**OMTN, Volume 25** 

# **Supplemental information**

## MultiEditR: The first tool for the detection and

#### quantification of RNA editing from Sanger sequencing

### demonstrates comparable fidelity to RNA-seq

Mitchell G. Kluesner, Rafail Nikolaos Tasakis, Taga Lerner, Annette Arnold, Sandra Wüst, Marco Binder, Beau R. Webber, Branden S. Moriarity, and Riccardo Pecori

### SUPPLEMENTARY MATERIALS

### pJET-CmAG-WT and pJET-CmAG-6x

In **yellow** are highlighted the 6 Cs which are unedited (C) in pJET-CmAG-WT and edited (T) in the pJET-CmAG-6x.

#### mCherry-mApob-eGFP (CmAG) coding region:

ATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCT CAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGG GCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGT GGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAC GCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAG GGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGAC CCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCA CCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCC TCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAG GCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGG CCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATC ACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCG CCACTCCACCGGCGGCATGGACGAGCTGTACAAGaagettaAACAAGTAGCTGGTGCCA AGGAAAAAATAACTTCTTTCATGGAAAATTATAGAATTACAGATAATGATGTACTAA TTGCCATAGATAGTGCCAAAATCAACTTCAATGAAAAACTCTCTCAACTTGAGACAT ACGCGATACAATTTGATCAGTATATTAAAGATAATTATGATCCACATGACTTAAAAA GAACTATTGCTGAGATTATTGATCGAATCATTGAAAAGTTAAAAATTCTTGATGAAC AAACGTTGATCTTAACCAAGTCAGTAGTAGTAACACCTCTTGGATCCAAAATGTGGA

TTCCAATTATCAAGTCAGAATCCAAATTCAAGAAAAACTACAGCAGCTCAGGACAC AAATTCAGAATATAGACATTCAGCAGCTTGCTGCAGAGGTAAAACGACAGACCCGG GATCCACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGT GCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCG GCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACC ACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTG CAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCC ATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTA CAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGC TGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTAC AACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAA GGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACC ACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCAC TACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACAT GGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTA CAAGTAA

In red mCherry, in yellow mouse Apob and in green eGFP.

### mCherry-Apob-eGFP W58X (CAGX) coding region:

ATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCT1 CAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGG GCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGT GGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAG GCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAG GGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGAC CCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCA CCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCC TCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAG GCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGG CCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATC ACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCG CCACTCCACCGGCGGCATGGACGAGCTGTACAAGAAGCTTACCATG<mark>GCCAAGGAGA</mark> AACTGACTGCTCTCACAAAAAGTATAGAATTACAGAAAATGATATACAAATTGCA TTAGATGATGCCAAAATCAACTTTAATGAAAAACTATCTCAACTGCAGACATATATG ATACAATTTGATCAGTATATTAAAGATAGTTATGATTTACATGATTTGAAAATAGCT ATTGCTAATATTATTGATGAAAATCATTGAAAAAATTAAAAAGTCTTGATGAGCACTAT CATATCCGTGTAAATTTAGTAAAAACAATCCATGATCTACATTTGTTTATTGAAAAT ATTGATTTTAACAAAAGTGGAAGTAGTACTGCATCCTGGATTCAAAATGTGGATACT

AAGTACCAAATCAGAATCCAGATACAAGAAAAACTGCAGCAGCTTAAGAGACACAT ACAGAATATAGACATCCAGCACCTAGCTGGAATTCTGCAGTCGACGGTACCGCGGG CCCGGGATCCACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGG GTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGT GTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCT GCACCACCGGCAAGCTGCCCGTGCCC<mark>TAG</mark>CCCACCCTCGTGACCACCCTGACCTACG GCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGT CCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGC AACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCAT CGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGG AGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGC ATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGC CGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACA ACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGAT CACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAG CTGTACAAGTAA

In red mCherry, in yellow human Apob and in green eGFP. In light blue is highlighted W58X mutation and in red the A to edit to G to re-activate the eGFP.

