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Abstract: Background

Long-read sequencing has enabled unprecedented surveys of structural variation
across the entire human genome. To maximize the potential of long-read sequencing
in this context, novel mapping methods have emerged that have primarily focused on
either speed or accuracy. Various heuristics and scoring schemas have been
implemented in widely used read mappers (minimap2 and NGMLR) to optimize for
speed or accuracy, which have variable performance across different genomic regions
and for specific structural variants. Our hypothesis is that constraining read mapping to
the use of a single gap penalty across distinct mutational hotspots reduces read
alignment accuracy and impedes structural variant detection.

Findings

We tested our hypothesis by implementing a read mapping pipeline called Vulcan that
uses two distinct gap penalty modes, which we refer to as dual-mode alignment. The
high-level idea is that Vulcan leverages the computed normalized edit distance of the
mapped reads via e.g. minimap2 to identify poorly aligned reads and realigns them
using the more accurate yet computationally more expensive long read mapper
(NGMLR). In support of our hypothesis, we show Vulcan improves the alignments for
Oxford Nanopore Technology (ONT) long-reads for both simulated and real datasets.
These improvements, in turn, lead to improved accuracy for structural variant calling
performance on human genome datasets compared to either of the read mapping
methods alone.

Conclusions

Vulcan is the first long-read mapping framework that combines two distinct gap penalty
modes, resulting in improved structural variant recall and precision. Vulcan is open-
source and available under the MIT License at https://gitlab.com/treangenlab/vulcan
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Vulcan: Improved long-read mapping and structural variant
calling via dual-mode alignment
Yilei Fu1, Medhat Mahmoud2,3, Viginesh Vaibhav Muraliraman1, Fritz J. Sedlazeck2†* and Todd J.
Treangen1†*

Abstract  
Background: Long-read sequencing has enabled unprecedented surveys of structural variation across the
entire human genome. To maximize the potential of long-read sequencing in this context, novel mapping
methods have emerged that have primarily focused on either speed or accuracy. Various heuristics and
scoring schemas have been implemented in widely used read mappers (minimap2 and NGMLR) to
optimize for speed or accuracy, which have variable performance across different genomic regions and for
specific structural variants. Our hypothesis is that constraining read mapping to the use of a single gap
penalty across distinct mutational hotspots reduces read alignment accuracy and impedes structural
variant detection.
Findings: We tested our hypothesis by implementing a read mapping pipeline called Vulcan that uses two
distinct gap penalty modes, which we refer to as dual-mode alignment. The high-level idea is that Vulcan
leverages the computed normalized edit distance of the mapped reads via e.g. minimap2 to identify poorly
aligned reads and realigns them using the more accurate yet computationally more expensive long read
mapper (NGMLR). In support of our hypothesis, we show Vulcan improves the alignments for Oxford
Nanopore Technology (ONT) long-reads for both simulated and real datasets. These improvements, in
turn, lead to improved accuracy for structural variant calling performance on human genome datasets
compared to either of the read mapping methods alone.
Conclusions: Vulcan is the first long-read mapping framework that combines two distinct gap penalty
modes, resulting in improved structural variant recall and precision. Vulcan is open-source and available
under the MIT License at https://gitlab.com/treangenlab/vulcan

Keywords: Long reads, Read mapping, Gap penalty, Structural variation

Background
The advent of long-read DNA sequencing over the past decade has led to many new insights in genomics
and genetics[1–3]. One of the main advantages of long-read sequencing is for human research given the
size and complexity of the human genome, and specifically for the detection of Structural Variation
(SV)[1,2,4,5]. SVs are often defined as 50bp or larger genomic alterations that can be categorized into
five types: deletions, duplications, insertions, inversions, and translocations[6,7]. Due to higher false
positive and false negative rates in SV detection with short-reads, long-reads are preferred to accurately
detect and fully resolve SVs[6].

In recent years, three types of long-reads have been established, produced by two sequencing platforms:
Pacific Biosciences (PacBio) and Oxford Nanopore Technology (ONT)[3]. The latest PacBio device
(Sequel II)[3] not only sequences continuous long-reads (CLR) that have error rates of up to 10%, but
also longer average length, it can also produce HiFi reads[8]. The latter is produced by repeatedly
sequencing the same molecule multiple times (10-20kbp long) producing a consensus read that lowers the
sequencing error down to 1% or even lower[8]. ONT is the other long-read sequencing platform. ONT
also offers single-molecule sequencing and can produce ultra-long reads (>100 kbp and up to 2Mbp)[9]
with drastically
1Department of Computer Science, Rice University, Houston, TX 77005, USA and
2Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States of America.
3Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States of America.
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Fig1. Overview of Vulcan: As step 1, Vulcan takes raw ONT or Pacbio reads as input, then uses minimap2 to map
them to the provided reference genome. Subsequently, in step 2, Vulcan performs a normalized edit distance
calculation (see methods) to identify the reads with the highest normalized edit distances. In step 3, Vulcan realigns
the high edit distance reads with NGMLR. Finally, in step 4 Vulcan merges the minimap2 and NGMLR remapped
reads to create a new bam file.

