Supplementary information

Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal

In the format provided by the authors and unedited

Supplementary information for

Polycrystalline SnSe with a thermoelectric figure of merit greater than the single-crystal

Chongjian Zhou^{1,10}, Yong Kyu Lee^{1,10}, Yuan Yu^{2,10}, Sejin Byun^{1,3}, Zhong-Zhen Luo⁴, Hyungseok Lee^{1,3}, Bangzhi Ge¹, Yea-Lee Lee⁵, Xinqi Chen⁶, Ji Yeong Lee⁷, Oana Cojocaru-Mirédin², Hyunju Chang⁵, Jino Im⁵, Sung-Pyo Cho⁸, Matthias Wuttig², Vinayak P. Dravid⁹, Mercouri G. Kanatzidis^{4,9,*}, In Chung^{1,3*} ¹School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.

²Institute of Physics (IA), RWTH Aachen University, 52056 Aachen, Germany

³Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.

⁴Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.

⁵Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology, Daejeon

34114, Republic of Korea.

⁶Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA.

⁷Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea

⁸National Center for Inter-University Research Facilities, Seoul National University, Seoul 08826,

Republic of Korea

⁹Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.

¹⁰These authors contributed equally to this work

*Correspondence to: m-kanatzidis@northwestern.edu (M.G.K.); inchung@snu.ac.kr (I.C.)

Table of Contents

This Supplementary Information file archives:

- 1. Supplementary note describes the calculation details employed through this article.
- 2. Supplementary Figs. 1-21 are chronologically cited in the main text.

Supplementary Figs. 1-3 present the purification process of Sn and the corresponding composition analysis of the residuals.

Supplementary Figs. 4-21 show the additional experiment data and theoretical calculation results for $Na_x Sn_{0.995-x}Se$.

- 3. Supplementary Table 1 shows the density of purified samples.
- 4. References.

Supplementary Note

Calculations for formation energy of oxygen impurity and phase stability. The formation energies of oxygen impurities were calculated using an octuple super cell of SnSe. The lattice parameters of pristine SnSe were fully relaxed to be a = 11.49 Å, b = 4.12 Å, and c = 4.53 Å, while the internal coordinate of three possible configurations of oxygen impurities such as including O replacing Sn (O_{Sn}), O replacing Se (O_{Se}), and O at interstitial sites in the SnSe crystal lattice (O_{Int}) were optimized within the fixed lattice constant of pristine SnSe by the density functional theory (DFT) calculations. Plane wave basis set with 350 eV cut off energy and the projector augmented wave method¹ were utilized to describe wave functions and potentials. For the accurate description of exchange correlation functional and van der Waals interaction, we employed SCAN+rVV10 functional² which is implemented in Vienna Ab initio Simulation Package^{3,4}. Formation energies of each configuration were calculated with the following formula:

$$\Delta H_{D,q}(E_F,\mu) = [E_{D,q} - E_H] + q(E_V + \Delta E_F) + \sum_{\alpha} n_{\alpha} (\mu_{\alpha}^0 + \Delta \mu_{\alpha}) + \varepsilon_{corr}$$

The first term of right-hand side of the equation is the total energy difference between defected system with charge q and pristine host material. The second and third terms stand for the free energy gain (or loss) from Fermi energy and chemical potential, respectively, where E_V is the highest energy level of occupied states of electron, ΔE_F is the Fermi level referenced to E_V , n_{α} is the number of atom when α is removed (+1, +2, ...) or added (-1, -2, ...) to host system upon the defect formation, μ_{α}^0 is the total energy of reference phase of α , and $\Delta \mu_{\alpha}$ is the relative chemical potential α that varies with synthesis condition. The last term is a correction term including finite cell corrections⁵. Supplementary Fig. 4a presents the formation energy of three different configurations of oxygen impurities in SnSe as a function of Fermi level under the oxygen-rich

condition. The set of corresponding chemical potentials is determined by free energies of competing phases consisting of Sn, Se, and O, which results in the phase stability map shown in Supplementary Fig. 4c. From the calculated formation energies of oxygen impurities, the concentration of oxygen which can be soluble into the lattice is evaluated as shown in Supplementary Fig. 4b.

The facile formation of surface SnO_x can be understood by density functional theory calculations. If oxygen is introduced to the interior of the SnSe lattice (rather than the surface), the possible defects are O replacing Sn (O_{Sn}), O replacing Se (O_{Se}), and O at interstitial sites in the SnSe lattice (O_{Int}). Their defect formation energy is calculated to be larger than 1.0 eV (Supplementary Fig. 4a) under the oxygen-rich condition (indicated by a red dot in Supplementary Fig. 4c). This result indicates that it is unlikely to form oxygen defects in the SnSe crystal structure as the maximum atomic concentration of oxygen impurity present in the SnSe lattice cannot exceed 10¹⁴ cm⁻³ in the temperature range of 300–800 K (Supplementary Fig. 4b). Hence, even a trace amount of oxygen present in the starting reagents and during the sample preparation processes can form sub-stoichiometric SnO_x on the surface of SnSe powders. The presence of this nominal SnO_x layer acts as a barrier to preclude oxygen diffusion/reaction to reach the interior of the SnSe grains. Supplementary Fig. 4c presents the calculated phase stability map of SnSe and oxygen-containing competitors as a function of chemical potential for oxygen ($\Delta \mu_0$). At small enough $\Delta \mu_0$ of less than -3.33 eV, only SnSe exists. As $\Delta\mu_0$ exceeds -3.33 eV, SnO_x precipitates first. Thus, DFT calculations support the observation of a high degree of SnO_x at grain boundaries in polycrystalline SnSe samples.

Supplementary Figs. 1-21

Supplementary Fig. 1. a, As-received Sn chunks. **b,** Typical images of Sn ingot after H_2 -chemical reduction and subsequent melting-purification at 1273 K for 6 h. It is clearly observed that ash-like black residues formed on the top and whole surface of Sn ingot. **c,** After the repetition of the melting-purification process three times, the black residues were invisible any more.

Supplementary Fig. 2. Spectroscopic and elemental analysis on the ask-like black residues. The black residues, shown in Supplementary Fig. 1b, were carefully scraped from the top and surface of the Sn ingot after the first melting-purification process. **a**, Fourier-transformed far-infrared spectrum of the ash-like black residues. The peaks in the spectrum arise from the presence of Sn-O bonds. The bands around 480 cm⁻¹ and 540 cm⁻¹ are attributed to asymmetric and symmetric stretching vibration of O-Sn-O, respectively. The band at 680 cm⁻¹ can be assigned to the asymmetric Sn-O-Sn stretching mode^{6–9}. **b**, Scanning electron microscopy (SEM) image of the ash-like black residues with the slices of Sn, which were scraped from Sn ingot. **c**, SEM image, EDS elemental mapping, and composition analysis of the ash-like black residues, confirming they are SnO_x. **d**, SEM image, EDS elemental mapping, and composition analysis of Sn slices, confirming the negligible concentration of SnO_x in the purified Sn ingot.

Supplementary Fig. 3. Composition analysis of element Sn by atom probe tomography. a. Threedimensional APT reconstruction of the specimen lifted out from the surface of Sn ingot after the first melting-purification process. The Sn and O atoms are mapped as green and blue dots, respectively. A high degree of O cluster is clearly observed (denoted by navy isosurface of 10 at % O). b. Proximity histogram displaying the concentration profile of Sn and O atoms across an individual O-rich region. The histogram confirms O heavily aggregates within commercially available Sn, resulting in the formation of SnO_x. c. Three-dimensional APT reconstruction of the purified Sn. The O atoms were not detected, confirming our purification process successfully removed SnO_x in raw materials. d. The mass-to-charge ratio spectrum for the purified Sn confirming the absence of signals from O atoms as indicated by the blue solid lines.

Supplementary Fig. 4. The density functional theory calculations for the formation of surface tin oxides. a, The diagram of calculated defect formation energy (ΔH_D) as a function of Fermi energy (ΔE_F) for three possible defects: oxygen replacing tin (O_{Sn}), oxygen replacing selenium (O_{Se}), and oxygen at interstitial sites in the SnSe lattice (O_{Int}). The energy level of the valence band maximum (VBM) is set to zero. The regions below VBM and above conduction band minimum are depicted in violet color. **b**, The calculated solubility of oxygen in the SnSe lattice in the temperature range of 300-800 K, showing that the maximum concentration of oxygen impurity present in the SnSe lattice cannot exceed 10¹⁴ cm³. **c**, Phase stability map of SnSe and competitors with oxygen as a function of chemical potential for oxygen ($\Delta \mu_O$).

Supplementary Fig. 5. The corresponding optical images taken at the same area for the TOF-SIMS images in the main text. a, 'Untreated' polycrystalline SnSe. **b,** 'Purified' polycrystalline SnSe. The scale bar is 10 μm.

Supplementary Fig. 6. Theoretical calculations for phonon dispersions and Grüneisen parameters. a, Calculated phonon dispersion for pristine and Na doped SnSe. TA, Transverse acoustic phonon scattering branches; LA, longitudinal acoustic phonon scattering branch. **b**, Grüneisen parameters: inset, the average Grüneisen parameters along the TA₁, TA₂, and LA. We investigated phonon dispersions and Grüneisen parameters for undoped and 3% Na-doped SnSe using first-principles DFT phonon calculations within the quasi-harmonic approximation. Na-doping slightly softens phonon frequency in **a**. Especially, the lowest energy transverse acoustic mode (TA₁) is prominently softened along the Γ -Z Brillouin zone direction with the decrease in phonon velocity of TA₁ mode from 1548 to 1305 m·s⁻¹. Grüneisen parameters measure the strength of the bonding anharmonicity. The average Grüneisen parameters (γ) for all the acoustic phonon modes increase by Na doping from 2.51, 2.07, and 2.06 to 2.70, 2.48, and 2.44 for TA₁, TA₂, and LA modes, respectively in **b**. Given κ_{lat} proportional to γ^{-2} , the benefit from enriched anharmonicity by Na doping is greater than the accompanying increase in κ_{ele} , thereby lowering κ_{tot} for Na-doped SnSe.