# SUPPLEMENTARY TABLES

Supplementary Table 1 - List of all the regions within transcripts analysed with REDItools v1 for NGS comparison with MultiEditR. For each transcript strandness, reference genome and chromosomal coordinates of the amplicon are indicated.

| Gene (strand)    | Reference<br>Genome | Chromosomal coordinates of the amplicon |
|------------------|---------------------|-----------------------------------------|
| ARSD (reg.1) (-) | hg19                | chrX:2,824,741-2,825,282                |
| ARSD (reg.2) (-) | hg19                | chrX:2,824,114-2,824,494                |
| CTSS (-)         | hg19                | chr1:150,704,237-150,704,783            |
| DDX58 (-)        | hg19                | chr9:32,455,300-32,502,734              |
| MAVS (+)         | hg19                | chr20:3,827,446-3,856,770               |
| SSR3 (-)         | hg19                | chr3:156,257,929-156,272,973            |
| Slc39a10 (-)     | mm10                | chr1:46,807,710-46,808,199              |
| Aldoc (+)        | mm10                | chr11:78,327,206-78,327,625             |
| Atp6ap2 (+)      | mm10                | chrX:12,615,885-12,616,656              |
| Serinc1 (-)      | mm10                | chr10:57,515,845-57,516,141             |
| B2m (+)          | mm10                | chr2:122,147,686-122,153,083            |
| Rab7 (-)         | mm10                | chr6:87,999,398-87,999,968              |
| Reep5 (-)        | mm10                | chr18:34,346,596-34,347,035             |
| Casp6 (+)        | mm10                | chr3:129,913,560-129,914,011            |

**Supplementary Table 2 - List of all the regions within transcripts analysed by Amplicon-seq.** For each transcript strandness, reference genome and chromosomal coordinates of the amplicon are indicated.

| Gene (strand) | Reference<br>Genome | Chromosomal coordinates of the amplicon |
|---------------|---------------------|-----------------------------------------|
| ARSD (-)      | hg19                | chrX:2824741-2825282                    |
| CTSS (-)      | hg19                | chr1:150704237-150704783                |
| DDX58 (-)     | hg19                | chr9:32456205-32456648                  |
| MAVS (+)      | hg19                | chr20:3851441-3851945                   |
| Slc39a10 (-)  | mm10                | chr1:46807710-46808199                  |
| Aldoc (+)     | mm10                | chr11:78327206-78327625                 |
| Atp6ap2 (+)   | mm10                | chrX:12616190-12616656                  |
| Serinc1 (-)   | mm10                | chr10:57515845-57516325                 |
| B2m (+)       | mm10                | chr2:122152650-122153068                |
| Rab7 (-)      | mm10                | chr6:87999398-87999968                  |

**Supplementary Table 3 - List of all the primers and oligos used in this study.** For all the primers and oligos listed above lowercase bases represent the homology part needed during the cloning (#1-8, 17) or the adaptor sequence needed for Amplicon-seq (#57-76). For oligos #13-14 the base in bold is the one modified during the site-directed mutagenesis. In oligo #17 gRNA the bases highlighted in green codify the boxB hairpin. Oligos #27-56 were used to generate the PCR fragments used in the comparison of MultiEditR and NGS methods (Figure 2 and S4).

