SGA is ignored.

6.3 Supplemental Security Income benefits

Self-reported receipt of supplemental security income (SSI) in the HRS provides estimates of the
proportion of people receiving SSI under what administrative data would suggest. To correct
for this bias, we link the HRS with administrative data from the social security administration
identifying those receiving SSI. In the linked administrative data, 3.96% of the population receives
supplementary security income, while only 2.79% of the sample reports social security income. We
therefore estimate a probit of receiving SSI as a function of self-reporting social security income, as
well as demographic, health, and wealth.

The benefit amount is taken from the average monthly benefits found in the 2004 Social Security
Annual Statistical Supplement. We assign monthly benefit of $450 for person aged 51 to 64, and
$350 for persons aged 65 and older.

6.4 Medical costs estimation

In the FEM, a cost module links a person’s current state-demographics, economic status, current
health, risk factors, and functional status to 4 types of individual medical spending. The FEM
models: total medical spending (medical spending from all payment sources), Medicare spendingﬂ7
Medicaid spending (medical spending paid by Medicaid), and out of pocket spending (medical
spending by the respondent). These estimates are based on pooled weighted least squares regres-
sions of each type of spending on risk factors, self-reported conditions, and functional status, with
spending inflated to constant dollars using the medical component of the consumer price index. We
use the 2000-2010 Medical Expenditure Panel Survey for these regressions for persons not Medicare
eligible, and the 2000-2010 Medicare Current Beneficiary Survey for spending for those that are
eligible for Medicare. Those eligible for Medicare include people eligible due to age (65+) or due to
disability status. Comparisons of prevalences and question wording across these different sources
are provided in Tables [I] and [2] respectively.

In the baseline scenario, this spending estimate can be interpreted as the resources consumed
by the individual given the manner in which medicine is practiced in the United States during the
post-part D era (2006-2010). Models are estimated for total, Medicaid, out of pocket spending, and
for the Medicare spending. These estimates only use the MCBS dataset.

®We estimate annual medical spending paid by specific parts of Medicare (Parts A, B, and D) and sum to get the
total Medicare expenditures.
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Since Medicare spending has numerous components (Parts A and B are considered here), models
are needed to predict enrollment. In 2004, 98.4% of all Medicare enrollees, and 99%+ of aged
enrollees, were in Medicare Part A, and thus we assume that all persons eligible for Medicare
take Part A. We use the 2007-2010 MCBS to model take up of Medicare Part B for both new
enrollees into Medicare, as well as current enrollees without Part B. Estimates are based on weighted
probit regression on various risk factors, demographic, and economic conditions. The HRS starting
population for the FEM does not contain information on Medicare enrollment. Therefore another
model of Part B enrollment for all persons eligible for Medicare is estimated via a probit, and used
in the first year of simulation to assign initial Part B enrollment status. Estimation results are
shown in estimates table. The MCBS data over represents the portion enrolled in Part B, having
a 97% enrollment rate in 2004 instead of the 93.5% rate given by Medicare Trustee’s Report. In
addition to this baseline enrollment probit, we apply an elasticity to premiums of -0.10, based
on the literature and simulation calibration for actual uptake through 2009 (Atherly et al., [2004;
Buchmueller, 2006). The premiums are computed using average Part B costs from the previous
time step and the means-testing thresholds established by the ACA.

Since both the MEPS and MCBS are known to under-predict medical spending (see, e.g.,[Selden
and Sing, 2008, and references therein), we applied adjustment factors to the predicted three types
of individual medical spending so that the predicted per-capita spending in FEM equal the corre-
sponding spending in National Health Expenditure Accounts (NHEA) for age group 55-64 in year
2004 and ages 65 and over in year 2010, respectively. Table [21] shows how these adjustment factors
were determined by using the ratio of expenditures in the NHEA to expenditures predicted in the
FEM.

Since 2006, the Medicare Current Beneficiaries Survey (MCBS) contains data on Medicare Part
D. The data gives the capitated Part D payment and enrollment. When compared to the summary
data presented in the CMS 2007 Trustee Report, the 2006 per capita cost is comparable between
the MCBS and the CMS. However, the enrollment is underestimated in the MCBS, 53% compared
to 64.6% according to CMS.

A cross-sectional probit model is estimated using years 2007-2010 to link demographics, economic
status, current health, and functional status to Part D enrollment - see the estimates table. To
account for both the initial under reporting of Part D enrollment in the MCBS, as well as the CMS
prediction that Part D enrollment will rise to 75% by 2012, the constant in the probit model is
increased by 0.22 in 2006, to 0.56 in 2012 and beyond. The per capita Part D cost in the MCBS
matches well with the cost reported from CMS. An OLS regression using demographic, current
health, and functional status is estimated for Part D costs based on capitated payment amounts.

The Part D enrollment and cost models are implemented in the Medical Cost module. The Part
D enrollment model is executed conditional on the person being eligible for Medicare, and the cost
model is executed conditional on the enrollment model leading a true result, after the Monte Carlo
decision. Otherwise the person has zero Part D cost. The estimated Part D costs are added with
Part A and B costs to obtain total Medicare cost, and any medical cost growth assumptions are
then applied.

6.5 Taxes

We consider Federal, State and City taxes paid at the household level. We also calculate Social
Security taxes and Medicare taxes. HRS respondents are linked to their spouse in the HRS simu-
lation. We take program rules from the OECD’s Taxing Wages Publication for 2004. Households
have basic and personal deductions based on marital status and age (>65). Couples are assumed
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to file jointly. Social Security benefits are partially taxed. The amount taxable increases with other
income from 50% to 85%. Low income elderly have access to a special tax credit and the earned
income tax credit is applied for individuals younger than 65. We calculate state and city taxes
for someone living in Detroit, Michigan. The OECD chose this location because it is generally
representative of average state and city taxes paid in the U.S. Since Social Security administrative
data cannot be used jointly with Geocoded information in the HRS, we apply these hypothetical
taxes to all respondents.

At the state level, there is a basic deduction for each member of the household ($3,100) and
taxable income is taxed at a flat rate of 4%. At the city level, there is a small deduction of $750
per household member and the remainder is taxed at a rate of 2.55%. There is however a tax credit
that decreases with income (20% on the first 100$ of taxes paid, 10% on the following 50% and 5%
on the remaining portion).

We calculate taxes paid by the employee for Old-Age Social Insurance (SS benefits and DI)
and Medicare (Medicaid and Medicare). It does not include the equivalent portion paid by the
employer. OASI taxes of 6.2% are levied on earnings up to $97,500 (2004 cap) while the Medicare
tax (1.45%) is applied to all earnings.

7 Scenarios and robustness

7.1 Obesity reduction scenario

In addition the to the status quo scenario, the Future Elderly Model can be used to estimate the
effects of numerous possible policy changes. One such set of policy simulations involves changing the
trends of risk factors for chronic conditions. This is implemented by altering the incoming cohorts.
A useful example is an obesity reduction scenario which rolls back the prevalence of obesity among
50 year-olds to its 1978 level by 2030, where it remains until the end of the scenario, in 2050. This is
accomplished by reversing the annual rates of change for BMI category, hypertension, and diabetes
shown in Table[5] As seen in Table this will change the prevalence of obesity among the age 50+
in 2050. As compared with the status quo estimates (Table the FEM predicts that by 2050,
this will result in a change in the amount of Social Security benefits as well as changing combined
Medicare and Medicaid expenditures.

8 Implementation

The FEM is implemented in multiple parts. Estimation of the transition and cross sectional models
is performed in Stata. The incoming cohort model is estimated in Stata using the CMP package
(Roodman, 2011). The simulation is implemented in C++ to increase speed.

To match the two year structure of the Health and Retirement Study (HRS) data used to
estimate the transition models, the FEM simulation proceeds in two year increments. The end
of each two year step is designed to occur on July 1st to allow for easier matching to population
forecasts from Social Security. A simulation of the FEM proceeds by first loading a population
representative of the age 51+ US population in 2004, generated from HRS. In two year increments,
the FEM applies the transition models for mortality, health, working, wealth, earnings, and benefit
claiming with Monte Carlo decisions to calculate the new states of the population. The population
is also adjusted by immigration forecasts from the US Census Department, stratified by race and
age. If incoming cohorts are being used, the new 51/52 year olds are added to the population. The
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number of new 51/52 year olds added is consistent with estimates from the Census, stratified by
race. Once the new states have been determined and new 51/52 year olds added, the cross sectional
models for medical costs, and calculations for government expenditures and revenues are performed.
Summary variables are then computed. Computation of medical costs includes the persons that
died to account for end of life costs. Other computations, such as Social Security benefits and
government tax revenues, are restricted to persons alive at the end of each two year interval. To
eliminate uncertainty due to the Monte Carlo decision rules, the simulation is performed multiple
times (typically 100), and the mean of each summary variable is calculated across repetitions.