Supplementary Fig. 7. Thermal conductivities of the purified Na_xSn_{0.995-x}Se and SnSe as a function of temperature. a, Electronic thermal conductivity, $\kappa_{ele.}$ b, Comparison of total thermal conductivity, κ_{tot} for the purified Na_{0.03}Sn_{0.965}Se and untreated and purified SnSe. c, Comparison of κ_{tot} for purified Na_xSn_{0.995}. xSe and SnSe. κ_{lat} and κ_{tot} for SnSe single-crystal along the *a* axis are given from the previous report for comparison¹⁰. Data for polycrystalline samples were measured along the SPS direction. The untreated sample was synthesized using as-received starting Sn reagent. The purified samples were synthesized using starting Sn reagent treated by our purification process.

Supplementary Fig. 8. Charge transport properties as a function of temperature for polycrystalline SnSe before and after the purification process. a, Electrical conductivity, σ . Inset, σ in the low temperature range is magnified. b, Seebeck coefficient, *S*. c, Power factor, *PF*. Data were measured along the SPS direction. The untreated sample was synthesized using as-received starting Sn reagent. The purified sample was synthesized using starting Sn reagent treated by our purification process.

Supplementary Fig. 9. Hall mobility for the untreated and purified Na_{0.03}Sn_{0.965}Se samples as a function of temperature.

Supplementary Fig. 10. Comparison of thermoelectric properties as a function of temperature for the purified Na_{0.03}Sn_{0.965}Se sample parallel, //, and perpendicular, \perp , to the SPS direction. a, Electrical conductivity, σ . b, Seebeck coefficient, *S*. c, Power factor, *PF*. d, Total thermal conductivity, κ_{tot} . e, ZT values. κ_{tot} for single-crystal SnSe along the *a* axis from the previous report¹⁰ is given for comparison.

Supplementary Fig. 11. Theoretical calculations for electronic band structures of undoped and 3% Na-doped SnSe (*Pnma*). **a**, Electronic band structures. Carrier-contributing hole-pockets are indicated by 1st, 2nd, and 3rd. **b**, Density of states (DOS) low temperature *Pnma* phase based on DFT calculations. The electronic structures based on DFT calculations for undoped and 3% Na-doped SnSe of the low temperature *Pnma* phase show that Na-doping multiply modulates valence bands of SnSe as shown in **a**. First, the energy of a second valence band maximum (VBM₂) along the Γ -Z direction increases, making an energy gap between a first VBM (VBM₁) and VBM₂ negligible. Second, two doubly degenerated flat bands along the X- Γ and the X-direction split, and their upper energy band shifts to VBM₁. Consequently, carrier-contributing hole-pockets converge at the valence top level, resulting in the peak of density of states near the VBM as shown in **b**. This significantly improves *S* of Na-doped SnSe.

Supplementary Fig. 12. The reproducibility of thermoelectric properties as a function of temperature for the purified Na_{0.03}Sn_{0.965}Se. a, Electrical conductivity, σ . b, Seebeck coefficient, *S*. c, Power factor, *PF*. Data were measured along the SPS direction. The samples were independently prepared and measured.

Supplementary Fig. 13. The average ZT of the purified polycrystalline Na_{0.03}Sn_{0.965}Se sample between ~400 and ~780 K. The corresponding values for state-of the-art thermoelectric systems such as undoped SnSe single crystal¹⁰, hole-doped SnSe single crystal¹¹, ball-milled and reduced Na_{0.01}(Sn_{0.95}Pb_{0.05})_{0.99}Se¹², Pb_{0.98}Na_{0.02}Te-8% SrTe¹³, and 1 mol% In-Cu₂Se¹⁴ are given for comparison. Unless noted as single crystal, all samples are polycrystalline. Because the cold side temperature T_c is closer to 400 K rather than 300 K in most practical thermoelectric devices for power generation, average ZT was calculated and compared in the temperature range between ~400 and ~780 K. We conservatively calculated the average ZT from various independent Na_{0.03}Sn_{0.965}Se samples.

Supplementary Fig. 14. Temperature-dependent thermoelectric properties of the purified Na_{0.03}Sn_{0.965}Se sample during the heating and cooling processes. a, Electrical conductivity, σ . b, Seebeck coefficient, *S*. c, Power factor, *PF*. d, thermoelectric figure of merit ZT.

Supplementary Fig. 15. Temperature-dependent thermal conductivity of the purified $Na_{0.03}Sn_{0.965}Se$ samples for the five consecutive heating and cooling cycles. There samples were obtained from the independent synthesis batches. The average values are plotted in the red solid line with the experimental error bars according to the standard deviation of the data for the five round-trip cycles.

Supplementary Fig. 16. Powder X-ray diffraction (XRD) patterns. a, The untreated and purified SnSe samples. **b,** The purified $Na_xSn_{0.995-x}Se$ samples. The theoretically calculated pattern for SnSe (The International Centre for Diffraction Data (ICDD) PDF 01-075-6133) is given for comparison in **a** and **b**. Major Bragg peaks are indexed. SPS-processed ingots were ground to fine powders for the measurement.

Supplementary Fig. 17. Powder XRD patterns measured **a** parallel and **b** perpendicular to the pressing direction of the SPS-processed ingots for purified and untreated $Na_{0.03}Sn_{0.965}Se$ samples. The Lotgering factor of the (111) with respect to the (*hkl*) reflections is 0.140 and 0.131 for the purified and untreated $Na_{0.03}Sn_{0.965}Se$ samples along the parallel direction to the SPS press, respectively. The results show that the degree of the preferred orientation is similar for the purified and untreated $Na_{0.03}Sn_{0.965}Se$ samples.

Supplementary Fig. 18. Typical dense pellets obtained by SPS with a diameter of 13 mm and a height of \sim 16 mm (center) and the specimens cut for measuring electrical (left, a bar with a length of \sim 15 mm) and thermal transport properties (right, a disk with a diameter of 8 mm) along the pressing direction of SPS. Their relative density is \sim 96%.

<i>T</i> (K)	#1 (mm ² ·s ⁻¹)	$#2 (mm^2 \cdot s^{-1})$	$#3 (mm^2 \cdot s^{-1})$
300	0.462	0.451	-
323	0.445	0.425	0.485
373	0.396	0.390	0.442
423	0.333	0.339	0.360
473	0.254	0.291	0.315
523	0.253	0.257	0.281
573	0.221	0.233	0.254
623	0.197	0.212	0.229
673	0.189	0.195	0.216
723	0.173	0.190	0.178
773	0.160	0.174	0.160
783	0.156	0.163	0.146
800	0.148	0.143	0.131

Supplementary Fig. 19. Test results for thermal diffusivity from Northwestern University. 3 specimens have been prepared independently and measured simultaneously.

Supplementary Fig. 20. Test report for thermal diffusivity from NETZSCH Scientific Instruments Trading

(Korea) Ltd. 3 specimens have been prepared independently and measured simultaneously.

General inform	ation						
Database :		nkslab-20012	mdb Rem	ark(mment) :			
Instrument :		LFA 467	Cpt	able :	Cp const		
Identity :		NKSLAB-200	12 Expa	ansion table :	dL const		
Date :		2019-07-24	Furn	ace :	LFA 467 Steel		
Material :		SNSE-1 - A1	Sam	ple holder :	4 samples roun	d/12.7mm	
Ref. density (20.0 °C) /(g/cm/	3): 1.000	Lam	p:	LFA 467 Flash I	amp	
Sample :		SNSE-1	Furn	ace TC :	E		
Type :		Single layer	Sam	ple TC :	E		
Sample positi	on :	A1	Sam	ple Xp / Tn :	4.00/4.00		
Detection Area (Diameter)/mm :		n: 4.0	Furn	ace Xp / Tn :	4.00/4.00		
Filter/% :		0	Calc	ulation code :	Standard + p.c.	1/0-0-0	
Thickness (RT) /mm :		1.6700	Purge 1 MFC		NITROGEN		
Diameter /mm :		12.500	Purge 2 MFC		NITROGEN		
Sensor :		InSb	Protective MFC		NITROGEN		
Operator :							
Results							
Results Shot number	Temperature	Model	Diffusivity	Uncertainty	Laser voltage	Pulse width	
Results Shot number	Temperature °C	Model	Diffusivity mm^2/s	Uncertainty %	Laser voltage V	Pulse width ms	
Results Shot number 1	Temperature °C 25.0	Model Standard + p.c.(l)	Diffusivity mm^2/s 0.390	Uncertainty % 0.1	Laser voltage V 250.0	Pulse width ms 0.60	
Results Shot number 1 2	Temperature °C 25.0 25.0	Model Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.390 0.391	Uncertainty 0.1 0.1	Laser voltage V 250.0 250.0	Pulse width ms 0.60 0.60	
Results Shot number 1 2 3	Temperature °C 25.0 25.0 25.0	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.390 0.391 0.391	Uncertainty % 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60	
Results Shot number 1 2 3 4	Temperature °C 25.0 25.0 25.0 25.0 25.0	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm ² /s 0.390 0.391 0.391 0.391	Uncertainty % 0.1 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60 0.60	
Results Shot number 1 2 3 4 Mean:	Temperature °C 25.0 25.0 25.0 25.0 25.0 25.0	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.390 0.391 0.391 0.391 0.391	Uncertainty 0.1 0.1 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60 0.60	
Results Shot number 1 2 3 4 Mean: Std. Dev.:	Temperature °C 25.0 25.0 25.0 25.0 25.0 0.0	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.390 0.391 0.391 0.391 0.391 0.000	Uncertainty 0.1 0.1 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60 0.60	
Results Shot number 1 2 3 4 Mean: Std. Dev.: 5	Temperature °C 25.0 25.0 25.0 25.0 25.0 0.0 50.0	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.391 0.391 0.391 0.391 0.391 0.391 0.391	Uncertainty 0.1 0.1 0.1 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60 0.60	
Results Shot number 1 2 3 4 Mean: Std. Dev.: 5 6	Temperature °C 25.0 25.0 25.0 25.0 25.0 0.0 50.0 50.0	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.390 0.391 0.391 0.391 0.391 0.391 0.391 0.396 0.366 0.367	Uncertainty 0.1 0.1 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0 250.0 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60 0.60 0.60 0.60	
Results Shot number 1 2 3 4 Mean: 5td. Dev.: 5 6 7	Temperature *C 25.0 25.0 25.0 25.0 25.0 0.0 50.0 50.0 50.0	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.390 0.391 0.391 0.391 0.391 0.366 0.366 0.367 0.368	Uncertainty % 0.1 0.1 0.1 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0 250.0 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60 0.60 0.60	
Results Shot number 2 3 4 Mean: Std. Dev.: 5 6 6 7 8	Temperature °C 25.0 25.0 25.0 0.0 0.0 50.0 50.0 50.0 5	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.391 0.391 0.391 0.391 0.391 0.396 0.367 0.368 0.367	Uncertainty 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60 0.60 0.60 0.60 0.60	
Results Shot number 1 2 3 4 Mean: 5 5 6 7 8 8 Mean:	Temperature *C 25.0 25.0 25.0 25.0 0.0 50.0 50.0 50.0 50.0 50.0 50.0	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.390 0.391 0.391 0.391 0.391 0.391 0.366 0.367 0.368 0.367 0.367	Uncertainty % 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60 0.60 0.60 0.60 0.60	