| 1 | mApob_F                                | ggcggcatggacgagctgtacaagAAGCTTAAACAAGTAGCTGGTGCCAAGGAA |
|---|----------------------------------------|--------------------------------------------------------|
| 2 | mApob_R                                | accatggtggcgaccggtggatcccgggtCTGTCGTTTTACCTCTGCAGCAAG  |
| 3 | RBM47_F                                | ttagtgaaccgtcagatccgctagcATGACTGCTGAAGATTCCGCC         |
| 4 | RBM47_R                                | agagtcgcggccgctttacttgtacaTCAGTAAGTCTGGTAGACGTCG       |
| 5 | CRISPR<br>sgRNA<br>ADAR1ko_<br>exon4_F | caceGGACAGGAGACGGAATTCGC                               |
| 6 | CRISPR<br>sgRNA<br>ADAR1ko_<br>exon4_R | aaacGCGAATTCCGTCTCCTGTCC                               |
| 7 | non-<br>targeting<br>sgRNA_F           | caccGTATTACTGATATTGGT                                  |
| 8 | non-<br>targeting<br>sgRNA_R           | aaacACCAATATCAGTAATAC                                  |
| 9 | A1KO_11_f<br>w                         | CACCGAGCAAGATGAGTTCCGAGAC                              |

| 10 | A1KO_11_r<br>v      | AAACGTCTCGGAACTCATCTTGCTC                                                                                                                                      |
|----|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 | A1KO_39_f<br>w      | CACCGTAGCTGTTGATCCCACTCTG                                                                                                                                      |
| 12 | A1KO_39_r<br>v      | AAACCAGAGTGGGATCAACAGCTAC                                                                                                                                      |
| 13 | W58X_uAg<br>_F      | CTGCCCGTGCCCTAGCCCACCCT                                                                                                                                        |
| 14 | W58X_uAg<br>_R      | AGGGTGGGCTAGGGCACGGGCAG                                                                                                                                        |
| 15 | pENTR_pla<br>sm_F   | TTTTTTCTAGACCCAGCTTTCTTGTA                                                                                                                                     |
| 16 | pENTR_pla<br>sm_R   | GGTGTTTCGTCCTTTCCACA                                                                                                                                           |
| 17 | Oligo_gRN<br>A_W58X | tggaaaggacgaaacaccTCAGGGTGGT <mark>GGCCCTGAAAAAGGGCC</mark> GAGGGTGGG<br>CCAGGGCACGGGCAGCTTGC <mark>GGCCCTGAAAAAGGGCC</mark> TGGTGCAGATtt<br>ttttctagacccagctt |
| 18 | Apob_F              | TGCATCCTGGATTCAAAATGTGG                                                                                                                                        |
| 19 | eGFP_R              | TTGAAGTCGATGCCCTTCAG                                                                                                                                           |
| 20 | A1_KO1A_<br>fw      | CATTGATGGCTCTGTGGGTGTTC                                                                                                                                        |
| 21 | A1_KO1A_<br>rv      | GCTGAAAAGCACCCAGGGAC                                                                                                                                           |
| 22 | A1_KO2A_<br>fw      | GTACCTCTCAGATCCTTTGAGAAGTC                                                                                                                                     |

| 23 | A1_KO2A_<br>rv                 | GCATGCTGTAACCCTGTAGTTC      |
|----|--------------------------------|-----------------------------|
| 24 | B2m_fw                         | CAAGCATCATGATGCTCTGAAG      |
| 25 | B2m_rv                         | GTAAAAGTAACAAAAGCAGAAGTAGCC |
| 26 | mCherry-<br>mApob-<br>eGFP_SEQ | CTCCCACAACGAGGACTACACC      |
| 27 | MAVS_F                         | TACCCTGCCTGGCCTCAAACTATTA   |
| 28 | MAVS_R                         | ACTTCATGCTGTCTGGGAGCAA      |
| 29 | DDX58_F                        | ATTTGGCCCTGTTGAGCACTCT      |
| 30 | DDX58_R                        | ACGTCCAGGAAACCGCAAACTA      |
| 31 | SSR3_F                         | TGGGCTCCATGCAAGAACTTGGAA    |
| 32 | SSR3_R                         | GCACTGCCATCTAGTGGCAAGTTT    |
| 33 | ARSD_reg1<br>_F                | GAGCCTGACTGCGTTGCAAACAAA    |
| 34 | ARSD_reg1<br>_R                | AAGACGGAGGGGTGAAAACATCG     |
| 35 | ARSD_reg2<br>_F                | CACCCCTCCGTCTTAAAGCATTGT    |