reduced cost with respect to HiFi reads but at a higher error rate (3-10%)[10]. In recent years, SVs have
been shown as an important type of genomic alteration often leading to more modified base pairs than
single nucleotide variants (SNVs) on their own[6,8]. Furthermore, SVs have been shown to have an
impact on many human diseases and also other phenotypes across multiple species[6,11–13]. Most of the
existing SV detection approaches depend on long-reads to facilitate the mapping of these reads to a
known reference genome.

We define read mapping as the process of performing a pairwise alignment between a read and a
reference genome to identify the region of origin for this DNA molecule[14,15]. Early on BLASR[16]
was the method of choice for high-error long read mapping. Given its advantageous speed,
BWA-MEM[17] later emerged as the method of choice to align single-molecule sequencing reads. We
have previously shown that while BWA-MEM performs well in aligning these long-reads, it produces less
optimal alignments in the presence of structural variants (SVs)[2,18]. This is mainly due to sequencing
errors coupled with SV signals in repetitive regions are mixed and causes sub-optimal pairwise
alignments, hindering an accurate detection of SV. To circumvent this issue we introduced NGMLR[2],
which made use of a convex scoring matrix to better distinguish between read error and SV signal. Using
this approach we were able to achieve high accuracy SV detection and at a similar speed compared to
BWA-MEM. However, as sequencing throughput increased, NGMLR was not fast enough to keep up
with the sheer volume of data, thus becoming a bottleneck in the analysis of larger data sets.
Minimap2[18] has since emerged as a highly-efficient long-read mapper, implementing a much faster
alignment approach with extending the traditional affine gap cost model to a 2-piece affine gap model[19]
and implementing an efficient chaining process. Thanks to these important algorithmic enhancements,
minimap2 achieved a faster run time at a similar accuracy to state-of-the-art long-read mappers[18]. There
exist several other long-read aligners that have prioritized accuracy, sensitivity, or speed, such as
MashMap[20], LAST[21], GraphMap[22], and LRA[23]. However, despite promising recent progress
exemplified by these methods, there is still room for improvement in long-read mapping[14].

We posit that a single strategy may not be sufficient for those variable regions; we explore in this study
whether distinct heuristics implemented in the different mappers perform better or worse in certain
organisms or even regions of the genome (e.g. human). The latter is especially relevant if one considers
the different mutational rates per specific genomic region due to recombination[24], housekeeping
genes[25], and orphan genes[26]. For example, a conserved housekeeping gene will have a very different
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mutational landscape compared to genes involved in immune responses (e.g. HLA[27], KIR, etc.) or
compared to other highly variable genes among the human population (e.g. LPA[28], CYP2D6).

To cope with these challenges, in this work we describe a unified long read mapping framework called
Vulcan that melds alignment strategies from two different long-read mappers, here NGMLR and
minimap2. At its core, Vulcan is based on the following straightforward idea: use distinct gap penalties
for different mappings between long reads and a reference genome. Notably, Vulcan is the first long-read
mapping framework that combines two scoring functions, as shown in Figure 1. Vulcan first maps reads
starting with the fastest long-read mapper (minimap2 by default). The key idea behind Vulcan is to
identify reads that are sub-optimally aligned based on edit distance (i.e. number of differences between a
read and the reference) and then realign them with a more sensitive gap penalty (NGMLR by default).
Previous works have shown that edit distance based approaches may have an effect on effective detection
of SVs[26,29–31]. Here we show that edit distance can be used as a prior for sub-optimally aligned reads,
highlighting the utility and accuracy of Vulcan based on NGMLR and minimap2. We apply Vulcan on
simulated and real data sets (HG002) to measure the improvements of our dual-mode alignment approach
in both the number of correctly aligned reads and run time. Furthermore, to showcase the benefit of
improved read mappings, we compared SV calling from Vulcan mapped reads to both NGMLR and
minimap2 mapped reads on simulated ONT reads and Human ONT, Human PacBio CLR and HiFi reads.

Data Description
To evaluate Vulcan’s ability to improve structural variant calling, we simulated five types of structural
variant in the reference genome (Saccharomyces cerevisiae S288C). Specifically, we selected
Saccharomyces cerevisiae S288C genome as the reference, and added structural variations into the
genome with SURVIVOR(1.0.7), simSV[11], later, we used Nanosim-h (1.1.0.4)[32] to simulate 10X
coverage reads set. We ran NGMLR, minimap2 and Vulcan on the dataset and used Sniffles (version
1.12) to identify SV. In this experiment we also included other SV types like duplication (DUP),
translocation (TRA) and inversion (INV).