Created with NETZSCH Proteus software

General inform	ation						
Database :		nkslab-20012	nkslab-20012.mdb Remark(mment) :				
Instrument :		LFA 467	LFA 467 Cp table :		Cp_const		
Identity :		NKSLAB-200	NKSLAB-20012 Expansion table :		dL const		
Date :		2019-07-24	07-24 Furnace :		LFA 467 Steel		
Material :		SNSE-1 - A1	Same	le holder :	4 samples round	d/12.7mm	
Ref. density (2	20.0 °C) /(q/cm^	3): 1.000	Lamp	:	LEA 467 Flash I	amp	
Sample :	, 10	SNSE-1	Furna	ce TC :	E	a contribu	
Type :		Single laver	Same	le TC :	Ē		
Sample positi	on :	A1	Same	le Xp / Tn :	4.00/4.00		
Detection Area (Diameter)/mm :		m: 4.0	Furna	ce Xp / Tn :	4.00 / 4.00		
Filter/% :		0	Calcu	lation code :	Standard + n c //0-0-0		
Thickness (R1	() /mm :	1.6700	Purge	1 MFC	NITROGEN		
Diameter /mm	:	12,500	Purge	2 MEC	NITROGEN		
Sensor :		InSb	Prote	ctive MFC	NITROGEN		
Operator :					MINOOLI		
Results							
Shot number	Temperature	Model	Diffusivity	Uncertainty	Laser voltage	Pulse width	
	°C		mm^2/s	%	v	ms	
1	100.0	Standard + p.c.(I)	0.327	0.1	250.0	0.60	
2	100.0	Standard + p.c.(I)	0.327	0.1	250.0	0.60	
3	100.0	Standard + p.c.(I)	0.327	0.1	250.0	0.60	
4	100.0	Standard + p.c.(I)	0.328	0.1	250.0	0.60	
Mean:	100.0		0.327				
Std. Dev.:	0.0		0.001				

Created with NETZSCH Proteus software

General informa	ation							
Database :		nkslab-20012	nkslab-20012.mdb Remark(mment) :					
Instrument :		LFA 467	Cpt	Cp table :		Cp_const		
Identity :		NKSLAB-200	12 Exp	ansid	on table :	dL_const		
Date :		2019-07-24	Fun	nace	:	LFA 467 Steel		
Material :		SNSE-1 - A1	SNSE-1 - A1 Sample holder :		4 samples round/12.7mm			
Ref. density (20.0 °C) /(g/cm^3) :		3): 1.000	1.000 Lamp :		LFA 467 Flash Lamp			
Sample :		SNSE-1	Fun	nace	TC:	E		
Type :		Single layer	Sam	ple 1	TC:	E		
Sample positio	on:	A1	Sam	ple)	Kp/Tn:	4.00/4.00		
Detection Area	(Diameter)/mr	n: 4.0	Fun	nace	Xp/Tn:	4.00/4.00		
Filter/% :		0	Calc	ulati	on code :	Standard + p.c./	1/0-0-0	
Thickness (RT)/mm :	1.6700	Pure	ae 1 I	MFC	NITROGEN		
Diameter /mm		12.500	Pur	ae 2 I	MFC	NITROGEN		
Sensor :		InSb	Pro	ectiv	e MFC	NITROGEN		
Operator :								
Results								
Shot number	Temperature	Model	Diffusivit	/ UI	ncertainty	Laser voltage	Pulse width	
	°C		mm^2/	5	%	V	ms	
1	150.0	Standard + p.c.(I)	0.29	2	0.1	250.0	0.60	
2	150.0	Standard + p.c.(l)	0.29	3	0.1	250.0	0.60	
3	150.0	Standard + p.c.(I)	0.29	3	0.1	250.0	0.60	
4	150.0	Standard + n c (l)	0.29	3	0.1	250.0	0.60	
Mean:	150.0	oranoara pioi(i)	0.29	3	0.1	200.0	0.00	
Std. Dev.:	0.0		0.00	ñ				
5	200.0	Standard + p.c. (I)	0.26	0	01	250.0	0.60	
6	200.0	Standard + n c (l)	0.26	ñ	0.1	250.0	0.60	
7	200.0	Standard + n c (I)	0.25	a	0.1	250.0	0.60	
	200.0	Standard + p.c.(I)	0.25	R	0.1	250.0	0.00	
Mean	200.0	otandard + p.c.(i)	0.25		0.1	250.0	0.00	
Std Dov :	200.0		0.20	1				
Std. Dev	250.0	Standard + p.o. (I)	0.00	1	0.1	250.0	0.00	
10	250.0	Standard + p.c.(I)	0.23	2	0.1	250.0	0.60	
11	250.0	Standard + p.c.(I)	0.23	2	0.1	250.0	0.60	
12	250.0	Standard + p.c.(I)	0.23	2	0.1	250.0	0.60	
Moon	250.0	Stanuaru + p.c.(I)	0.23	2	0.1	250.0	0.60	
Std Day :	230.0		0.23	2				
13	200.0	Standard + p.o. (I)	0.00	1	0.1	250.0	0.00	
14	300.0	Standard + p.c.(I)	0.21		0.1	250.0	0.60	
14	300.0	Standard + p.c.(I)	0.21	2	0.1	250.0	0.60	
16	300.0	Standard + p.c.(I)	0.21	2	0.1	250.0	0.00	
Moon	300.0	Standard + p.c.(i)	0.20		0.2	250.0	0.60	
Std Davis	300.0		0.21					
5tu. Dev.:	250.0	Standard + n a /I)	0.00	2	0.1	250.0	0.00	
17	350.0	Standard + p.C.(I)	0.19	5	0.1	250.0	0.60	
10	350.0	Standard + p.c.(I)	0.19		0.2	250.0	0.60	
19	350.0	Standard + p.C.(I)	0.19		0.1	250.0	0.60	
20	350.0	Standard + p.c.(I)	0.19		0.1	250.0	0.60	
Mean:	350.0		0.19	2				
Sta. Dev.:	0.0	Otendard i a a (I)	0.00	3				
21	400.0	Standard + p.c.(I)	0.17	3	0.1	250.0	0.60	
22	400.0	Standard + p.c.(I)	0.17	2	0.1	250.0	0.60	
23	400.0	Standard + p.c.(I)	0.17	1	0.2	250.0	0.60	
24	400.0	Standard + p.c.(I)	0.17	J	0.1	250.0	0.60	
Mean:	400.0		0.17	Z				
Std. Dev.:	0.0		0.00	1				
25	450.0	Standard + p.c.(I)	0.16	1	0.1	250.0	0.60	
26	450.0	Standard + p.c.(I)	0.16	D	0.1	250.0	0.60	
27	450.0	Standard + p.c.(I)	0.15	Э	0.1	250.0	0.60	
28	450.0	Standard + p.c.(I)	0.15	В	0.1	250.0	0.60	
29	450.0	Standard + p.c.(I)	0.15	3	0.2	250.0	0.60	
Mean:	450.0		0.15	9				
Std. Dev.:	0.0		0.00	1				

Created with NETZSCH Proteus software

General informa	ation						
Database :		nkslab-20012	mdb Rema	rk(mment) :			
Instrument :		LFA 467	Cp ta	ble :	Cp_const		
Identity :		NKSLAB-200	12 Expan	nsion table :	dL const		
Date :		2019-07-24	Furna	ice :	LFA 467 Steel		
Material :		SNSE-1 - A1	SNSE-1 - A1 Sample holder :		4 samples round	d/12.7mm	
Ref. density (20.0 °C) /(g/cm^3) :		3): 1.000	Lamp	:	LFA 467 Flash I	amp	
Sample :		SNSE-1	Furna	ce TC :	E		
Type :		Single laver	Samp	le TC :	E		
Sample position :		A1	Samp	le Xp / Tn :	4.00/4.00		
Detection Area (Diameter)/mm :		m: 4.0	Furna	ce Xp / Tn :	4.00/4.00		
Filter/% :		0	Calcu	lation code :	Standard + n c /l/0-0-0		
Thickness (RT	Thickness (RT) /mm ·		Purge	1 MFC	NITROGEN		
Diameter /mm		12 500	Purge	2 MEC	NITROGEN		
Sensor :	-	InSb	Prote	ctive MEC	NITROGEN		
Operator :					MINOULI		
Results							
Shot number	Temperature	Model	Diffusivity	Uncertainty	Laser voltage	Pulse width	
	°C		mm^2/s	%	v	ms	
1	500.0	Standard + p.c.(I)	0.157	0.3	250.0	0.60	
2	500.0	Standard + p.c.(I)	0.150	0.1	250.0	0.60	
3	500.0	Standard + p.c.(I)	0.148	0.1	250.0	0.60	
4	500.0	Standard + p.c.(I)	0.149	0.1	250.0	0.60	
5	500.0	Standard + p.c.(I)	0.148	0.1	250.0	0.60	
Mean:	500.0	F()	0.150				
in court.							