| 36 | ARSD_reg2<br>_R | CCCTTGATCGGCTCATTACTTGGA    |
|----|-----------------|-----------------------------|
| 37 | CTSS_F          | CTGGTGATGGGGTTTAGCAACT      |
| 38 | CTSS_R          | TGCCAAATAAAGGCCCTGGTCA      |
| 39 | Aldoc_F         | AAGGGCTATGACCCACTTCCATGT    |
| 40 | Aldoc_R         | CGATTCCAATTCGAGCGATTGAGG    |
| 41 | Atp6ap2_F       | GCTAGACTTAGACAACAGGTTTGG    |
| 42 | Atp6ap2_R       | GTCTACAGATTGAAGCCATACCAC    |
| 43 | B2m_F           | CAAGCATCATGATGCTCTGAAG      |
| 44 | B2m_R           | GTAAAAGTAACAAAAGCAGAAGTAGCC |
| 45 | Casp6_F         | AACCTAGCAAGTAGGGCCATCTGT    |
| 46 | Casp6_R         | CATGACCAAGTCAAATAGGCCCAC    |
| 47 | Cd36_F          | CTGGCTACATCTTTGGTAAAGCCG    |
| 48 | Cd36_R          | GGGCCACCCCAGTCATGATAG       |
| 49 | Rab7_F          | TCCGTTCTGAGCAGGCTGTTTTGT    |

| 50 | Rab7_R          | TCTGGTGGGTTCTCCTTTTCCTCTT                                   |
|----|-----------------|-------------------------------------------------------------|
| 51 | Reep5_F         | GCCTTGGAAACTTCCCGCTGTATT                                    |
| 52 | Reep5_R         | GTCTCCCTTCTCAGGTCACAGGT                                     |
| 53 | Serinc1_F       | TGTATCGCTGCTGTCCAGCAT                                       |
| 54 | Serinc1_R       | GGCTGGAACATGAAGATGAACTGC                                    |
| 55 | Slc39a10_F      | ACTGCGGGAATATACTCCCACTCT                                    |
| 56 | Slc39a10_R      | GCAAGTATCACCTTGCAGGACCAT                                    |
| 57 | ARSD_NG<br>S_F  | tcgtcggcagcgtcagatgtgtataagagacagGAGCCTGACTGCGTTGCAAACAAA   |
| 58 | ARSD_NG<br>S_R  | gtctcgtgggctcggagatgtgtataagagacagAAGACGGAGGGGGGGAAAAACATCG |
| 59 | CTSS_NGS<br>_F  | tcgtcggcagcgtcagatgtgtataagagacagCTGGTGATGGGGGTTTAGCAACT    |
| 60 | CTSS_NGS<br>_R  | gtctcgtgggctcggagatgtgtataagagacagTGCCAAATAAAGGCCCTGGTCA    |
| 61 | DDX58_N<br>GS_F | tcgtcggcagcgtcagatgtgtataagagacagATTTGGCCCTGTTGAGCACTCT     |
| 62 | DDX58_N<br>GS_R | gtctcgtgggctcggagatgtgtataagagacagGAGAACAATGGCACACGTTAAGAG  |
| 63 | MAVS_<br>NGS_F  | tcgtcggcagcgtcagatgtgtataagagacagCCATGAGCCCATCACCCAAC       |