FEM simulation takes as inputs assumptions regarding growth in the national wage index, nor-
mal retirement age, real medical cost growth, interest rates, cost of living adjustments, the consumer
price index, significant gainful activity, and deferred retirement credit. The default assumptions
are taken from the 2010 Social Security Intermediate scenario, adjusted for no price increases after
2010. Therefore simulation results are in real 2009 dollars. Table [24] shows the assumptions for
each calendar year and Table [25| shows assumptions for each birth year.

Different simulation scenarios are implemented by changing any of the following components:
incoming cohort model, transition models, interventions that adjust the probabilities of specific
transition, and changes to assumptions on future economic conditions.

8.1 Intervention Module

The intervention module can adjust characteristics of individuals when they are first read into
the simulation “init_interventions” or alter transitions within the simulation “interventions.” At
present, init_interventions can act on chronic diseases, ADL/TADL status, program participation,
and some demographic characteristics. Interventions within the simulation can currently act on
mortality, chronic diseases, and some program participation variables.

Interventions can take several forms. The most commonly used is an adjustment to a transition
probability. One can also delay the assignment of a chronic condition or cure an existing chronic
condition. Additional flexibility comes from selecting who is eligible for the intervention. Some
examples might help to make the interventions concrete.

e Example 1: Delay the enrollment into Social Security OASI by two years. In this scenario
claiming of Social Security benefits is transitioned as normal. However, if a person is predicted
to claim their benefits, then that status is not immediately assigned, but is instead assigned
two years later.

e Example 2: Cure hypertension for those with no other chronic diseases. In this scenario any
individual with hypertension (including those who have had hypertension for many years) is
cured (hypertension status is set to 0), as long as they do not have other chronic diseases.
This example uses the individuals chronic disease status as the eligibility criteria for the
intervention.

e Example 3: Reduce the incidence of hypertension for half of men aged 55 to 65 by 10% in the
first year of the simulation, gradually increasing the reduction to 20% after 10 years. This
example begins to show the flexibility in the intervention module. The eligibility criteria are
more complex (half of men in a specific age range are eligible) and the intervention changes
over time. Mathematically, the intervention works by acting on the incidence probability, p.
In the first year of the simulation, the probability is replaced by (1 — 0.5 % 0.1) p = 0.95p. The
binary outcome is then assigned based on this new probability. Thus, at the population level,
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there is a 5% reduction in incidence for men aged 55 to 65, as desired. After 10 years, the
probability for this eligible population becomes (1 — 0.5 % 0.2) p = 0.9p.

More elaborate interventions can be programmed by the user.

9 Model development

This section gives some historical background about decisions and developments that led up to the
current state of the FEM.

9.1 Transition model

Section 4.1 describes the current FEM transition model with a focus on discrete absorbing outcomes.
In developing this model, it was previously assumed that the time invariant part of the hazard was
composed of the effect of observed characteristics x; and permanent unobserved characteristics
specific to outcome m, 7;,,. Consequently, the index was assumed to be of the form z,,; =
ZiBm + Riji—1,—mYm + Mi,m and the latent component of the hazard was modeled as

*

B jom = TibBm + Niji—1,—mYm & Mim + Qg + Eijims (6)

m:]-7"'7M07ji:jiOa"ijTiai:17"'aN

This is the same as , except that @ uses unobserved characteristics 7; ,,, instead of the effects
of observed initial conditions h; j, —m¥m. The unobserved effects 7; ,,, are persistent over time and
were allowed to be correlated across diseases m = 1,..., M. We assumed that these effects had a
normal distribution with covariance matrix €2,,.

The parameters ¢, = ({Bm, Yims §m}7j\n4:1 ,Vech(ﬂn)>, could be estimated by maximum simulated

likelihood. The joint probability, conditional on the individual frailty is the product of normal
univariate probabilities. Similar to the joint probability in Section [4.1] these sequences, conditional
on unobserved heterogeneity, are also independent across diseases. The joint probability over all
disease-specific sequences is simply the product of those probabilities.

For a given respondent with frailty 7;, the probability of the observed health history is (again,
omitting the conditioning on covariates for simplicity)

M-1 J; Jr
00 hige) = | TT T Pram (0; )2 OPisnd | s VT Prjaa (0:m5)
m=1 j=ji J=ji

To obtain the likelihood of the parameters given the observables, it is necessary to integrate out
unobserved heterogeneity. The complication is that h;j,, —m, the initial outcomes in each hazard,
are not likely to be independent of the common unobserved heterogeneity term which needs to
be integrated out. A solution is to model the conditional probability distribution p(n; | h; ;)
(Wooldridge, 2000)). Implementing this solution amounts to including initial outcomes at baseline
(age 50) for each hazard. This is equivalent to writing

ni = Lhio +
oy~ N(O, Qa)
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Therefore, this allows for permanent differences in outcomes due to differences in baseline outcomes.
The likelihood contribution for one respondent’s sequence is therefore given by

(0, ug) = [ 1610 b )P () g

This model was estimated using maximum simulated likelihood. The likelihood contribution
(7) was replaced with a simulated counterpart based on R draws from the distribution of a.. The
BFGS algorithm was then used to optimize over this simulated likelihood. Convergence of the joint
estimator could not be obtained, so the distribution of «; was assumed to be degenerate. This
yielded the simpler estimation problem describe in Section [4.1] where each equation is estimated
separately.

9.2 Quality adjusted life years
9.2.1 Health related quality-of-life measures

In general, HRQoL measures summarize population health by a single preference-based index mea-
sure. A HRQoL measure is a suitable measure of QALY. There are several widely-used generic
HRQoL indexes, each involving a standard descriptive system: a multidimensional measure of
health states and a corresponding scoring system to translate the descriptive system into a single
index (Fryback et al.l 2007). The scoring system is developed based on a community survey of
preference valuation of health states in the descriptive system, using utility valuation methods like
time trade-offs or a standard gamble.

9.2.2 Health related quality-of-life in MEPS

Because the health states measures in the HRS and FEM do not match the health states defined in
any of the currently available HRQoL indexes, we used MEPS to create a crosswalk file for HRQoL
index calculation. MEPS collects information on health care cost and utilization, demographics,
functional status, and medical conditions. Since the year 2000, it initiated a self-administered
questionnaire for two sets of instruments: SF-12 and EQ-5D.

Seven of the twelve SF-12 questions can be used to generate another HRQoL index: SF-6D.
However, the scoring system for SF-6D was derived from a UK sample (Brazier and Roberts| |2004)
and a significant proportion of the MEPS sample did not give valid answer for at least one of the
seven questions. Therefore, we decided to calculate EQ-5D index score as the HRQoL measure for
FEM.

The EQ-5D instrument includes 5 questions about the extent of problems in mobility, self-care,
daily activities, pain, and anxiety/depression. The scoring system for EQ-5D was first developed
by [Dolan| (1997) using a UK sample. Later, a scoring system based on a US sample was generated
(Shaw et al., 2005). In MEPS 2001, there are 8,301 respondents aged 51 and over. Of those
respondents, 7,439 gave valid answers for all of the five EQ-5D questions. We calculated EQ-5D
scores for these respondents using the scoring algorithm based on a US sample (Shaw et al., |2005)).
The distribution of EQ-5D index scores among these respondents is shown in Figure [2|

9.2.3 MEPS-HRS Crosswalk development

The functional status measure in FEM is based on the HRS. It is a categorical variable including
the following mutually exclusive categories: healthy, any IADL limitation (no ADL limitations), 1-2
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EQ-5D score for aged 51+ in MEPS 2001
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Figure 2: Distribution of EQ-5D index scores for ages 51+ in 2001 MEPS

ADL limitations, and 3 or more ADL limitations. Unfortunately the measures of IADL and ADL
limitations in MEPS are quite different. HRS asks questions like “Do you have any difficulty in
..., while MEPS asks questions like “Does .. .help or supervision in ....” As Table [13| shows, the
prevalence of IADL limitations is relatively similar between the two surveys, while the prevalence
of ADL limitations is much higher in HRS, relative to MEPS. This is reasonable since not all who
have difficulty in ADLs receive help or supervision.

In order to compute EQ-5D index scores using functional status in the FEM, we needed a
set of functional status measures that is comparable across MEPS and HRS (the host dataset for
FEM). We explored several options for deriving such a measure. Ultimately, we constructed two
measures. One measure indicates physical function limitation while the other measure indicates
IADL limitation.

In MEPS, physical function limitation indicates that at least one of the following is true: 1)
receiving help or supervision with bathing, dressing or walking around the house; 2) being limited in
work /housework; 3) having difficulty walking, climbing stairs, grasping objects, reaching overhead,
lifting, bending or stooping, or standing for long periods of time; or 4) having difficulty in hearing
or vision. In HRS, physical function limitation indicates that at least one of the following is true:
1) having any difficulty in bathing/dressing/eating/walking across the room/getting out of bed; 2)
limited in work/housework; or 3) limited in any other activities.

In MEPS, TADL limitation indicates receiving help or supervision using the telephone, paying
bills, taking medications, preparing light meals, doing laundry, or going shopping. In HRS, TADL
limitation indicates having difficulty in any TADL such as using the phone, managing money, or
taking medications.