Created with NETZSCH Proteus software

Database :	Database : nkslal		mdb Rema	rk(mment) :		
Instrument :		LFA 467	Cp table :		Cn const	
Identity :		NKSLAB-200	12 Expansion table :		dl_const	
Date : 2019-07-24		Furna	ce :	LFA 467 Steel		
Material :		SNSE-2 - A2	Samp	le holder :	4 samples round	d/12.7mm
Ref. density (2	20.0 °C) /(g/cm^	3): 1.000	Lamp	:	LFA 467 Flash I	amp
Sample :		SNSE-2	Furna	Furnace TC :		
Type:		Single laver	Samp	le TC :	E	
Sample position : A2		A2	Samp	le Xp / Tn :	4.00/4.00	
Detection Area (Diameter)/mm : 4.0		Furna	ce Xp / Tn :	4.00 / 4.00		
Filter/%: 0		0	Calcu	lation code :	Standard + p.c./	1/0-0-0
Thickness (R1	r) /mm :	1.6400	Purae	1 MFC	NITROGEN	
Diameter /mm	:	12.500	Purge	2 MFC	NITROGEN	
Sensor :		I-Ch	Protective MFC		NITROGEN	
SellSUL.		INSD	Prote	CTIVE MILC	NITROGEN	
Operator :			Prote	cuve MFC	NITROGEN	
Operator : Results Shot number	Temperature	Model	Diffusivity	Uncertainty	Laser voltage	Pulse width
Operator : Results Shot number	Temperature °C	 Model	Diffusivity mm^2/s	Uncertainty %	Laser voltage	Pulse width
Operator : Results Shot number	Temperature °C 25.0	Model Standard + p.c.(l)	Diffusivity mm^2/s 0.442	Uncertainty 0.1	Laser voltage V 250.0	Pulse width ms 0.60
Operator : <u>Results</u> Shot number 1 2	Temperature °C 25.0 25.0	Model Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.442 0.442	Uncertainty % 0.1 0.1	Laser voltage V 250.0 250.0	Pulse width ms 0.60 0.60
Operator : Results Shot number 1 2 3	Temperature °C 25.0 25.0 25.0	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.442 0.442 0.443	Uncertainty % 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60
Operator : Results Shot number 1 2 3 4	Temperature °C 25.0 25.0 25.0 25.0	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.442 0.443 0.443 0.443	Uncertainty % 0.1 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60 0.60
Operator : Results Shot number 1 2 3 4 Mean:	Temperature °C 25.0 25.0 25.0 25.0 25.0 25.0	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.442 0.443 0.443 0.443	Uncertainty % 0.1 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60
Coperator : Results Shot number 1 2 3 4 Mean: Std. Dev.:	Temperature °C 25.0 25.0 25.0 25.0 25.0 0.0	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.442 0.443 0.443 0.443 0.443 0.000	Uncertainty % 0.1 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60 0.60
Operator : Results Shot number 1 2 3 4 Mean: Std. Dev.: 5	Temperature *C 25.0 25.0 25.0 25.0 25.0 0.0 50.0	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.442 0.442 0.443 0.443 0.443 0.443 0.443 0.443	Uncertainty % 0.1 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60 0.60
Operator : Results Shot number 1 2 3 4 Mean: Std. Dev.: 5 6	Temperature °C 25.0 25.0 25.0 25.0 25.0 0.0 50.0 50.0	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.442 0.443 0.443 0.443 0.443 0.443 0.443	Uncertainty % 0.1 0.1 0.1 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0 250.0 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60 0.60 0.60
Operator : Results Shot number 1 2 3 4 Mean: Std. Dev.: 5 6 7	Temperature °C 25.0 25.0 25.0 25.0 25.0 0.0 50.0 50.0	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm*2/s 0.442 0.443 0.443 0.443 0.443 0.000 0.414 0.414	Uncertainty % 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60 0.60 0.60 0.60
Coperator : Results Shot number 1 2 3 4 Mean: Std. Dev.: 5 6 7 8	Temperature °C 25.0 25.0 25.0 25.0 25.0 50.0 50.0 50.0	Model Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.442 0.443 0.443 0.443 0.443 0.443 0.443 0.000 0.414 0.412 0.413	Uncertainty % 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Laser voltage V 250.0	Pulse width ms 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Coperator : Results Shot number 1 2 3 4 Mean: Std. Dev.: 5 6 7 8 Mean:	Temperature °C 25.0 25.0 25.0 25.0 0.0 50.0 50.0 50.0	Model Standard + p.c.(l) Standard + p.c.(l)	Diffusivity mm^2/s 0.442 0.443 0.443 0.443 0.443 0.443 0.443 0.414 0.414 0.412 0.413 0.413	Uncertainty % 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Laser voltage V 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0 250.0	Pulse width ms 0.60 0.60 0.60 0.60 0.60 0.60 0.60

Created with NETZSCH Proteus software

General inform	ation						
Database :		nkslab-20012	mdb Rema	rk(mment) :			
Instrument :		LFA 467	Cp ta	ble :	Cp const		
Identity :	Identity : NKSLAB-200			nsion table :	dL const		
Date : 2019-07-24			Furna	ice :	LFA 467 Steel		
Material : SNSE-2 - A2			Samp	le holder :	4 samples round	1/12.7mm	
Ref. density (2	20.0 °C) /(g/cm^	3): 1.000	Lamp	:	LFA 467 Flash L	amp	
Sample :	, (5	SNSE-2	Furna	ce TC :	E		
Type :		Single laver	Samp	le TC :	E		
Sample positi	on :	A2	Samp	le Xp / Tn :	4.00/4.00		
Detection Area (Diameter)/mm : 40			Furna	ce Xp / Tn :	4.00/4.00		
Filter/%: 0			Calculation code : Standard + p.c.//0-0-0			1/0-0-0	
Thickness (R1	Thickness (RT) /mm : 1 6400		Purge	1 MFC	NITROGEN		
Diameter /mm		12 500	Purge	2 MEC	NITROGEN		
Sensor :		InSb	Prote	ctive MFC	NITROGEN		
Operator :							
Results							
Shot number	Temperature	Model	Diffusivity	Uncertainty	Laser voltage	Pulse width	
	°C		mm^2/s	%	v	ms	
1	100.0	Standard + p.c.(I)	0.365	0.1	250.0	0.60	
2	100.0	Standard + p.c.(I)	0.366	0.1	250.0	0.60	
3	100.0	Standard + p.c.(I)	0.365	0.1	250.0	0.60	
4	100.0	Standard + p.c.(I)	0.366	0.1	250.0	0.60	
Mean:	100.0		0.365				
Std. Dev.:	0.0		0.000				

Created with NETZSCH Proteus software

General informa	ation						
Database :		nkslab-20012	.mdb	Rema	rk(mment) :		
Instrument :		LFA 467		Cp tal	ble :	Cp_const	
Identity :		NKSLAB-200	12	Expar	nsion table :	dL_const	
Date :		2019-07-24		Furna	ce :	LFA 467 Steel	
Material :		SNSE-2 - A2		Samp	le holder :	4 samples round	1/12.7mm
Ref. density (2	0.0 °C) /(g/cm^	3): 1.000		Lamp	:	LFA 467 Flash I	amp
Sample :	, 13	SNSE-2		Furna	ce TC :	E	
Type :		Single laver		Samo	le TC ·	Ē	
Sample positio	on :	A2		Samo	le Xn / Tn ·	4 00 / 4 00	
Detection Area	(Diameter)/mr	n · 40		Furna	co Xn / Tn ·	4.00/4.00	
Filter/% ·	(Bianeter)/im	0		Calcu	lation code :	Standard + n c i	10.0.0
Thicknose (PT)/mm ·	1 6400		Durga	A MEC	Stanuaru + p.c./	1/0-0-0
Diameter /mm	,	1.0400		Furge	I WEG	NITROGEN	
Sancer :	•	12.500		Purge	ZWIFC	NITROGEN	
Sensor :		INSD		Prote	ctive MFC	NITROGEN	
Operator :							
D							
Results	-						
Shot number	Temperature	Model	Diffu	isivity	Uncertainty	Laser voltage	Pulse width
	°C		m	m^2/s	%	V	ms
1	150.0	Standard + p.c.(I)		0.325	0.1	250.0	0.60
2	150.0	Standard + p.c.(I)		0.325	0.1	250.0	0.60
3	150.0	Standard + p.c.(I)		0.325	0.1	250.0	0.60
4	150.0	Standard + p.c.(I)		0.325	0.1	250.0	0.60
Mean:	150.0			0.325			
Std. Dev.:	0.0			0.000			
5	200.0	Standard + p.c.(I)		0.288	0.1	250.0	0.60
6	200.0	Standard + p.c.(I)		0.287	0.1	250.0	0.60
7	200.0	Standard + p.c. (I)		0 287	0.1	250.0	0.60
8	200.0	Standard + n c (I)		0 287	0.1	250.0	0.60
Mean:	200.0	otandara · p.o.(i)		0 287	0.1	200.0	0.00
Std Dev :	200.0			0.001			
9	250.0	Standard + n.c. (I)		0.001	0.1	250.0	0.60
10	250.0	Standard + p.c.(I)		0.250	0.1	250.0	0.60
11	250.0	Standard + p.c.(I)		0.257	0.1	250.0	0.60
12	250.0	Standard + p.c.(I)		0.257	0.1	250.0	0.60
Mooni	250.0	Standard + p.c.(I)		0.257	0.1	250.0	0.60
Std David	250.0			0.257			
Std. Dev.:	0.0	Otras development (1)		0.000			
13	300.0	Standard + p.c.(I)		0.233	0.1	250.0	0.60
14	300.0	Standard + p.c.(I)		0.234	0.1	250.0	0.60
15	300.0	Standard + p.c.(I)		0.233	0.1	250.0	0.60
16	300.0	Standard + p.c.(I)		0.233	0.1	250.0	0.60
Mean:	300.0			0.233			
Std. Dev.:	0.0			0.001			
17	350.0	Standard + p.c.(I)		0.208	0.1	250.0	0.60
18	350.0	Standard + p.c.(I)		0.208	0.1	250.0	0.60
19	350.0	Standard + p.c.(I)		0.209	0.1	250.0	0.60
20	350.0	Standard + p.c.(I)		0.207	0.1	250.0	0.60
Mean:	350.0			0.208			
Std. Dev.:	0.0			0.001			
21	400.0	Standard + p.c.(I)		0.187	0.1	250.0	0.60
22	400.0	Standard + p.c.(I)		0.187	0.1	250.0	0.60
23	400.0	Standard + p.c.(I)		0.188	0.1	250.0	0.60
24	400.0	Standard + p.c.(l)		0.187	01	250.0	0.60
Mean:	400.0	()		0.187	0.1	200.0	0.00
Std. Dev :	0.0			0.000			
25	450.0	Standard + n c /l)		0.175	0.2	250.0	0.60
20	450.0	Standard + p.c.(I)		0.171	0.2	250.0	0.60
20	450.0	Standard + p.C.(I)		0.171	0.1	250.0	0.60
27	450.0	Standard + p.C.(I)		0.171	0.1	250.0	0.60
28	450.0	Standard + p.C.(I)		0.172	0.2	250.0	0.60
29	450.0	Standard + p.c.(I)		0.172	0.1	250.0	0.60
Mean:	450.0			0.172			
Std. Dev.:	0.0			0.002			