| 64 | MAVS_<br>NGS_R     | gtctcgtgggctcggagatgtgtataagagacagACTTCATGCTGTCTGGGAGCAA          |
|----|--------------------|-------------------------------------------------------------------|
| 65 | Slc39a10_N<br>GS_F | tcgtcggcagcgtcagatgtgtataagagacagACTGCGGGAATATACTCCCACTCT         |
| 66 | Slc39a10_N<br>GS_R | gtctcgtgggctcggagatgtgtataagagacagGCAAGTATCACCTTGCAGGACCAT        |
| 67 | Aldoc_NGS<br>_F    | tcgtcggcagcgtcagatgtgtataagagacagAAGGGCTATGACCCACTTCCATGT         |
| 68 | Aldoc_NGS<br>_R    | gtctcgtgggctcggagatgtgtataagagacagCGATTCCAATTCGAGCGATTGAGG        |
| 69 | Atp6ap2_N<br>GS_F  | tcgtcggcagcgtcagatgtgtataagagacagGGAGAACGCACTGGGTTTCTTA           |
| 70 | Atp6ap2_N<br>GS_R  | gtctcgtgggctcggagatgtgtataagagacagGTCTACAGATTGAAGCCATACCAC        |
| 71 | Serinc1_NG<br>S_F  | tcgtcggcagcgtcagatgtgtataagagacagAGGCTCGGGTTAGGCACTAAGATA         |
| 72 | Serinc1_NG<br>S_R  | gtctcgtgggctcggagatgtgtataagagacagGGCTGGAACATGAAGATGAACTGC        |
| 73 | B2m_NGS_<br>F      | tcgtcggcagcgtcagatgtgtataagagacagcaagcatcatgatGCTCTGAAG           |
| 74 | B2m_NGS_<br>R      | gtctcgtgggctcggagatgtgtataagagacagGTAAAAGTAACAAAAGCAGAAGTAGC<br>C |
| 75 | Rab7_NGS<br>_F     | tcgtcggcagcgtcagatgtgtataagagacagTCCGTTCTGAGCAGGCTGTTTTGT         |
| 76 | Rab7_NGS<br>_R     | gtctcgtgggctcggagatgtgtataagagacagTCTGGTGGGTTCTCCTTTCCTCTT        |

### SUPPLEMENTARY FIGURES



Fig. S1 | C-to-U editing of Apob by APOBEC1 within CmAG plasmid.

**a**, Sanger sequencing chromatograms from HEK293T cells transfected only with CmAG or with CmAG, APOBEC1 and RBM47. Amplification of Apob region from CmAG transcript and

following Sanger sequencing show abundant C-to-T editing in several sites along the sequenced area. Black arrows point to the 6 Cs which are unedited (C) in pJET-CmAG-WT and edited (T) in the pJET-CmAG-6x (Supplementary materials and Fig. 1a). **b**, Chromatograms from G-to-A titration showing a change in peak height at two sites. **c**, Titration of pJET-CmAG-WT with pJET-CmAG-6x sequenced with the forward primer, coefficient of determination was calculated relative to the identity line y = x, N = 6 sites per chromatogram. **d**, Inaccuracy of MultiEditR relative to expected titration values, significance was determined using Student's one-sample t-test relative to an inaccuracy of 0%. **e**, Table of results from Student's one-sample t-test of inaccuracies.



### Fig. S2 | MultiEditR algorithm.

MultiEditR algorithm flow chart in the context of the MultiEditR web application made using R

Shiny (z.umn.edu/multieditr). Source code available at:

https://github.com/MoriarityLab/MultiEditR



Fig. S3 | Generation of human ADAR1 and murine APOBEC1 KO cell lines.

**a**, Western blot of A549 KO clones and bulk, after transduction with lenti-CRISPR-ADAR1 exon 4. A549 cells were stimulated with 200 U/ml of IFN- $\alpha$  (pbl assay science, cat. no.#11100-1) for 16 h to evaluate the presence of ADAR1 p150. "Lenti nt" is the non-targeting control and was generated by transducing cells with the same vector (LentiCRISPRv2) but containing a nontargeting sgRNA (see Supplementary Table 3).  $\beta$ -Actin and Calnexin were used as loading controls (Mouse  $\beta$ -Actin monoclonal antibody, Sigma-Aldrich, cat. no.#A5441; Rabbit Calnexin polyclonal antibody, Enzo Life science, cat. no.#ADI-SPA-865-F). **b**, Sanger sequencing chromatograms for RAW 264.7 wild-type and APOBEC1 knock-out after RT-PCR amplification of B2m 3'UTR region (oligos #24-25). The complete absence of C-to-U editing along the sequenced region confirms the deficiency of APOBEC1 editing activity within the knock-out clone.