The prevalence of our two constructed measures among ages 51 and older in MEPS (2001) and
HRS (1998) is shown in Table . The prevalences are quite similar across the two surveys.

Using MEPS 2001 data, we next use ordinary least squares to model the derived EQ-5D score as a
function of six chronic conditions — which are available both in HRS and MEPS, our two constructed
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measures of functional status, and an interaction term of the two measures of functional status.
Three different models were considered. Estimation results are presented in Models I-III in Table
. We also show the estimation results of using only IADL/ADL limitation as covariates, and using
only the six chronic conditions as covariates, as Models IV and V in Table [15] Model II was used
as the crosswalk described in Section to calculate EQ-5D score for non-nursing home residents
aged 51 and over in HRS 1998.

9.3 Drug Expenditures
9.3.1 Drug Expenditures - MEPS

AHRQ produces a file of consolidated annual expenditures for each Medical Expenditure Panel
Survey respondent in each calendar year. The total drug expenditure variable sums all amounts
paid out-ot-pocket and by third party payers for each prescription purchased in that year. For
comparison across years, we convert all amounts to 2010 dollars using the Medical CPI.

9.3.2 Drug Expenditures - MCBS

The Medicare Current Beneficiary Survey produces a Prescribed Medicine Events file at the individual-
event level, with cost and utilization of prescribed medicines for the MCBS community population.
Collapsing this file to the individual provides an estimate of prescription drug cost for each person.
For comparison across years, we convert all amounts to 2010 dollars using the Medical CPI.

There are two caveats to working with these data. The first caveat regards how to handle the
"ghost” respondents. ”"Ghosts” are individuals who enroll in Medicare, but were not asked cost and
use questions in the year of their enrollment. For some outcomes, such as medical expenditures, the
MCBS makes an effort to impute. For others, such as drug utilization and expenditures, the MCBS
does not. We imputed annual drug expenditures for the ghosts, but for certain age ranges the drug
expenditures were not reasonable. This had the biggest effect on the 65 and 66 year olds, for two
reasons. The first is that the 65 and 66 year olds are more likely to be ghosts, as 65 is the typical
age of enrollment for Medicare. The second is that the 65 and 66 year olds used for imputation (i.e.,
the non-"ghosts”) are different. To be fully present in MCBS at age 65 would require enrolling in
Medicare before age 65, which happen through a different channel, such as qualifying for Medicare
due to receiving disability benefits from the federal government.

The second caveat relates to the filling in zeroes for individuals with no utilization data, but
who were enrolled. We assumed that individuals who were not ghosts and who did not appear on
the Prescribed Medicine Events file had zero prescription expenditures.

9.3.3 Drug Expenditures - Estimation

Due to the complexities of the age 65-66 population in the MCBS, we chose to estimate the drug
expenditure models using the MEPS for individuals 51 to 66 and the MCBS for individuals 67 and
older. Individuals under age 65 receiving Medicare due to disability are estimated separately. Since
there are a number of individuals with zero expenditures, we estimate the models in two stages. The
first stage is a probit predicting any drug expenditures and the second is an ordinary least squares
model predicting the amount, conditional on any. Coefficient estimates and marginal effects are
shown in the accompanying Excel workbook.
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10 Validation

We perform three validation exercises:

1. Data splitting
2. External validation

3. External corroboration

Data splitting is a test of the simulations internal validity that compares simulated outcomes
to actual outcomes, external validation compares model forecasts with actual outcomes from other
data sources, and external corroboration compares model forecasts to others forecasts.

10.1 Data Splitting

The data-splitting exercise randomly samples half of the HRS respondent IDs for use in estimating
the transition models. The respondents not used for estimation, but who were present in the HRS
sample in 1998, are then simulated from 1998 through 2012. Demographic, health, and economic
outcomes are compared between the simulated (FEM) and actual (HRS) populations. These results
are presented in Table [9]- Table [12] for 2000, 2006, and 2012, with a statistical test of the difference
between the average values in the two populations.

Worth noting is how the composition of the population changes in this exercise. In 1998, the
sample represents those 51 and older. Since we follow a fixed cohort, the age of the population will
increase to 65 and older in 2012. This has consequences for some measures in later years where the
eligible population shrinks.

10.1.1 Demographics

Demographic measures are presented in Table Demographic differences between the two popu-
lations are small. The gender balance and fraction of the population that is non-Hispanic Black or
Hispanic is consistent.

10.1.2 Health Outcomes

The FEM population has a slightly higher population with one or more ADL limitation in 2012
(20.3% vs 18.1%). Those with any IADL limitations are not statistically different from one another
in 2012.

The two populations are not statistically different from each other for prevalence of cancer, heart
disease, hypertension, or stroke in 2012. They do differ for diabetes (25.4% for the FEM, 24.0%
for the HRS), and lung disease (12.3% for the FEM, 11.2% for the HRS), though the practical
significance of these differences is not clear.

10.1.3 Health Risk Factors

Average BMI and smoking behavior are not statistically different between the two populations in
2012. The nursing home population is also not statistically different between the FEM and the
HRS.

On the whole, the data-splitting exercise is reassuring. Comparing simulated outcomes to actual
outcomes using a set of transition models estimated on a separate population reveals that the
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majority of outcomes of interest are not statistically different. In cases where they are, the practical
difference is potentially low.

10.2 External Validation

The external validation exercise compares FEM full population simulations beginning in 2004 to
external sources. Here we focus on per capita benefits received from Social Security, Disability, and
Supplemental Security Income, followed by Medicare and Medicaid.

10.2.1 Benefits from Social Security Administration

Conditional on a simulant receiving benefits, the FEM algorithmically assigns benefits for Old Age
and Survivors, Supplemental Security Income, and Disability. Here, we compare simulation results
to SSA figures.

For Old Age and Survivor benefits, we compare to the Social Security Administrations December
2012 Monthly Statistical Snapshot. Table 2 of that document indicates that the average OASI
monthly benefit was $1194. FEM forecasts $1182 for the average beneficiary for 2012.

For Supplemental Security Income we compare to Table 3 of the December 2012 Monthly Statis-
tical Snapshot, focusing on the 65 and older population, as that is the only category that is directly
comparable. SSA reports that the average monthly benefit for December of 2012 was $417. FEM
assigns $415 to those receiving SSI.

SSA does not report a disability figure that is directly comparable to FEM forecasts. However,
SSA reports average Disability benefits by age, as well as the number of individuals receiving benefits
at each age. This allows us to construct the average benefit for workers 51 and older. Based on
this calculation, the average disabled worker 51 and older received a benefit of $1212 in December
of 2012. Spouses of disabled workers can also receive a benefit (SSA reports a benefit of $304 for
spouses of disabled workers for all ages). The 2012 FEM forecast for the average DI beneficiary,
which includes both workers and their spouses, is $1102.

10.2.2 Benefits from Medicare and Medicaid

For medical spending, we compare FEM forecasts in 2010 to National Health Expenditure Accounts
measures from 2010, the most recent year for which these data are available. NHEA reports total
amounts by age range, which we then convert to per capita measures using the 2010 Census. We
focus on the 65-84 and 85 plus populations, as they are directly comparable to FEM forecasts. We
also aggregate the two groups to produce a 65 plus average. FEM is similar to NHEA for the 65 plus
population for Medicare ($10473 for NHEA, $10494 for FEM) and total medical spending ($19265
for NHEA, $19056 for FEM). FEM estimates are higher for Medicaid spending ($2141 for NHEA,
$2818 for FEM).

10.3 External Corroboration

Finally, we compare FEM population forecasts to Census forecasts of the US population. Here, we
focus on the full HRS population (51 and older) and those 65 and older. For this exercise, we begin
the simulation in 2010 and simulate the full population through 2050. Population projections are
compared to the 2012 Census projections for years 2012 through 2050. FEM population forecasts
are always within two percent of Census forecasts.
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11 Baseline Forecasts

In this section we present baseline forecasts of the Future Elderly Model. The figures show data
from the HRS for the 55+ population from 1998 through 2012 and forecasts from the FEM for the
55+ population beginning in 2010.

11.1 Disease Prevalence

Figure [3| depicts the six chronic conditions we project for men. And Figure {4] depicts the historic
and forecasted values for women.