Created with NETZSCH Proteus software

General inform	ation						
Database :		nkslab-20012	mdb Rema	rk(mment) :			
Instrument :		LFA 467	Cp ta	ble :	Cp const		
Identity :		NKSLAB-200	12 Expan	nsion table :	dL_const LFA 467 Steel		
Date :		2019-07-24	Furna	ice :			
Material :		SNSE-2 - A2	SNSE-2 - A2 Sample holder :		4 samples round/12 7mm		
Ref. density (20.0 °C) /(g/cm^3) :		3): 1.000	Lamp :		LFA 467 Flash I	amp	
Sample :	, 10	SNSE-2	Furna	ce TC :	E		
Type : Sample position :		Single layer	Samp	le TC :	E 4 00 / 4 00		
		A2	Samp	le Xp / Tn :			
Detection Area	a (Diameter)/mr	n: 4.0	Furna	ce Xp / Tn :	4.00 / 4.00 Standard + p.c.///0-0-0		
Filter/% :		0	Calcu	lation code :			
Thickness (RT	Thickness (RT) /mm :		Purge	1 MFC	NITROGEN		
Diameter /mm	:	12.500	Purge 2 MFC		NITROGEN		
Sensor :		InSb	Prote	ctive MFC	NITROGEN		
Operator :							
Results							
Shot number	Temperature	Model	Diffusivity	Uncertainty	Laser voltage	Pulse width	
	°C		mm^2/s	%	ĪV	ms	
1	500.0	Standard + p.c.(I)	0.164	0.1	250.0	0.60	
2	500.0	Standard + p.c.(I)	0.160	0.1	250.0	0.60	
3	500.0	Standard + p.c.(I)	0.166	0.2	250.0	0.60	
4	500.0	Standard + p.c.(I)	0.162	0.1	250.0	0.60	
5	500.0	Standard + p.c.(I)	0.162	0.1	250.0	0.60	
Mean:	500.0	,	0.163				
Std. Dev.:	0.0		0.002				

Created with NETZSCH Proteus software

General inform	ation					
Database :		nkslab-20012	mdb Rema	rk(mment) :		
Instrument :		LFA 467	Cp ta	ble :	Cp const	
Identity :		NKSLAB-200	12 Expan	nsion table :	dL const	
Date :		2019-07-24	Furna	ice :	LFA 467 Steel	
Material :		SNSE-3 - A3	Samp	le holder :	4 samples round	d/12.7mm
Ref. density (2	20.0 °C) /(g/cm^	3): 1.000	Lamp	:	LFA 467 Flash L	amp
Sample :		SNSE-3	Furna	ace TC :	E	
Type :		Single layer	Samp	le TC :	E	
Sample positi	on :	A3	Samp	le Xp / Tn :	4.00 / 4.00	
Detection Area	a (Diameter)/mr	n: 4.0	Furna	ce Xp / Tn :	4.00 / 4.00	
Filter/% :		0	Calcu	lation code :	Standard + p.c./	1/0-0-0
Thickness (R1	[)/mm:	1.5800	Purge	1 MFC	NITROGEN	
Diameter /mm	:	12.500	Purge	2 MFC	NITROGEN	
Sensor :		InSb	Prote	Protective MFC NITROGEN		
Operator :						
Results						
Shot number	Temperature	Model	Diffusivity	Uncertainty	Laser voltage	Pulse width
	°C		mm^2/s	%	v	ms
1	25.0	Standard + p.c.(I)	0.395	0.1	250.0	0.60
2	25.0	Standard + p.c.(I)	0.395	0 1	250.0	0.00
3				0.1	230.0	0.60
	25.0	Standard + p.c.(I)	0.394	0.1	250.0	0.60
4	25.0 25.0	Standard + p.c.(I) Standard + p.c.(I)	0.394 0.396	0.1 0.1	250.0 250.0 250.0	0.60 0.60 0.60
4 Mean:	25.0 25.0 25.0	Standard + p.c.(I) Standard + p.c.(I)	0.394 0.396 0.395	0.1 0.1 0.1	250.0 250.0 250.0	0.60 0.60 0.60
4 Mean: Std. Dev.:	25.0 25.0 25.0 0.0	Standard + p.c.(l) Standard + p.c.(l)	0.394 0.396 0.395 0.001	0.1 0.1 0.1	250.0 250.0 250.0	0.60 0.60 0.60
4 Mean: 	25.0 25.0 25.0 0.0 50.0	Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	0.394 0.396 0.395 0.001 0.369	0.1	250.0 250.0 250.0	0.60
4 Mean: 5 5 6	25.0 25.0 25.0 50.0 50.0 50.0	Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	0.394 0.396 0.395 0.001 0.369 0.370	0.1 0.1 0.1 0.1	250.0 250.0 250.0 250.0 250.0	0.60 0.60 0.60 0.60
4 Mean: Std. Dev.: 5 6 7	25.0 25.0 25.0 50.0 50.0 50.0 50.0	Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	0.394 0.396 0.001 0.369 0.370 0.369 0.370	0.1 0.1 0.1 0.1 0.1 0.1	250.0 250.0 250.0 250.0 250.0 250.0	0.60 0.60 0.60 0.60 0.60 0.60
4 Mean: Std. Dev.: 5 6 7 8	25.0 25.0 25.0 50.0 50.0 50.0 50.0 50.0	Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	0.394 0.396 0.395 0.001 0.369 0.370 0.369 0.370	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	250.0 250.0 250.0 250.0 250.0 250.0 250.0	0.60 0.60 0.60 0.60 0.60 0.60 0.60
4 Mean: Std. Dev.: 5 6 7 8 Mean:	25.0 25.0 0.0 50.0 50.0 50.0 50.0 50.0 5	Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l) Standard + p.c.(l)	0.394 0.396 0.395 0.001 0.369 0.370 0.369 0.370 0.369	0.1 0.1 0.1 0.1 0.1 0.1	250.0 250.0 250.0 250.0 250.0 250.0 250.0	0.60 0.60 0.60 0.60 0.60 0.60

Created with NETZSCH Proteus software

General information						
Database :	nkslab-20012.mdb	Rema	rk(mment) :			
Instrument :	LFA 467	Cp tal	ble :	Cp const		
Identity :	NKSLAB-20012	Expar	sion table :	dL const		
Date :	2019-07-24	Furna	ce :	LFA 467 Steel		
Material :	SNSE-3 - A3	Samp	le holder :	4 samples round	d/12 7mm	
Ref. density (20.0 °C) /(g/cm^3) :	1.000	Lamp	:	LFA 467 Flash I	amp	
Sample :	SNSE-3	Furna	ce TC :	E		
Type :	Single laver	Samp	le TC :	Ē		
Sample position :	A3	Samp	le Xp / Tn :	4.00/4.00		
Detection Area (Diameter)/mm :	4.0	Furna	ce Xp / Tn :	4.00/4.00		
Filter/% :	0	Calcu	lation code :	Standard + p.c.	1/0-0-0	
Thickness (RT) /mm :	1,5800	Purge	1 MFC	NITROGEN		
Diameter /mm :	12,500	Purge	2 MFC	NITROGEN		
Sensor :	InSb	Prote	ctive MFC	NITROGEN		
Operator :						
Results						
Shot number Temperature Mo	del Diffu	sivity	Uncertainty	Laser voltage	Pulse width	<u> </u>
°C	mi	m^2/s	%	v	ms	6
1 100.0 Sta	ndard + p.c.(I)	0.328	0.1	250.0	0.60	
2 100.0 Sta	ndard + p.c.(I)	0.328	0.1	250.0	0.60)
3 100.0 Sta	ndard + p.c.(I)	0.329	0.1	250.0	0.60)
4 100.0 Sta	ndard + p.c.(I)	0.329	0.1	250.0	0.60)
Mean: 100.0		0.329				
Std Dov : 0.0						