Fig. S4 | Descriptive statistics, coverage and error of samples in RNA-seq data set.

**a-b**, Comparison of MultiEditR to RNA-seq measurements. All data is filtered on between 1% and 99% editing measured by either method. Coefficients of determination represent regression to the identity line. Dot size is proportional to read coverage at the base of interest in RNA-seq. Tables represent results of Student's pairwise t-test between measurement methods. **c**, Descriptive statistics of samples in RNA-seq data set. **d**, Simulation of expected absolute error in RNA-seq editing walue from true editing value as a function of read depth. Absolute error of editing measurement is negatively correlated with read depth (Spearman's correlation coefficient,  $\rho = -0.712$ , P < 2.2e-16). **e**, Violin plots of read depth at each base for each transcript analyzed. **f**, Violin plots of absolute value of error in MultiEditR editing measurement minus REDItools RNA-seq editing measurement by each transcript. Plots are colored by average read depth.



Fig. S5 | Descriptive statistics, coverage and error of samples in the combined RNA-seq and Amplicon-seq data set.

**a**, Descriptive statistics of samples in the combined data set. **b**, Barplots of read depth in each sample for RNA-seq and Amplicon-seq data for each transcript. Amplicon-seq read depth is higher for every transcript. **c**, Violin plots of absolute value of error in MultiEditR editing measurements minus REDItools RNA-seq or Amplicon-seq editing measurements. **d**, Table comparison of RNA-seq to Amplicon-seq editing values for each transcript. **e-f**, Comparison of MultiEditR to RNA-seq measurements. Data is filtered on between 1% and 99% editing measured by Amplicon-seq. Coefficients of determination represent regression to the identity line. Dot size is proportional to read coverage at the base of interest in RNA-seq. **g**, Tables of Student's pairwise t-test results

between MultiEditR and RNA-seq. **h**, Tables of Student's pairwise t-test results between MultiEditR and Amplicon-seq. **i**, Tables of Student's pairwise t-test results between RNA-seq and Amplicon-seq.



Fig. S6 | Receiver Operating Characteristics (ROC) analysis of MultiEditR and REDItools RNA-seq, compared to REDItools Amplicon-seq.

**a**, MultiEditR ROC across different limits of detection. Hashed points represent optimal cutpoint. **b**, REDItools RNA-seq ROC across different limits of detection. Hashed points represent optimal cutpoint. **c**, MultiEditR ROC analysis parameter table across levels of detection. **d**, REDItools RNA-seq ROC analysis parameter table across levels of detection. **e**, Lineplots for ROC parameters for MultiEditR and REDItools across limits of detection, broken up by regions that had high RNA seq coverage (>70 reads), and low RNA-seq coverage ( $\leq$  70 reads). MultiEditR is more robust in regions that have poor coverage in RNA-seq.



Fig. S7 | Reactivation of eGFP by RNA targeted editing.

**a**, FACS analysis for GFP positive cells after transfection with  $4\lambda N$  and  $4\lambda N$ -NLS in presence and absence of the gRNA to re-activate eGFP by RNA base-editing. The percentage in the plot represents the GFP+ cells of the mCherry+ cells detected by FACS. Above each FACS plot, it is shown A-to-G editing at position W58X for that sample; the percentage of editing is calculated by MultiEditR. **b**, Plots generated in MultiEditR showing the distribution of A-to-G editing along the sequenced region. From this plot appears evident that  $4\lambda N$  has a higher editing activity which leads to a more prominent RNA off-target effect both in presence and absence of the gRNA. **c**, MultiEditR parameters used in this analysis.