Figure [5] shows historic and forecasted levels for any ADL difficulties, three or more ADL dif-
ficulties, any TADL difficulties, and two or more IADL difficulties for men 55 and older. Figure [
shows historic and forecasted levels for any ADL difficulties, three or more ADL difficulties, any
IADL difficulties, and two or more IADL difficulties for women 55 and older.
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Figure 3: Historic and Forecasted Chronic Disease Prevalence for Men 55+
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Conditions

Data source

Projection method

Other sources

Diabetes
Heart disease
Hypertension

National Health
Interview Survey
1997-2006

Use synthetic cohort
approach to estimate
age-specific incidence
rate for each condition

There are other forecasts
(Honeycutt et al.| [2003]
Mainous III et al.| 2007)
for the trends of diabetes
in the U.S population; we
compare their forecasts to
ours and they are reason-
ably close

Overweight
and obese

Prevalence of
over-weight and

Assume annual rate
of change during year
2031-2050 linearly de-
creases from the 2030
rate to zero in 2050

Ruhm| (2007)

Ever-smoked
and smoking
now

obese for aged
46-56 from year
2001 to 2030,
generated by
Ruhm upon
request

Forecast of
prevalence of
ever-smoked and
smoking now
for aged 45-54

from year 2005
to 2025, by [Levy
(2006)

For ever-smoked, as-
sume that the preva-
lence at age 45-54 in
year 2035 (2045) is
the same as prevalence
at age 35-44 (25-34)
in year 2025. As-
sume that the annual
change in prevalence
at age 45-54 in year
2046-2050 the same as
average in 2040-2045.
For smoking-now, af-
ter year 2025, use the
moving average of the
past five years

Any DB from
current job

Assume annual rela-
tive declining rate for
DB entitlement de-
crease by 2% a year

Historical trends of DB
participation rates among
all persons by different
birth cohorts and by age,
by |Poterba et al.|(2007)

Any DC from
current job

Assume annual rel-
ative increasing rate
for DC entitlement in-
crease by 2% a year
until 2026 then stays
the same after 2026

Forecast of DC partici-
pation rates among all
persons by different birth
cohorts and by age, by
Poterba et al.|(2008)

Population
size 50-52
Male
Hispanic
Non-
Hispanic
black

Census Bureau
2000-2010 Inter-
censal  Popula-
tion Estimates,
2012  National
Population  Es-
timates, and
2012  National
Population

Projections

Projected 2060 - 2080
using  linear trend
based on 2040-2060

Table 3: Data sources and methods for projecting future cohort trends
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Prevalence
Annual rate of change to

Condition 1978 2004 get 1978 prevalence by 2030
30 < BMI < 35 (kg/m?) 0.112 0.224 -0.026
35 < BMI < 40 (kg/m?) 0.028 0.058 -0.028
BMI >= 40 (kg/m?) 0.014 0.040 -0.040
Hypertension 0.326 0.335 -0.001
Diabetes 0.047 0.094 -0.026
Currently smoking 0.398 0.281 0.013

Table 5: Prevalence of obesity, hypertension, diabetes and current smokers among ages 46-56 in
1978 and 2004. Prevalence in 1978 is based on NHANES II 1976-1980; Prevalence in 2004 is based
on NHANES 2003-2004. BMI is calculated using self-reported weight and height.
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2000 2006 2012
FEM HRS FEM HRS FEM HRS
Outcome mean mean p | mean mean p | mean mean D
Died 0.0563 0.057 0.101 | 0.068 0.079 0.001 | 0.084 0.084 0.886
Lives in nursing | 0.023 0.022 0.339 | 0.034 0.030 0.145 | 0.045 0.038 0.030
home

Table 9: Data-splitting validation of 1998 cohort: Simulated vs reported mortality and nursing
home outcomes in 2000, 2006, and 2012

2000 2006 2012
FEM HRS FEM HRS FEM HRS
Outcome mean  mean p | mean  mean p | mean  mean D
Age on July 1st | 66.722 66.568 0.207 | 70.694 70.590 0.403 | 74.655 74.720 0.606
Black 0.087 0.089 0.586 | 0.086 0.083 0.410| 0.084 0.082 0.800
Hispanic 0.060  0.060 0.952 | 0.062 0.061 0.882| 0.066 0.064 0.598
Male 0.454  0.447 0.308 | 0.449 0.439 0.169 | 0.443 0.429 0.095

Table 10: Data-splitting validation of 1998 cohort: Simulated vs reported demographic outcomes

in 2000, 2006, and 2012

2000 2006 2012

FEM HRS FEM HRS FEM HRS
Outcome mean mean p | mean mean p | mean mean D
Any ADLs 0.1564 0.155 0.817 | 0.170 0.176 0.272 | 0.203 0.181 0.000
Any IADLs 0.076 0.075 0.588 | 0.087 0.091 0.336 | 0.111 0.111 0.915
Cancer 0.119 0.116 0.482 | 0.168 0.163 0.267 | 0.215 0.216 0.910
Diabetes 0.143 0.139 0.349 | 0.199 0.193 0.259 | 0.254 0.240 0.042
Heart Disease 0.199 0.202 0.587 | 0.254 0.258 0.607 | 0.322 0.318 0.580
Hypertension 0.456 0.440 0.011 | 0.568 0.567 0.904 | 0.660 0.658 0.840
Lung Disease 0.075 0.071 0.176 | 0.103 0.091 0.003 | 0.123 0.112 0.026
Stroke 0.064 0.069 0.061 | 0.088 0.095 0.119 | 0.114 0.116 0.755

Table 11: Data-splitting validation of 1998 cohort: Simulated vs reported binary health outcomes

in 2000, 2006, and 2012
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2000 2006 2012

FEM HRS FEM HRS FEM HRS
Outcome mean mean p | mean mean p | mean mean D
BMI 27.128 27.108 0.756 | 27.418 27.674 0.001 | 27.509 27.646 0.135
Current smoker 0.151 0.152 0.822 | 0.115 0.117 0.658 | 0.096 0.091 0.239
Ever smoked 0.591 0.593 0.788 | 0.580 0.582 0.698 | 0.563 0.565 0.779

Table 12: Data-splitting validation of 1998 cohort: Simulated vs reported risk factor outcomes in
2000, 2006, and 2012

MEPS 2001 (ages 51+) HRS 1998 (ages 51+)
ADL limitation ADL limitation
No Yes All No Yes All
IADL No | 91.5 04| 92.0 IADL No | 82.0 10.5 | 92.5
limitation Yes | 4.4 3.7 8.0 limitation Yes | 3.1 4.5 7.5
All | 95.9 4.1 | 100.0 All | 85.1 14.9 | 100.0

Table 13: Prevalence of IADL and ADL limitations among ages 514 in MEPS 2001 and HRS 1998.
The IADL limitations in MEPS are defined as receiving help or supervision using the telephone,
paying bills, taking medications, preparing light meals, doing laundry, or going shopping; the ADL
limitations in HRS are defined as receiving help or supervision with personal care such as bathing,
dressing, or getting around the house. The TADL limitations in HRS are defined as having any
difficulty in at least one of the following activities: using the phone, taking medications, and
managing money. The ADL limitations in HRS are defined as having any difficulty in at least one

of the following activities: bathing, dressing, eating, walking across the room, and getting out of
bed.

MEPS 2001 (ages 51+) HRS 1998 (ages 51+)
Physical function Physical function
limitation limitation
No Yes All No Yes All
IADL No | 61.6 30.4 | 92.0 IADL No | 60.0 325 | 925
limitation Yes | 0.3 7.8 8.0 limitation Yes | 1.0 6.5 7.5
All | 61.9 38.2 | 100.0 All | 61.0 39.0 | 100.0

Table 14: Prevalence of IADL limitation and physical function limitation among ages 514 in MEPS
2001 and HRS 1998. The definition of IADL limitation is the same as in Table [I3] Physical
function limitation in MEPS indicates that at least one of the following is true: 1) receiving help or
supervision with bathing, dressing or walking around the house; 2) being limited in work /housework;
3) having difficulty walking, climbing stairs, grasping objects, reaching overhead, lifting, bending or
stooping, or standing for long periods of time; or 4) having difficulty in hearing or vision. Physical
function limitation in HRS indicates at least one of the following is true: 1) having any difficulty in
bathing/dressing/eating/walking across the room/getting out of bed; 2) limited in work /housework;
or 3) limited in any other activities.
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Model I  Model I Model IIT Model IV Model V
Constant 0.877FFF  (.898%**  (.874***  (.839***  (.869***
(0.002)  (0.003)  (0.005)  (0.002)  (0.003)
Physical function limitation -0.115%F%  _0.098%**  -(.094%**
(0.004)  (0.005)  (0.004)
IADL limitation -0.041 -0.019 -0.008
(0.037)  (0.042)  (0.036)
TADL limitation * Physical function limitation | -0.150*** -0.156*** -0.162%**
(0.037)  (0.044)  (0.037)
IADL limitation, no ADL limitation -0.182%**
(0.009)
Any ADL limitation -0.344%**
(0.010)
Ever diagnosed with cancer -0.011  -0.015** -0.030%**
(0.009)  (0.007) (0.010)
Ever diagnosed with diabetes -0.034%**%  _0.032*** -0.054%%*
(0.007)  (0.005) (0.007)
Ever diagnosed with high blood pressure -0.030%**%  -0.028*** -0.043*+*
(0.004)  (0.004) (0.005)
Ever diagnosed with heart disease -0.024%F*%  _0.029*** -0.055%%*
(0.006)  (0.005) (0.006)
Ever diagnosed with lung disease -0.036*%*%*  -0.032*** -0.055%+*
(0.009)  (0.007) (0.010)
Ever diagnosed with stroke -0.045%F*%  _0.046*** -0.115%%*
(0.012)  (0.008) (0.013)
Age 65-74 0.010%*
(0.004)
Age 75 and over 0.015%**
(0.005)
Male 0.028***
(0.004)
Non-Hispanic black 0.008
(0.007)
Hispanic -0.001
(0.007)
Less than HS -0.022%%*
(0.005)
Some college 0.016***
(0.005)
College grad 0.037***
(0.005)
Census region: Northeast 0.003
(0.005)
Census region: Midwest 0.004
(0.005)
Census region: West -0.012%*
(0.005)
Marital status:widowed 0.003
(0.005)
Marital status: single -0.013%%*
(0.005)
N 7.358 7317 7317 7.361 7.322
Adjusted R 24 27 29 18 11

*p <0.10, ¥ p < 0.05, *** p < 0.01

Table 15: OLS regressions of EQ-5D utility index among ages 51+ in MEPS 2001. p-values in
parentheses. Data source: MEPS 2001 (ages SZ]laL) EQ-5D scoring algorithm is based on Shaw
et al.| (2005).