Created with NETZSCH Proteus software

General informa	ation							
Database :			nkslab-20012.mdb Remark(mment) :					
Instrument :			LFA 467		Cp ta	ble :	Cp_const	
Identity :			NKSLAB-200	12	Expar	nsion table :	dL const	
Date :			2019-07-24		Furna	ice :	LFA 467 Steel	
Material :			SNSE-3 - A3 Sample holder :		4 samples round/12.7mm			
Ref. density (2	0.0 °C) /(g/cm*	3):	1.000 La		Lamp	:	LFA 467 Flash Lamp	
Sample :			SNSE-3		Furna	ice TC :	E	
Type :			Single layer		Samp	le TC :	E	
Sample positio	n:		A3		Samp	le Xp / Tn :	4.00/4.00	
Detection Area	(Diameter)/mi	n:	4.0		Furna	ce Xp / Tn :	4.00/4.00	
Filter/% :			0		Calcu	lation code :	Standard + p.c.	1/0-0-0
Thickness (RT) /mm :		1.5800		Purge	1 MFC	NITROGEN	
Diameter /mm			12.500		Purge	2 MFC	NITROGEN	
Sensor :			InSb		Prote	ctive MFC	NITROGEN	
Operator :								
Results								
Shot number	Temperature	Mod	del	Diffu	sivity	Uncertainty	Laser voltage	Pulse width
	°C			m	m^2/s	%	V	me
1	150.0	Star	ndard + p.c.(l)		0.292	0.1	250.0	0.60
2	150.0	Star	ndard + p.c.(l)		0.293	0.1	250.0	0.60
3	150.0	Star	ndard + p.c (I)		0.293	0.1	250.0	0.00
4	150.0	Star	ndard + p.c.(I)		0.292	0.1	250.0	0.00
Mean:	150.0				0 293	0.1	200.0	0.00
Std. Dev.:	0.0				0.000			
5	200.0	Star	ndard + p.c. (l)	-	0.255	0.1	250.0	0.60
6	200.0	Star	dard + p.c.(l)		0.255	0.1	250.0	0.00
7	200.0	Star	dard + n c (l)		0.255	0.1	250.0	0.00
8	200.0	Star	dard + n c (l)		0.254	0.1	250.0	0.00
Mean:	200.0	ortai	iduid · p.o.(i)		0.255	0.1	200.0	0.60
Std. Dev :	0.0				0.000			
9	250.0	Star	dard + n c (l)		0.000	0.1	250.0	0.00
10	250.0	Star	dard + p.c.(l)		0.230	0.1	250.0	0.60
11	250.0	Star	dard + p.c.(l)		0.231	0.1	250.0	0.60
12	250.0	Star	dard + p.c.(l)		0.231	0.1	250.0	0.60
Mean:	250.0	ortai	idaid · p.o.(i)		0.231	0.1	250.0	0.60
Std. Dev :	0.0				0.000			
13	300.0	Star	dard + n c (l)		0.207	0.2	250.0	0.60
14	300.0	Star	dard + p.c.(l)		0.207	0.2	250.0	0.60
15	300.0	Star	dard + p.c.(l)		0.203	0.1	250.0	0.60
16	300.0	Star	dard + n c (l)		0.200	0.1	250.0	0.00
Mean	300.0	orui	idara · p.o.(i)		0.203	0.1	200.0	0.00
Std. Dev :	0.0				0.200			
17	350.0	Star	dard + n c (l)		0.186	0.1	250.0	0.60
18	350.0	Stan	dard + p.c.(l)		0 187	0.1	250.0	00.0
19	350.0	Stan	dard + p.c.(l)		0.107	0.1	250.0	0.60
20	350.0	Stan	dard + p.c.(I)		0.107	0.1	250.0	0.60
Mean:	350.0	Otar	idaid + p.c.(i)		0.107	0.1	250.0	0.60
Std Dev :	0.0				0.107			
21	400.0	Ston	dard + p.c.(l)		0.001	0.1	250.0	0.00
22	400.0	Cton	dard + p.c.(l)		0.100	0.1	250.0	0.60
22	400.0	Cton	idard + p.c.(I)		0.169	0.1	250.0	0.60
23	400.0	Stan	dord + (1)		0.107	0.1	250.0	0.60
Maart	400.0	Staff	uaiu + p.c.(I)		0.168	0.1	250.0	0.60
Std Dout	400.0				0.168			
Stu. Dev.:	0.0	04-	deed 1		0.001			
25	450.0	Stan	dard + p.c.(I)		0.158	0.2	250.0	0.60
26	450.0	Stan	idard + p.c.(I)		0.155	0.1	250.0	0.60
27	450.0	Stan	dard + p.c.(I)		0.160	0.1	250.0	0.60
28	450.0	Stan	dard + p.c.(I)		0.157	0.1	250.0	0.60
29	450.0	Stan	idard + p.c.(l)		0.159	0.1	250.0	0.60
Mean:	450.0				0.158			
Std. Dev.:	0.0				0.002			

Created with NETZSCH Proteus software

General inform	ation						
Database :		nkslab	-20012.mdb	Rema	ark(mment) :		
Instrument :		LFA 46	LFA 467		ble :	Cp const	
Identity :		NKSL	NKSLAB-20012		nsion table :	dL const	
Date :		2019-0	07-24	Furna	ace :	LFA 467 Steel	
Material :		SNSE	-3 - A3	Sam	ole holder :	4 samples roun	d/12 7mm
Ref. density (2	20.0 °C) /(g/cm*	3): 1.000		Lamo):	LFA 467 Flash	amn
Sample :		SNSE	-3	Furna	ace TC :	E	Lamp
Type :		Single	laver	Same	le TC :	Ē	
Sample positi	on :	A3		Same	le Xp / Tn :	4 00 / 4 00	
Detection Area	a (Diameter)/mr	n: 4.0		Furna	ce Xp / Tn :	4 00 / 4 00	
Filter/% :		0	Calculation code :		Standard + n c //0-0-0		
Thickness (R1)/mm :	1.5800	1.5800 Purge 1 MFC		NITROGEN		
Diameter /mm	:	12,500	12,500 Purge 2 MFC		NITROGEN		
Sensor :		InSb		Prote	ctive MFC	NITROGEN	
Operator :							
Results							
Shot number	Temperature	Model	Diff	usivity	Uncertainty	Laser voltage	Pulse width
	°C		r	nm^2/s	%	v	ms
1	500.0	Standard +	p.c.(l)	0.150	0.1	250.0	0.60
2	500.0	Standard +	p.c.(l)	0.149	0.1	250.0	0.60
3	500.0	Standard +	p.c.(I)	0.146	0.2	250.0	0.60
4	500.0	Standard +	p.c.(I)	0.149	0.1	250.0	0.60
5	500.0	Standard +	p.c.(I)	0.148	0.1	250.0	0.60
Mean:	500.0			0.149			0.00
Std. Dev.:	0.0			0.001			

Created with NETZSCH Proteus software

Supplementary Fig. 21. Test report for thermal diffusivity from Seoul National University. 4 specimens

have been prepared independently and measured simultaneously.

Thermal Diffusivity - NETZSCH LFA Analysis

General informat	ion				
Database :		yklee.md	b	Operator :	YKLee
Instrument :		LFA 457		Customer :	YKLee
Identity :		SNU Sn	Se	Remark(mment) :	w/ graphite
Date :		12/23/20	19	Cp table :	Cp_const
Material :		purified 1	Va0.03Sn0.965Se	Expansion table :	undefined
Ref. density (20	.0 °C) /(g/cm^	3): 5.910		Temp. recalib. file :	undefined
Sample :		purified I	Va0.03Sn0.965Se	Purge gas :	used
Type :		Single la	yer	Furnace :	LFA 457 Medium Rg
Coating :		yes		Sample holder :	unknown
Thickness (RT)	/mm :	1.2400		Laser :	LFA 457 Laser
Diameter /mm :		6.000		Centering cone :	Sta SIC 6.0mm
Sensor :	and a losses	12.7		Center cone ratio :	0.77
beam emargem	ent:/mm	12.7		Furnace TC :	0
Atmosphere :		100.0		Sample TC :	2 40 / 0 60
Gas flow : //ml/r	nin)	100.00		Eurnace Yn / Tn :	3.00/0.60
Laboratory :	,	EML		Calculation code :	C+p/I/0-x-0
Results					
Shot number	emperature	Model	Diffusivity Las	er voltage	
	°C		mm^2/s	V	
1	29.5	Cowan + pc.	0.462	1730.0	
2	29.3	Cowan + pc.	0.461	1730.0	
3	29.1	Cowan + pc.	0.436	1730.0	
Mean:	29.3		0.453		
Std. Dev.:	0.2	0	0.015	1720.0	
4	49.3	Cowan + pc.	0.430	1730.0	
5	49.3	Cowan + pc.	0.419	1730.0	
Moon	49.7	Cowan + pc.	0.439	17.50.0	
Std Dov:	45.4		0.425		
7	101.0	Cowan + nc	0.010	1730.0	
8	100.8	Cowan + pc	0.359	1730.0	
9	100.5	Cowan + pc.	0.360	1730.0	
Mean:	100.8		0.360		
Std. Dev.:	0.3		0.001		
10	150.5	Cowan + pc.	0.313	1730.0	
11	150.4	Cowan + pc.	0.312	1730.0	
12	150.3	Cowan + pc.	0.318	1730.0	
Mean:	150.4		0.314		
Std. Dev.:	0.1		0.003	1700.0	
13	200.4	Cowan + pc.	0.271	1730.0	
14	200.3	Cowan + pc.	0.275	1730.0	
Mooni	200.2	Cowan + pc.	0.271	17:50.0	
Std Dov :	200.3		0.272		
16	250.4	Cowon + nc	0.002	1730.0	
17	250.4	Cowan + pc.	0.230	1730.0	
18	250.2	Cowan + pc	0.227	1730.0	
Mean:	250.3	a stream por	0.232		
Std. Dev.:	0.1		0.006		
19	300.3	Cowan + pc.	0.202	1730.0	
20	300.3	Cowan + pc.	0.195	1730.0	
21	300.2	Cowan + pc.	0.197	1730.0	
Mean:	300.3		0.198		
Std. Dev.:	0.1		0.003		
22	350.5	Cowan + pc.	0.176	1730.0	
23	350.4	Cowan + pc.	0.173	1730.0	
24	350.3	Cowan + pc.	0.173	1730.0	
Mean:	350.4		0.1/4		
Std. Dev.:	0.1	Course Las	0.002	1720.0	
25	400.5	Cowan + pc.	0.159	1730.0	
20	400.4	Cowan + pc.	0.157	1730.0	
Mean	400.3	Cowari + pc.	0.155	1750.0	
Std Dev	400.4		0.002		
28	450.7	Cowan + nc	0 148	1730.0	
29	450.5	Cowan + pc	0.141	1730.0	
30	450.4	Cowan + pc	0.143	1730.0	
Mean:	450.5		0.144		
Std. Dev.:	0.2		0.004		
31	500.6	Cowan + pc.	0.142	1730.0	

Shot number	Temperature	Model	Diffusivity	Laser voltage
32	500.5	Cowan + nc	0 146	1730.0
33	500.4	Cowan + pc.	0 146	1730.0
Mean:	500.5	ooman . po.	0.145	1100.0
Std. Dev :	0.1		0.002	
34	510.3	Cowan + pc.	0.142	1730.0
35	510.2	Cowan + pc.	0.143	1730.0
36	510.2	Cowan + pc.	0.141	1730.0
Mean:	510.3		0.142	
Std. Dev .:	0.1		0.001	
37	520.3	Cowan + pc.	0.135	1730.0
38	520.2	Cowan + pc.	0.134	1730.0
39	520.1	Cowan + pc.	0.134	1730.0
Mean:	520.2		0.134	
Std. Dev.:	0.1		0.001	
40	530.3	Cowan + pc.	0.169	1730.0
41	530.2	Cowan + pc.	0.174	1730.0
42	530.2	Cowan + pc.	0.176	1730.0
Mean:	530.2	•	0.173	
Std. Dev.:	0.1		0.004	
43	540.3	Cowan + pc.	0.187	1730.0
44	540.2	Cowan + pc.	0.188	1730.0
45	540.2	Cowan + pc.	0.188	1730.0
Mean:	540.3		0.188	
Std. Dev.:	0.1		0.001	

General information			
Database :	yklee.mdb	Operator :	YKLee
Instrument :	LFA 457	Customer :	YKLee
Identity :	SNU SnSe	Remark(mment) :	w/ graphite
Date :	12/8/2019	Cp table :	Cp_const
Material :	purified Na0.03Sn0.965Se	Expansion table :	undefined
Ref. density (20.0 °C) /(g/cm^3) :	5.910	Temp. recalib. file :	undefined
Sample :	purified Na0.03Sn0.965Se	Purge gas :	used
Type :	Single layer	Furnace :	LFA 457 Medium Rg
Coating :	yes	Sample holder :	unknown
Thickness (RT) /mm :	1.3000	Laser :	LFA 457 Laser
Diameter /mm :	8.000	Centering cone :	Customer
Sensor :	InSb	Center cone ratio :	0.74
Beam enlargement : /mm	12.7	Furnace TC :	S
Laser filter : 1%	100.0	Sample TC :	S
Atmosphere :	Ar	Sample Xp / Tn :	2.40 / 0.60
Gas flow : /(ml/min)	100.00	Furnace Xp / Tn :	3.00 / 0.60
Laboratory :	EML	Calculation code :	C+p/I/0-x-0

Results				
Shot number	Temperature	Model	Diffusivity	Laser voltage
(9.	°C		mm^2/s	V
1	32.5	Cowan + pc.	0.450	1730.0
2	32.3	Cowan + pc.	0.435	1730.0
3	32.1	Cowan + pc.	0.436	1730.0
Mean:	32.3		0.440	
Std. Dev.:	0.2		0.009	
4	51.4	Cowan + pc.	0.415	1730.0
5	50.7	Cowan + pc.	0.424	1730.0
6	50.2	Cowan + pc.	0.415	1730.0
Mean:	50.8		0.418	
Std. Dev.:	0.6		0.005	
7	102.5	Cowan + pc.	0.359	1730.0
8	100.4	Cowan + pc.	0.361	1730.0
9	100.3	Cowan + pc.	0.364	1730.0
Mean:	101.1		0.362	
Std. Dev.:	1.2		0.003	
10	150.4	Cowan + pc.	0.321	1730.0
11	150.1	Cowan + pc.	0.323	1730.0
12	150.1	Cowan + pc.	0.322	1730.0
Mean:	150.2		0.322	
Std. Dev.:	0.1		0.001	
13	200.3	Cowan + pc.	0.286	1730.0
14	200.2	Cowan + pc.	0.281	1730.0
15	200.1	Cowan + pc.	0.283	1730.0
Mean:	200.2	•	0.283	
Std. Dev.:	0.1		0.002	
16	250.3	Cowan + pc.	0.246	1730.0
17	250.2	Cowan + pc.	0.239	1730.0
18	250.2	Cowan + pc.	0.240	1730.0
Mean:	250.2	10-07-00125558251 BACS105	0.241	
Std. Dev.:	0.1		0.004	
19	300.6	Cowan + pc.	0.212	1730.0
20	300.4	Cowan + pc.	0.207	1730.0
21	300.3	Cowan + pc.	0.207	1730.0
Mean:	300.5		0.209	
Std. Dev.:	0.2		0.003	
22	350.7	Cowan + pc.	0.184	1730.0
23	350.5	Cowan + pc.	0.183	1730.0
24	350.4	Cowan + pc.	0.181	1730.0
Mean:	350.5	-	0.183	
Std. Dev .:	0.2		0.002	
25	400.9	Cowan + pc.	0.169	1730.0
26	400.6	Cowan + pc.	0.165	1730.0
27	400.5	Cowan + pc.	0.163	1730.0
Mean:	400.7		0.165	
Std. Dev.:	0.2		0.003	
28	450.9	Cowan + pc.	0.155	1730.0
29	450.6	Cowan + pc.	0.152	1730.0
30	450.5	Cowan + pc.	0.152	1730.0
Mean:	450.7	5	0.153	
Std. Dev.:	0.2		0.002	
31	501.0	Cowan + pc.	0.148	1730.0

Shot number	Temperature °C	Model	Diffusivity mm^2/s	Laser voltage V
32	500.7	Cowan + pc.	0.146	1730.0
33	500.5	Cowan + pc.	0.145	1730.0
Mean:	500.8		0.146	
Std. Dev.:	0.3		0.002	
34	511.2	Cowan + pc.	0.144	1730.0
35	510.8	Cowan + pc.	0.144	1730.0
36	510.6	Cowan + pc.	0.144	1730.0
Mean:	510.8		0.144	
Std. Dev.:	0.3		0.000	
37	521.2	Cowan + pc.	0.139	1730.0
Mean:	521.2		0.139	
Std. Dev.:	0.0		0.000	
38	531.2	Cowan + pc.	0.135	1730.0
39	530.7	Cowan + pc.	0.133	1730.0
40	530.5	Cowan + pc.	0.133	1730.0
Mean:	530.8		0.133	
Std. Dev.:	0.3		0.001	19

General information		_	
Database :	yklee.mdb	Operator :	YKLee
Instrument :	LFA 457	Customer :	YKLee
Identity :	SNU SnSe	Remark(mment) :	w/ graphite
Date :	12/20/2019	Cp table :	Cp const
Material :	purified Na0.03Sn0.965Se	Expansion table :	undefined
Ref. density (20.0 °C) /(g/cm^3) :	5.910	Temp. recalib. file :	undefined
Sample :	purified Na0.03Sn0.965Se	Purge gas :	used
Type :	Single layer	Furnace :	LFA 457 Medium Rg
Coating :	yes	Sample holder :	unknown
Thickness (RT) /mm :	2.0100	Laser :	LFA 457 Laser
Diameter /mm :	8.000	Centering cone :	Customer
Sensor :	InSb	Center cone ratio :	0.74
Beam enlargement : /mm	12.7	Furnace TC :	S
Laser filter : 1%	100.0	Sample TC :	S
Atmosphere :	Ar	Sample Xp / Tn :	2.40/0.60
Gas flow : /(ml/min)	100.00	Furnace Xp / Tn :	3.00 / 0.60
Laboratory :	EML	Calculation code :	C+p/mx/0-x-0

Results	2003) TV	Landa Secondaria		1940 - 1940 - 10
Shot number	Temperature	Model	Diffusivity	Laser voltage
	°C		mm^2/s	V
1	32.2	Cowan + pc.	0.484	1730.0
2	33.1	Cowan + pc.	0.412	1730.0
3	33.3	Cowan + pc.	0.429	1730.0
Mean:	32.8		0.441	
Std. Dev.:	0.6		0.038	
4	52.1	Cowan + pc.	0.440	1730.0
5	51.7	Cowan + pc.	0.434	1730.0
6	50.8	Cowan + pc.	0.420	1730.0
Mean:	51.5		0.431	
Std. Dev.:	0.7		0.010	
7	101.0	Cowan + pc.	0.367	1730.0
8	100.9	Cowan + pc.	0.364	1730.0
9	100.8	Cowan + pc.	0.356	1730.0
Mean:	100.9		0.362	
Std. Dev.:	0.1		0.006	
10	151.2	Cowan + pc.	0.314	1730.0
11	151.0	Cowan + pc.	0.307	1730.0
12	150.7	Cowan + pc.	0.304	1730.0
Mean:	151.0		0.309	
Std. Dev.:	0.2		0.005	
13	201.4	Cowan + pc.	0.265	1730.0
14	201.1	Cowan + pc.	0.272	1730.0
15	200.9	Cowan + pc.	0.263	1730.0
Mean:	201.1		0.267	
Std. Dev.:	0.2		0.005	
16	251.3	Cowan + pc.	0.227	1730.0
17	251.0	Cowan + pc.	0.222	1730.0
18	250.7	Cowan + pc.	0.220	1730.0
Mean:	251.0		0.223	
Std. Dev.:	0.3		0.004	
19	301.1	Cowan + pc.	0.204	1730.0
20	300.8	Cowan + pc.	0.193	1730.0
21	300.6	Cowan + pc.	0.197	1730.0
Mean:	300.8		0.198	
Std. Dev.:	0.3		0.005	
22	351.2	Cowan + pc.	0.187	1730.0
23	351.0	Cowan + pc.	0.175	1730.0
24	350.7	Cowan + pc.	0.168	1730.0
Mean:	351.0		0.177	
Std. Dev.:	0.2		0.009	
25	401.2	Cowan + pc.	0.186	1730.0
26	401.1	Cowan + pc.	0.164	1730.0
27	400.8	Cowan + pc.	0.155	1730.0
Mean:	401.0		0.168	
Std. Dev.:	0.2		0.016	
28	450.9	Cowan + pc.	0.149	1730.0
29	450.7	Cowan + pc.	0.147	1730.0
30	450.5	Cowan + pc.	0.149	1730.0
Mean:	450.7		0.148	
Std. Dev.:	0.2		0.001	
31	501.0	Cowan + pc.	0.134	1730.0