Ever diagnosed with cancer -0.020*
(0.001)
Ever diagnosed with diabetes -0.042*
(0.001)
Ever diagnosed with heart disease -0.044*
(0.001)
Ever diagnosed with high blood pressure | -0.034*
(0.001)
Ever diagnosed with lung disease -0.054*
(0.001)
Ever diagnosed with stroke -0.067*
(0.002)
[ADL limitation only -0.160*
(0.002)
One or two ADL limitations -0.099*
(0.001)
Three or more ADL limitations -0.149*
(0.002)
Constant 0.881*
(0.001)
N 19,676
Adjusted R? 0.67

*p<0.01

Table 16: OLS regression of the predicted EQ-5D index score against chronic conditions and FEM-
type functional status specification. p-values in parentheses. Data source: Health and Retirement
Study, 1998. Sample included the age 51 and over community respondents. EQ-5D score was
predicted using Model II in Table [15]
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Selection 1992 2004

working for pay all 0.75 0.78
non-zero wealth all 0.97 0.98
hypertension all 0.29 0.39
Binary heart disease all 0.08 0.09
diabetes all 0.07 0.12
any health insurance all 0.86 0.86
SRH fair or poor all 0.18
normal all 0.37 0.21
overweight all 0.40 0.39
BMI status 30 < BMI <« 35 all 0.17 0.26
Ordered 35 < BMI < 40 all 0.04 0.09
BMI > 40 all 0.02 0.05
never smoked all 0.36 0.44
Smoking status former smoker all 0.35 0.32
current smoker all 0.29 0.24
Functional status no ADL all 0.92 0.88
no TADL all 0.91 0.93
Contintous AIME (nominal $USD) all 2,166.15
quarters of coverage all 100.56
earnings if working  45,750.76  47,422.59
Censored continuous wealth if non-zero 290,582.06 322,743.25
DC wealth if de plan 19.14 25.98
. any DB plan if working 0.44 0.50
Censored discrete any DC plan if working 0.25 0.28
<52 0.38
Early age eligible DB 52-57 0.12
58> 0.37
Censored ordered <b7 0.38
Normal age eligible DB 2;:2; 813
64> 0.10
hispanic all 0.07 0.11
black all 0.10 0.12
male all 0.48 0.49
less high school all 0.21 0.10
Covariates college all 0.41 0.60
single all 0.19 0.27
widowed all 0.04 0.02
cancer all 0.04 0.06
lunge disease all 0.04 0.05

Table 18: Initial conditions used for estimation (1992) and simulation (2004)
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Ages 55-64

Ages 65 and over

NHEA FEM 2004, Adjustment NHEA FEM 2010, Adjustment

Payment | 2004 ($) unadjusted ($) factor | 2010 ($) unadjusted (3) factor
sources (A) (B) (A)/(B) (©) (D) (€)/(D)
Total 7787.00 7013.00 1.11 | 18424.00 15901.00 1.16
Medicare 706.00 598.00 1.18 | 10016.00 8711.00 1.15
Medicaid | 1026.00 656.00 1.56 | 2047.00 1215.00 1.68

Table 21: Per capita medical spending by payment source, age group, and year

Year 2010 2030 2050
Population 51+ (Million) 100.19 129.94 150.20
Population 65+ (Million) 45.17 74.93 84.57
Prevalence of selected conditions for ages 51+

Obesity (BMI >= 30) (%) 0.34 0.43 0.49
Overweight (25 <= BMI < 30) (%) 0.37 0.33 0.30
Ever-smoked 0.56 0.49 0.40
Smoking now 0.15 0.10 0.06
Diabetes 0.20 0.32 0.37
Heart disease 0.20 0.28 0.29
Hypertension 0.54 0.65 0.68
Labor participation for ages 51+

Working (%) 0.46 0.40 0.40
Average earnings if working ($2010) 47881.74 53282.88 67189.39
Government revenues from ages 51+ (Billion $2010)

Federal personal income taxes 393.40 606.09 977.84
Social security payroll taxes 118.79 174.20 267.40
Medicare payroll taxes 32.16 42.18 62.97
Total Revenue 544.34 822.47  1308.20
Government expenditures from ages 51+ (Billion $2010)

Old Age and Survivors Insurance benefits (OASI) 655.37  1144.62  1611.29
Disability Insurance benefits (DI) 59.08 43.94 62.80
Supplementary Security Income (SSI) 21.78 27.28 39.26
Medicare costs 609.32  1229.96  2398.27
Medicaid costs 164.15 297.47 737.53
Medicare + Medicaid 1509.70  2743.27  4849.15
Total medical costs for ages 51+ (Billion $2010) 1397.00  2806.29 5581.84

Table 22: Simulation results for status quo scenario
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Y-0-Y excess

National  Real interest Consumer Substantial real growth in
Calendar year Wage Index rate on wealth COLA Price Index Gainful Activity —medical costs
2004 35648.55 154.7553  3.606042 188.9 9720 .015
2005 36952.94 157.0766 3.703405 195.3 9960 .0148
2006 38651.41 158.3332  3.855245 201.6 10320 .0147
2007 40405.48 160.0749  3.982468 207.342 10800 .0145
2008 41334.97 163.1163 4.074064 215.303 11280 .0143
2009 42188.9 163.7688  4.31036 214.537 11760 .0141
2010 42907.15 171.4659  4.31036 214.537 12000 .0139
2011 43620.13 173.6949  4.31036 214.537 12000 .0138
2012 44197.64 176.4741  4.31036 214.537 12120 .0136
2013 44678.93 180.533  4.31036 214.537 12480 .0134
2014 45126.4 185.2268  4.31036 214.537 12840 .0133
2015 45737.88 190.7836  4.31036 214.537 13080 .0131
2016 46166.54 196.8887  4.31036 214.537 12699.34 .0129
2017 46633.77 202.5985  4.31036 214.537 12827.86 .0128
2018 47117.93 208.2712  4.31036 214.537 12961.05 .0126
2019 47609.11 214.1028  4.31036 214.537 13096.16 .0124
2020 48107.48 220.0977  4.31036 214.537 13233.25 .0122
2021 48615.77 226.2604  4.31036 214.537 13373.07 .0121
2022 49124.07 232.5957  4.31036 214.537 13512.89 .0119
2023 49625.12 239.1084  4.31036 214.537 13650.72 0117
2024 50148.08 245.8035  4.31036 214.537 13794.57 .0115
2025 50681.91 252.6859  4.31036 214.537 13941.41 .0114
2026 51221.7 259.7611  4.31036 214.537 14089.9 .0112
2027 51773.64 267.0345  4.31036 214.537 14241.72 .011
2028 52331.86 274.5114  4.31036 214.537 14395.28 .0109
2029 52896.8 282.1978  4.31036 214.537 14550.68 .0107
2030 53472.1 290.0993  4.31036 214.537 14708.93 .0105
2031 54060.84 298.2221  4.31036 214.537 14870.88 .0104
2032 54659.91 306.5723  4.31036 214.537 15035.67 .0101
2033 55273.43 315.1563  4.31036 214.537 15204.43 .01
2034 55892.85 323.9807  4.31036 214.537 15374.82 .0097
2035 56518.25 333.0521  4.31036 214.537 15546.86 .0094
2036 57149.05 342.3776  4.31036 214.537 15720.37 .0091
2037 57790.2 351.9642  4.31036 214.537 15896.74 .0088
2038 58444.8 361.8192  4.31036 214.537 16076.81 .0085
2039 59104.39 371.9501  4.31036 214.537 16258.24 .0082
2040 59771.73 382.3647  4.31036 214.537 16441.81 .0079
2041 60445.75 393.0709  4.31036 214.537 16627.22 .0076
2042 61127.12 404.0769  4.31036 214.537 16814.65 .0073
2043 61816.84 415.3911  4.31036 214.537 17004.37 .007
2044 62511.55 427.022  4.31036 214.537 17195.47 .0067
2045 63211.19 438.9786  4.31036 214.537 17387.93 .0064
2046 63917.93 451.27  4.31036 214.537 17582.33 .0061
2047 64628.21 463.9056  4.31036 214.537 17777.72 .0058
2048 65348.03 476.895  4.31036 214.537 17975.72 .0055
2049 66072.87 490.248  4.31036 214.537 18175.11 .0052
2050 66803.52 503.9749  4.31036 214.537 18376.09 .0049

Table 24: Assumptions for each calendar year
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Normal Delayed
Birth year Retirement Age Retirement Credit

1890 780 .03
1891 780 .03
1892 780 .03
1893 780 .03
1894 780 .03
1895 780 .03
1896 780 .03
1897 780 .03
1898 780 .03
1899 780 .03
1900 780 .03
1901 780 .03
1902 780 .03
1903 780 .03
1904 780 .03
1905 780 .03
1906 780 .03
1907 780 .03
1908 780 .03
1909 780 .03
1910 780 .03
1911 780 .03
1912 780 .03
1913 780 .03
1914 780 .03
1915 780 .03
1916 780 .03
1917 780 .03
1918 780 .03
1919 780 .03
1920 780 .03
1921 780 .03
1922 780 .03
1923 780 .03
1924 780 .03
1925 780 .035
1926 780 .035
1927 780 .04
1928 780 .04
1929 780 .045
1930 780 .045
1931 780 .05
1932 780 .05
1933 780 .055
1934 780 .055
1935 780 .06
1936 780 .06
1937 780 .065
1938 782 .065
1939 784 .07
1940 786 .07
1941 788 075
1942 790 075
1943 792 .08
1944 792 .08
1945 792 .08
1946 792 .08
1947 792 .08
1948 792 .08
1949 792 .08
1950 792 .08
1951 792 .08
1952 792 .08
1953 792 .08
1954 792 .08
1955 794 .08
1956 796 .08
1957 798 .08
1958 800 .08
1959 802 .08
1960 804 .08

Table 25: Assumptions for each birth year. In yelis after 1960, all values are held constant at their
1960 levels.
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Thisfile provides supplementary details for the paper:
Title: Measuring the COVID-19 Mortality Burden in the United States: A Microsimulation Study
Authors: Julian Reif, Hanke Heun-Johnson, Bryan Tysinger, and Darius Lakdawalla

The following sheets contain transition model estimates for relevant variables in the Future Elderly Model, for population ages 55 and over in 2020.

Binaries

This worksheet reports estimates of the probability of dying, of developing a chronic condition (stroke, heart disease, cancer, hypertension
diabetes, lung disease, and congestive heart failure), of having a heart attack, and of livingin a nursing home.

Ordered Probits
This worksheet reports estimates of the probability of changing smoking status, and of changing ADL and IADL status.

oLS
This worksheet reports estimates of how BMI is updated in the microsimulation.
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Died (died)
coefficients

coef  palue

0024 0024
0112 0034
0016 0.022
0081 0021
0309 0.401
0001 0.032
0047 0.036

0032 0.020
0056 0080
0098 0163

0133 0046
0006 0043

0079 0.023
0171 0.028

0247 0.032

0019 0.039
0079 0.052
0057 0.044

0.095" 0042
0032 0.034

0001 0.036

4.136" 0268

Died (died) marginal
effects

coef
0

0013
0.022

0.001
0.000
-0.000
0.001
0.004

-0.004

pvalue

Heart disease
(hearte) coefficients

coef

0187
0417+

3,967

pvalue

0016
0.021

0.026
0.021

0.163
0.043
0.035
0.034
0.101
0.019
0.022

0.280

Heart disease
(hearte) marginal
effects

0.015
0.010

pvalue

Stroke (stroke)

coefficients
coef  pvalue
0070 0033
0079°  0.047
0032 0.032
0037 0.029
0039 0.034
0013 0.050
0001 0.052
0008 0.072
0052 0.043
0021 0.004
0020 0.003
0193 0022
0024 0028
0144 0.020
0120 0.025
0157 0.056
0476 0033
0049 0025
0238 0071
0437 0.059
0016 0.047
0119 0.041
0281 0.124
0015 0.024
0022 0.028
0027 0.002
0.436™ 0109
0096 0.143
0375 0112
0287°  0.150
0386"*  0.056
3.924 0371

Stroke (stroke)
marginal effects

coef

0.008

0,001
0.005
0.004

0.006

0.007
0.002
0.011

0.005
0.001
0.005
0.013
0.001
0.001

pvalue

Supplement_S_FEM_estimates.xisx

Cancer (cancre)

coefficients
coef  pvalue
0.109% 0033
0163 0.045
0019 0.032
0058" 0025
0128 0.029
0040 0.046
0128 0.047
0013 0.064
0.03 0.037
0026 0.003
0017 0.003
0056™ 0028
0008 0.024
0082 0.068
0110 0.161
0055 0.040
0009 0.038
0233 0112
0.048" 0021
0059 0024

41440

0303

Cancer (cancre)
marginal effects.

Binaries

pvalue

Hypertension (hibpe) H
oefficients

0.121

0.088"*
0.085"*
0.094
0.203
0.043

0.178"
0.144
0.028
0.041%

4639

pvalue

0.026

0.025
0.022
0.075
0.195
0.042

0.040
0.102
0.019
0.023

0.252

iypertension (hibpe)

marginal effects

coef

0.021

pvalue

Diabetes (diabe)
oefficients

0.022
0.044*
04717
-0.001
0018
0.191

0.010
0.021
0,091

ERIPES

pvalue

0.028
0.024
0.066
0.160
0.046
0.032

0.107

0.020
0.024

0320

Diabetes (diabe)
marginal effects

coef

-0.001
0.003
0012

-0.000
0.001
0.014

-0.001
-0.001
0.006

pvalue

Lung disease
(lunge) coefficients

coef

03127
0025
0289
0.131
0224
0.053
0179

0.200°
0.263"

2,947

pvalue

0.028
0.026
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0.202
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0.043
0.038
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0.003
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0.159
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Lung disease
(lunge) marginal
effects

coef
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0.005
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0.007
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0010

pvalue

Heart Attack since
last wave (hearta)
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coef  pvalue
0094 0053
02147 0071
0.085" 0047
0040 0041
0262 0.043
0478 0.070
0086 0.082
0146 0.107
0123 0.052
0006 0.005
0013 0.005
0095 0031
0005 0.030
0052 0.035
0617 0.040
0045 0.035
0074 0047
0094 0040
0309 0.045
0043 0037
0379 0107
0123 0217
0.140° 0075
0016 0.065
0470 0.055
0103 0.149
0022 0.034
0056 0.039
0001 0.003
0058  0.106
0522 0157
0344 0.082
0277 0.094
0041 0123
0028 0079
0007 0.056
0029 0065
0003 0.108
0479 0437
0138 0.186
0013 0.008
0.005  0.008
0.005  0.006
0070 0.055
0011 0.057
0239 0077
0024 0065
0104 0313
0165 0117
0040 0.106
0081 0089
0233 0218
0375 0.128
0022 0.062
0040 0.065
0316"  0.148
0952 0.249
0009 0.141
641 0.436

Heart Attack since.
last wave (hearta)
marginal effects

0.014

0.001
0.007

0.123

0.006
0011
0.014
0.051
0.006

0.041

0016
0.022

0002
0.026
0.016
0.003
0.008

0011
0.038
0.067
0.003

0.005

0.044
0.134

0014

pvalue

Congestive heart

failure (chfe)
coefficients
coef  pvalue
0067 0051
0036 0076
0105 0.045
0.086" 0045
0030 0047
0007 0068
0087 0082
0036 0116
0036 0.063
0036"* 0007
0008 0.005
0854 0.030
0118"*  0.030
0.149% 0,033
0042 0048
0109 0.035
0046 0072
0191 0234
0035 0.080
0137 0.067
0476"* 0055
0111 0.169
0048 0034
0437 0037
0021 0.003
0378 0.159
0923"*  0.185
0.587* 0161
0148 0.199
0114 0.082
4383 0602

Congest
failure

margina

©0.107

0.014
0.019

0.005
0.014
0.006

0020
0.004
0,018
0.023
0.014
0.006
0.017



ive heart
(chfe)
Ieffects

pvalue
Non-Hispanic black

Hispanic

Less than high school

Some college and above

Mal

3
Male AND Less than high school

Male AND Non-Hispanic black

Male AND Hispanic

Male AND Some college and above

Min(63, two-year lag of age)

Min(Max(0, two-year lag age - 63), 73 - 63)
Min(Max(0, two-year lag age - 73), 83 - 73)

Max(0, two-year lag age - 83)

Two-year lag of Heart disease

Two-year lag of Stroke

Two-year lag of Cancer

Two-year lag of Hypertension

Two-year lag of Diabetes

Two-year lag of Lung disease

Two-year lag of R had heart attack since last wave
Two-year lag of Has exactly 1 IADL

Two-year lag of Has 2 or more IADLs

Two-year lag of Has exactly 1 ADL

Two-year lag of Has exactly 2 ADLS

Two-year lag of Has 3 of more ADLS

Two-year lag of Curtent smoking

Two-year lag of Widowed

Heart problem status at age 50 (1/0)imputed
Stroke status at age 50 (1/0}imputed

Cancer status at age 50 (1/0)-mputed

High blood preasure status at age 50 (1/0}mputed
Diabetes status at age 50 (mputed)