Shot number	Temperature °C	Model	Diffusivity mm^2/s	Laser voltage V
32	500.9	Cowan + pc.	0.146	1730.0
33	500.7	Cowan + pc.	0.139	1730.0
Mean:	500.9		0.140	
Std. Dev.:	0.2		0.006	
34	510.0	Cowan + pc.	0.150	1730.0
35	510.2	Cowan + pc.	0.148	1730.0
36	510.2	Cowan + pc.	0.141	1730.0
Mean:	510.1		0.147	
Std. Dev.:	0.1		0.004	
37	520.1	Cowan + pc.	0.126	1730.0
38	520.1	Cowan + pc.	0.123	1730.0
39	520.1	Cowan + pc.	0.122	1730.0
Mean:	520.1		0.124	
Std. Dev.:	0.0		0.002	
40	530.1	Cowan + pc.	0.172	1730.0
41	530.1	Cowan + pc.	0.184	1730.0
42	530.1	Cowan + pc.	0.187	1730.0
Mean:	530.1		0.181	
Std. Dev.:	0.0		0.008	
43	540.1	Cowan + pc.	0.150	1730.0
44	540.1	Cowan + pc.	0.196	1730.0
45	540.1	Cowan + pc.	0.194	1730.0
Mean:	540.1		0.180	
Std. Dev.:	0.0		0.026	

General information			
Database :	yklee.mdb	Operator :	YKLee
Instrument :	LFA 457	Customer :	YKLee
Identity :	SNU SnSe	Remark(mment) :	w/ graphite
Date :	12/12/2019	Cp table :	Cp_const
Material :	purified Na0.03Sn0.965Se	Expansion table :	undefined
Ref. density (20.0 °C) /(g/cm^3) :	5.910	Temp. recalib. file :	undefined
Sample :	purified Na0.03Sn0.965Se	Purge gas :	used
Type :	Single layer	Furnace :	LFA 457 Medium Rg
Coating :	yes	Sample holder :	unknown
Thickness (RT) /mm :	1.7400	Laser :	LFA 457 Laser
Diameter /mm :	8.000	Centering cone :	Customer
Sensor :	InSb	Center cone ratio :	0.74
Beam enlargement : /mm	12.7	Furnace TC :	S
Laser filter : /%	100.0	Sample TC :	S
Atmosphere :	Ar	Sample Xp / Tn :	2.40 / 0.60
Gas flow : /(ml/min)	100.00	Furnace Xp / Tn :	3.00 / 0.60
Laboratory :	EML	Calculation code :	C+p/mx/0-x-0

Results				
Shot number	Temperature	Model	Diffusivity	Laser voltage
	°C	-	mm^2/s	V
1	37.8	Cowan + pc.	0.465	1730.0
2	37.4	Cowan + pc.	0.469	1/30.0
3	36.5	Cowan + pc.	0.486	1730.0
Mean:	37.3		0.4/3	
Std. Dev.:	0.6	0	0.011	1700.0
4	51.0	Cowan + pc.	0.475	1730.0
5	51.1	Cowan + pc.	0.459	1730.0
0	50.2	Cowan + pc.	0.478	1730.0
Mean:	51.0		0.4/1	
Std. Dev.:	100.0	Course Las	0.010	1720.0
/	100.8	Cowan + pc.	0.404	1730.0
8	100.7	Cowan + pc.	0.393	1730.0
9	100.0	Cowan + pc.	0.380	1730.0
Wean:	100.7		0.394	
Std. Dev.:	151.0	Course Les	0.009	1720.0
10	151.0	Cowan + pc.	0.342	1730.0
11	150.9	Cowan + pc.	0.338	1730.0
Maanu	150.0	Cowart + pc.	0.341	1750.0
Std David	150.9		0.340	
Std. Dev	201.2	Courses 1 as	0.002	1700.0
13	201.3	Cowan + pc.	0.295	1730.0
14	201.1	Cowan + pc.	0.293	1730.0
Moon	200.0	Cowart + pc.	0.207	1750.0
Std Dev :	201.1		0.292	
16	251.4	Cowan + nc	0.242	1730.0
17	251.4	Cowan + pc.	0.242	1730.0
18	250.9	Cowan + pc.	0.237	1730.0
Mean:	251.1	Cowart · pc.	0.239	1750.0
Std Dev :	0.3		0.002	
19	301.3	Cowan + nc	0.202	1730.0
20	301.0	Cowan + pc	0 197	1730.0
21	300.8	Cowan + pc	0 189	1730.0
Mean:	301.0		0 196	
Std. Dev :	0.3		0.007	
22	351.4	Cowan + pc.	0.187	1730.0
23	351.1	Cowan + pc.	0.176	1730.0
24	350.9	Cowan + pc.	0.170	1730.0
Mean:	351.1		0.178	
Std. Dev.:	0.3		0.009	
25	401.2	Cowan + pc.	0.168	1730.0
26	401.0	Cowan + pc.	0.162	1730.0
27	400.7	Cowan + pc.	0.162	1730.0
Mean:	401.0		0.164	
Std. Dev.:	0.3		0.004	
28	451.1	Cowan + pc.	0.162	1730.0
29	450.9	Cowan + pc.	0.152	1730.0
30	450.7	Cowan + pc.	0.154	1730.0
Mean:	450.9		0.156	
Std. Dev.:	0.2		0.005	
31	501.0	Cowan + pc.	0.158	1730.0

Shot number	Temperature °C	Model	Diffusivity mm^2/s	Laser voltage V
32	500.8	Cowan + pc.	0.149	1730.0
33	500.6	Cowan + pc.	0.144	1730.0
Mean:	500.8		0.150	
Std. Dev.:	0.2		0.007	
34	510.4	Cowan + pc.	0.153	1730.0
35	510.3	Cowan + pc.	0.150	1730.0
36	510.2	Cowan + pc.	0.144	1730.0
Mean:	510.3		0.149	
Std. Dev.:	0.1		0.004	
37	520.3	Cowan + pc.	0.144	1730.0
38	520.2	Cowan + pc.	0.136	1730.0
39	520.2	Cowan + pc.	0.137	1730.0
Mean:	520.2		0.139	
Std. Dev.:	0.1		0.004	
40	530.3	Cowan + pc.	0.177	1730.0
41	530.3	Cowan + pc.	0.173	1730.0
Mean:	530.3	New York Control of Co	0.175	
Std. Dev.:	0.0		0.003	

Sample	Density $(g \cdot cm^{-3})$	Relative density (%)
SnSe	5.921	95.8
Na _{0.01} Sn _{0.985} Se	5.942	96.1
Na _{0.02} Sn _{0.975} Se	5.921	95.8
Na _{0.03} Sn _{0.965} Se	5.914	95.6

Supplementary Table 1. The sample densities for purified SnSe and Na_xSn_{0.995-x}Se samples (x = 0.01, 0.02, 0.03). Their relative densities are around 96%. The theoretical density of single-crystal SnSe is 6.18 g·cm⁻³.

References

- 1. Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 50, 17953–17979 (1994).
- 2. Peng, H., Yang, Z. H., Perdew, J. P. & Sun, J. Versatile van Der Waals Density Functional Based on a Meta-Generalized Gradient Approximation. *Phys. Rev. X* 6, 041005 (2016).
- 3. Kresse, G. & Hafner, J. Norm-Conserving and Ultrasoft Pseudopotentials for First-Row and Transition Elements. *J. Phys. Condens. Matter* **6**, 8245–8257 (1994).
- 4. Kresse, G. & Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. *Phys. Rev. B* **54**, 11169–11186 (1996).
- 5. Lany, S. & Zunger, A. Assessment of Correction Methods for the Band-Gap Problem and for Finite-Size Effects in Supercell Defect Calculations: Case Studies for ZnO and GaAs. *Phys. Rev. B* -*Condens. Matter Mater. Phys.* **78**, 235104 (2008).
- 6. Roy, S., Joshi, A. G., Chatterjee, S. & Ghosh, A. K. Local Symmetry Breaking in SnO₂ Nanocrystals with Cobalt Doping and Its Effect on Optical Properties. *Nanoscale* **10**, 10664–10682 (2018).
- 7. Ferreira, C. S., Santos, P. L., Bonacin, J. A., Passos, R. R. & Pocrifka, L. A. Rice Husk Reuse in the Preparation of SnO₂/SiO₂ Nanocomposite. *Mater. Res.* **18**, 639–643 (2015).
- 8. Rao, G. T., Babu, B., Ravikumar, R. V. S. S. N., Shim, J. & Reddy, C. V. Structural and Optical Properties of Fe-Doped SnO₂ Quantum Dots. *Mater. Res. Express* **4**, 125021 (2017).
- 9. Yang, S. & Gao, L. Facile and Surfactant-Free Route to Nanocrystalline Mesoporous Tin Oxide. J. *Am. Ceram. Soc.* **89**, 1742–1744 (2006).
- 10. Zhao, L.-D. *et al.* Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals. *Nature* **508**, 373–377 (2014).
- 11. Zhao, L.-D. *et al.* Ultrahigh Power Factor and Thermoelectric Performance in Hole-Doped Single-Crystal SnSe. *Science* **351**, 141–144 (2016).
- Lee, Y. K., Luo, Z., Cho, S. P., Kanatzidis, M. G. & Chung, I. Surface Oxide Removal for Polycrystalline SnSe Reveals Near-Single-Crystal Thermoelectric Performance. *Joule* 3, 719–731 (2019).
- 13. Tan, G. *et al.* Non-Equilibrium Processing Leads to Record High Thermoelectric Figure of Merit in PbTe–SrTe. *Nat. Commun.* **7**, 12167 (2016).
- 14. Olvera, A. A. *et al.* Partial Indium Solubility Induces Chemical Stability and Colossal Thermoelectric Figure of Merit in Cu₂Se. *Energy Environ. Sci.* **10**, 1668–1676 (2017).