Lung disease status at age 50 (1/0}mputed

Init. of Ever smoked

Smoking status at age 50 (imputed)

Two-year lag of Ever had congestive heart failure (missing for 1993

p
Male AND Two-year lag of Ever had congestive heart failure
(missing for 1993 AHE

Male AND Two-year lag of Heart disease

Male AND Two-year lag of Stroke

Male AND Two-year lag of Cancer

Male AND Two-year lag of Hypertension

Male AND Two-year lag of Diabetes

Male AND Two-year lag of Lung disease

Male AND Two-year lag of R had heart attack since last wave
Male AND Two-year lag of Has exactly 1 IADL

Male AND Two-year lag of Has 2 or more IADLs

Male AND Two-year lag of Has exactly 1 ADL

Male AND Two-year lag of Has exactly 2 ADLs

Male AND Two-year lag of Has 3 or more ADLs

Male AND Two-year lag of Current smoking

Male AND Two-year lag of Widowed

Male AND Heart problem status at age 50 (1/0}mputed
Male AND Stroke status at age 50 (1/0)imputed

Male AND Cancer status at age 50 (1/0}imputed

Male AND High blood preasure status at age 50 (1/0)imputed
Male AND Diabetes status at age 50 (imputed)

Male AND Lung disease status at age 50 (1/0}mputed
Male AND Init. of Ever smoked

Male AND Smoking status at age 50 (mputed)

Max(0, two-year lag age - 73)

Splined two-year lag of BMI <= log(30)

Splined two-year lag of BMI > log(30)

Splined init of BMI age 50 <= log(30)

Splined init of BMI age 50 > log(30)

Log of years between curtent interview and previous

male_hsless_2heartae
male_black_I2heartae
male_hispan_I2heartae
12age65i_I2heartae
12age6574_i2heartae

feanc50_i2heartae
ibpS0_2heartae
fdiabeS0_i2heartae
flung50_i2heartae
fheart50_iheartae
fsmokev_Izheartae
fsmoken50_izheartae
12logbmi_I30_2heartae
12logbmi_30p_i2heartae
logdeltaage_zheartae
Two-year lag of Non-pension with(hatota) not zero
Two-year lag of (IHT of hh with in 1000s if positive)/100 zero
otherwise

Two-year lag of R live in nursingh ome at interview

_cons

note: .01 -*.05 -4 1 - *

Rlive in nursing
home at interview
(nhmliv) coefficients.

coef  pvalue

0045 0027
0475 0032

0050 0.033
0031 0026
0105 0031
0083 0.040

0400 0.036
0810 0.039
0220 0.036

0143 0028
0240 0.105
0027 0.265
0087 0.088
0022 0.084
0135 0.059
0031 0250
0.060"  0.030
0009 0.033

0050 0.002

0874 0074

0437 0.051
4972 0494

2273 0052
5658 0.553

Rlive in nursing

home at interview

(nhmliv) marginal
effects

0.000

0.008

0.001
0.044
0.304

pvalue

Supplement_S_FEM_estimates.xisx

Binaries



Non-Hispanic black

Hispanic

Less than high school

Some college and above

Male

Male AND Less than high school

Male AND Non-Hispanic black

Male AND Hispanic

Male AND Some college and above

Min(63, two-year lag of age)

Min(Max(0, two-year lag age - 63), 73 - 63)
Max(0, two-year lag age - 73)

Two-year lag of Heart disease

Two-year lag of Stroke

Two-year lag of Cancer

Two-year lag of Hypertension

Two-year lag of Diabetes

Two-year lag of Lung disease

Two-year lag of R had heart attack since last wave
Two-year lag of Has exactly 1 IADL
Two-year lag of Has 2 or more IADLs
Two-year lag of Has exactly 1 ADL

Two-year lag of Has exactly 2 ADLs
Two-year lag of Has 3 or more ADLs
Two-year lag of Current smoking

Two-year lag of Widowed

Heart problem status at age 50 (1/0)-imputed
Stroke status at age 50 (1/0)-imputed
Cancer status at age 50 (1/0)-imputed

High blood preasure status at age 50 (1/0)-imputed
Diabetes status at age 50 (imputed)

Lung disease status at age 50 (1/0)-imputed
Smoking status at age 50 (imputed)

Splined two-year lag of BMI <= log(30)
Splined two-year lag of BMI > log(30)
Splined init of BMI age 50 <= log(30)
Splined init of BMI age 50 > log(30)

Log of years between current interview and previous
Init. of Ever smoked

note: .01 -***; .05-* .1-%

Supplement_5_FEM_estimates.xlsx

Smoking status

(smkstat)
coefficients
coef p-value
-0.027* 0.014
-0.174*** 0.019
0.012 0.015
0.093*** 0.012
0.503*** 0.014
0.031 0.023
-0.158*** 0.023
0.128*** 0.028
-0.248*** 0.018
0.008*** 0.001
0.003** 0.001
-0.010*** 0.001
0.071*** 0.011
0.036** 0.016
0.060*** 0.013
-0.007 0.009
-0.019 0.012
0.214*** 0.016
0.095*** 0.031
-0.008 0.019
-0.068** 0.027
0.034** 0.015
0.029 0.022
-0.032 0.021
2.558*** 0.017
-0.031*** 0.012
0.063* 0.037
0.258*** 0.080
0.017 0.025
-0.008 0.019
0.030 0.019
-0.169*** 0.060
2.880*** 0.033
-0.098* 0.051
0.331*** 0.067
0.122** 0.051
-0.354*** 0.072
-0.043* 0.023

Smoking status (smkstat) marginal effects

coef p-value

0.007
0.047
-0.003
-0.024
-0.123
-0.008
0.043
-0.031
0.068
-0.002
-0.001
0.002
-0.018
-0.009
-0.015
0.002
0.005
-0.050
-0.023
0.002
0.018
-0.008
-0.007
0.008
-0.277
0.008
-0.015
-0.058
-0.004
0.002
-0.007
0.046
-0.482
0.025
-0.084
-0.031
0.090
0.011

Ordered probits

coef

-0.007
-0.047
0.003
0.023
0.121
0.008
-0.042
0.030
-0.067
0.002
0.001
-0.002
0.018
0.009
0.015
-0.002
-0.005
0.049
0.023
-0.002
-0.018
0.008
0.007
-0.008
0.117
-0.008
0.015
0.057
0.004
-0.002
0.007
-0.046
0.371
-0.025
0.083
0.031
-0.089
-0.011

coef

-0.000
-0.000
0.000
0.000
0.002
0.000
-0.000
0.000
-0.000
0.000
0.000
-0.000
0.000
0.000
0.000
-0.000
-0.000
0.001
0.000
-0.000
-0.000
0.000
0.000
-0.000
0.160
-0.000
0.000
0.001
0.000
-0.000
0.000
-0.000
0.112
-0.000
0.001
0.000
-0.001
-0.000

ADL status (adistat)

coefficients
p-value coef p-value
0.113*** 0.016
0.145*** 0.020
0.125*** 0.015
-0.041*** 0.014
-0.056*** 0.017
-0.030 0.025
0.001 0.026
-0.026 0.032
-0.035 0.022
0.007*** 0.002
0.017*** 0.002
0.041*** 0.001
0.129*** 0.012
0.253*** 0.016
0.054*** 0.014
0.051*** 0.010
0.081*** 0.013
0.235*** 0.015
0.032 0.031
0.345*** 0.017
0.712*** 0.024
1.049*** 0.013
1.494*** 0.018
2.080*** 0.019
0.098*** 0.016
0.034*** 0.013
0.041 0.038
-0.018 0.080
0.076*** 0.028
0.017 0.021
0.124*** 0.020
0.021 0.059
0.078*** 0.014
-0.430*** 0.055
0.724*** 0.067
0.669*** 0.056
0.370*** 0.071
0.218*** 0.027
-0.001 0.012

coef

-0.025
-0.033
-0.028

0.009

0.012

0.006
-0.000

0.006

0.007
-0.002
-0.004
-0.009
-0.029
-0.061
-0.012
-0.011
-0.018
-0.057
-0.007
-0.087
-0.209
-0.328
-0.508
-0.696
-0.022
-0.008
-0.009

0.004
-0.017
-0.004
-0.028
-0.005
-0.017

0.093
-0.157
-0.145
-0.080
-0.047

0.000



Non-Hispanic black

Hispanic

Less than high school

Some college and above

Male

Male AND Less than high school

Male AND Non-Hispanic black

Male AND Hispanic

Male AND Some college and above

Min(63, two-year lag of age)

Min(Max(0, two-year lag age - 63), 73 - 63)
Max(0, two-year lag age - 73)

Two-year lag of Heart disease

Two-year lag of Stroke

Two-year lag of Cancer

Two-year lag of Hypertension

Two-year lag of Diabetes

Two-year lag of Lung disease

Two-year lag of R had heart attack since last wave
Two-year lag of Has exactly 1 IADL
Two-year lag of Has 2 or more IADLs
Two-year lag of Has exactly 1 ADL

Two-year lag of Has exactly 2 ADLs
Two-year lag of Has 3 or more ADLs
Two-year lag of Current smoking

Two-year lag of Widowed

Heart problem status at age 50 (1/0)-imputed
Stroke status at age 50 (1/0)-imputed
Cancer status at age 50 (1/0)-imputed

High blood preasure status at age 50 (1/0)-imputed
Diabetes status at age 50 (imputed)

Lung disease status at age 50 (1/0)-imputed
Smoking status at age 50 (imputed)

Splined two-year lag of BMI <= log(30)
Splined two-year lag of BMI > log(30)
Splined init of BMI age 50 <= log(30)
Splined init of BMI age 50 > log(30)

Log of years between current interview and previous
Init. of Ever smoked

note: .01 -***; .05-* .1-%

Supplement_5_FEM_estimates.xlsx

ADL status (adistat) marginal effects

p-value coef
0.014
0.018
0.016
-0.005
-0.007
-0.004
0.000
-0.003
-0.004
0.001
0.002
0.005
0.016
0.033
0.007
0.006
0.010
0.030
0.004
0.045
0.095
0.133
0.149
0.119
0.012
0.004
0.005
-0.002
0.010
0.002
0.016
0.003
0.010
-0.053
0.089
0.082
0.045
0.027
-0.000

p-value coef
0.006
0.008
0.007
-0.002
-0.003
-0.002
0.000
-0.001
-0.002
0.000
0.001
0.002
0.007
0.015
0.003
0.003
0.004
0.014
0.002
0.022
0.054
0.084
0.125
0.144
0.005
0.002
0.002
-0.001
0.004
0.001
0.007
0.001
0.004
-0.022
0.038
0.035
0.019
0.011
-0.000

Ordered probits

p-value coef
0.005
0.007
0.006
-0.002
-0.002
-0.001
0.000
-0.001
-0.001
0.000
0.001
0.002
0.006
0.013
0.002
0.002
0.004
0.012
0.001
0.020
0.060
0.111
0.234
0.432
0.004
0.001
0.002
-0.001
0.003
0.001
0.006
0.001
0.003
-0.018
0.030
0.028
0.016
0.009
-0.000

IADL status (iadlstat)

coefficients
p-value coef p-value
0.113*** 0.020
0.195*** 0.024
0.193*** 0.019
-0.029 0.018
0.100*** 0.021
0.007 0.029
-0.013 0.031
-0.087** 0.037
-0.087*** 0.027
-0.009*** 0.002
0.023*** 0.002
0.047*** 0.001
0.068*** 0.014
0.294*** 0.018
0.011 0.017
0.035*** 0.013
0.116*** 0.015
0.087*** 0.019
0.025 0.036
1.102*** 0.017
1.988*** 0.024
0.331*** 0.018
0.484*** 0.023
0.653*** 0.021
0.094*** 0.020
0.018 0.015
0.024 0.048
0.033 0.091
0.038 0.036
0.023 0.027
0.112*** 0.025
-0.019 0.076
0.011 0.017
-0.841*** 0.064
-0.192** 0.089
0.564*** 0.067
0.160* 0.091
0.320*** 0.033
0.009 0.015

coef

-0.014
-0.026
-0.025

0.003
-0.012
-0.001

0.001

0.010

0.010

0.001
-0.003
-0.006
-0.008
-0.042
-0.001
-0.004
-0.014
-0.011
-0.003
-0.250
-0.591
-0.048
-0.079
-0.118
-0.012
-0.002
-0.003
-0.004
-0.005
-0.003
-0.014

0.002
-0.001

0.099

0.023
-0.066
-0.019
-0.038
-0.001

IADL stz

p-value



Non-Hispanic black

Hispanic

Less than high school

Some college and above

Male

Male AND Less than high school

Male AND Non-Hispanic black

Male AND Hispanic

Male AND Some college and above

Min(63, two-year lag of age)

Min(Max(0, two-year lag age - 63), 73 - 63)
Max(0, two-year lag age - 73)

Two-year lag of Heart disease

Two-year lag of Stroke

Two-year lag of Cancer

Two-year lag of Hypertension

Two-year lag of Diabetes

Two-year lag of Lung disease

Two-year lag of R had heart attack since last wave
Two-year lag of Has exactly 1 IADL
Two-year lag of Has 2 or more IADLs
Two-year lag of Has exactly 1 ADL

Two-year lag of Has exactly 2 ADLs
Two-year lag of Has 3 or more ADLs
Two-year lag of Current smoking

Two-year lag of Widowed

Heart problem status at age 50 (1/0)-imputed
Stroke status at age 50 (1/0)-imputed
Cancer status at age 50 (1/0)-imputed

High blood preasure status at age 50 (1/0)-imputed
Diabetes status at age 50 (imputed)

Lung disease status at age 50 (1/0)-imputed
Smoking status at age 50 (imputed)

Splined two-year lag of BMI <= log(30)
Splined two-year lag of BMI > log(30)
Splined init of BMI age 50 <= log(30)
Splined init of BMI age 50 > log(30)

Log of years between current interview and previous
Init. of Ever smoked

note: .01 -***; .05-* .1-%

Supplement_5_FEM_estimates.xlsx

itus (iadistat) marginal effects

coef
0.010
0.019
0.018
-0.003
0.009
0.001
-0.001
-0.007
-0.007
-0.001
0.002
0.004
0.006
0.030
0.001
0.003
0.011
0.008
0.002
0.149
0.233
0.034
0.055
0.079
0.009
0.002
0.002
0.003
0.003
0.002
0.010
-0.002
0.001
-0.073
-0.017
0.049
0.014
0.028
0.001

p-value

coef p-value
0.004
0.007
0.007
-0.001
0.003
0.000
-0.000
-0.002
-0.002
-0.000
0.001
0.001
0.002
0.012
0.000
0.001
0.004
0.003
0.001
0.100
0.357
0.014
0.025
0.039
0.003
0.001
0.001
0.001
0.001
0.001
0.004
-0.001
0.000
-0.025
-0.006
0.017
0.005
0.010
0.000

Ordered probits



Supplement_5_FEM_estimates.xlsx

Log(BMI) (logbmi) Log(BMI) (logbmi)

coefficients marginal effects

coef p-value coef p-value
Male 0.001* 0.001 0.001
Non-Hispanic black -0.002** 0.001 -0.002
Hispanic -0.002** 0.001 -0.002
Less than high school -0.002** 0.001 -0.002
Some college and above -0.000 0.001 -0.000
[2adl1p 0.001 0.001 0.001
12iadl1p -0.004*** 0.001 -0.004
Male AND Less than high school 0.000 0.001 0.000
Male AND Non-Hispanic black -0.005*** 0.001 -0.005
Male AND Hispanic -0.001 0.002 -0.001
Male AND Some college and above -0.001 0.001 -0.001
Min(63, two-year lag of age) -0.000 0.000 -0.000
Min(Max(0, two-year lag age - 63), 73 - 63) -0.001*** 0.000 -0.001
Max(0, two-year lag age - 73) -0.002*** 0.000 -0.002
Two-year lag of Heart disease -0.001 0.001 -0.001
Two-year lag of Stroke -0.003*** 0.001 -0.003
Two-year lag of Cancer -0.001 0.001 -0.001
Two-year lag of Hypertension 0.004*** 0.000 0.004
Two-year lag of Diabetes -0.001 0.001 -0.001
Two-year lag of Lung disease -0.005*** 0.001 -0.005
Two-year lag of R had heart attack since last wave 0.006*** 0.002 0.006
Two-year lag of Has 2 or more IADLs -0.003** 0.002 -0.003
Two-year lag of Has exactly 2 ADLs 0.000 0.001 0.000
Two-year lag of Has 3 or more ADLs -0.001 0.001 -0.001
Two-year lag of Current smoking -0.011*** 0.001 -0.011
Two-year lag of Widowed 0.001* 0.001 0.001
Heart problem status at age 50 (1/0)-imputed -0.000 0.002 -0.000
Stroke status at age 50 (1/0)-imputed 0.009* 0.005 0.009
Cancer status at age 50 (1/0)-imputed 0.002* 0.001 0.002
High blood preasure status at age 50 (1/0)-imputed 0.003*** 0.001 0.003
Diabetes status at age 50 (imputed) -0.004*** 0.001 -0.004
Lung disease status at age 50 (1/0)-imputed 0.005 0.003 0.005
Init. of Ever smoked 0.002*** 0.001 0.002
Smoking status at age 50 (imputed) 0.001 0.001 0.001
Splined two-year lag of BMI <= log(30) 0.814** 0.003 0.814
Splined two-year lag of BMI > log(30) 0.827** 0.004 0.827
Splined init of BMI age 50 <= log(30) 0.138*** 0.003 0.138
Splined init of BMI age 50 > log(30) 0.102*** 0.004 0.102
Log of years between current interview and previous -0.012*** 0.001 -0.012
Init. of 0.000 0.000 0.000
_cons 0.057 0.088

note: .01 -**;.05-**.1-%

OLS
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