Additionally, we used real data to show the improvements over HG002, a benchmark sample well studied
by Genome In A Bottle (GIAB NIST). Here we downloaded ONT, PacBio HiFi and PacBio CLR data
sets for the same sample. The data is available at
https://ftp.ncbi.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/, and has been described in
multiple papers[33,34]. The subsample of coverages (Nanopore 10X, 20X, 30X; PacBio CLR 10X, 20X;
PacBio Hifi 10X) was performed with seqtk[35].

Analyses
To demonstrate the ability of Vulcan to improve the overall mapping of long-reads and thus to improve
the structural variant detection across organisms we used simulated (S. cerevisiae S288C) and real data
(human hg19) datasets. For the real datasets we utilized three distinct long-read technologies (PacBio:
HiFi and CLR, Oxford Nanopore)[32,34]. Using these datasets, we evaluated the edit distance
improvement after Vulcan’s refinement and SV calling performance (recall, precision and F1 score). Also,
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we show that Vulcan reduces computational time against the methods that use convex gap penalty
(NGMLR).

Vulcan Improves Long-read Mapping over Minimizing Read-to-Reference Edit Distance
First, we investigated Vulcan’s ability to identify reads that would benefit from convex gap penalty vs
two-piece affine gap penalty by thresholding the reported edit distance from the mappers (see Methods
section), and thus minimize the edit distance between the read and mapped location on the reference
genome. To accomplish this, we mapped the GIAB HG002 ONT Ultra-long UCSC dataset using
minimap2 and investigated the alignments from the reads given their reported edit distance (NM tag).

Fig. 2. Overall edit distance improvements. A: Normalized edit distance comparison of Vulcan’s 90% percentile
cut-off, NGMLR and minimap2’s mapping result with human ONT 30X reads. We can see clear evidence that the
realignment of only 10% of the reads lead to an improvement in edit distance and thus of the variant calling. B:
Distribution of mappings’ normalized edit distance from Vulcan, NGMLR and minimap2. Vulcan has a lower edit
distance mapping than minimap2 with NGMLR’s refinement.

Fig. 3. Comparing runtime for Vulcan, NGMLR and minimap2. CPU time was measured in CPU time for all
programs. A: Vulcan achieves an approximately linear acceleration with the increase of the cut-off percentile. With a
90% percentile cut-off, Vulcan only takes about 1/4 of NGMLR’s CPU time. B: The majority of Vulcan’s CPU time
is spent in running NGMLR on the subset of reads leading to an improvement of their alignments. C: In 90%
percentile cut-off, NGMLR only re-align 10% of the reads, leads to similar time usage as minimap2.
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Fig. 4: Comparison of the two read mappers used in Vulcan based on 30x ONT data. A: An example at
chr2:112,870,823-112,871,894 of reads that show a higher normalized edit distance and thus were automatically
realigned with NGMLR. The overall alignments of these reads improved, clearly highlighting a larger deletion at
this location compared to the minimap2 alignments. B: Another example at chr1:108,567,498-108,567,633 of
automatically aligned reads with Vulcan. The colored reads indicated the same read aligned by the two different
methods. The realignment with NGMLR clearly shows a deletion and insertion to be present likely on the two
different haplotypes. C: Example false positive SV call improved by Vulcan mapping. This is an example of a false
positive SV call based on minimap2 that would later be resolved with Vulcan’s alignment. The region of the genome
is on chr1 at 167,978,740.
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We benchmarked Vulcan genome wide to see if it improves the overall edit distance compared to
minimap2 alone. Figure 2A shows this trend as Vulcan on the median has a lower normalized edit
distance than minimap2 alone. Notably, Vulcan does not recapitulate the overall distribution of edit
distance from NGMLR as it only realigns 10% of the reads in this example. Thus, by automatically
realigning only 10% of the reads Vulcan significantly improves the alignments in certain regions of the
human genome compared to minimap2. These results provide support for our dual-mode alignment
strategy implemented in Vulcan to select reads based on their normalized edit distance and then realigning
these using NGMLR seem to work and indeed improve the representation of SV (Table 1 and 2).

Vulcan Accelerates Long-read Mapping for SV Calling
Next, we evaluated the speedup of Vulcan compared to minimap2 and NGMLR. As shown in Figure 3,
Vulcan is able to achieve up to a 2.5X speedup over NGMLR, from 6.5 CPU hours down to 2.5 CPU
hours for the 90% cut-off (default parameter setting for human genome mapping). When increasing the
edit distance cut-off percentile, Vulcan CPU time decreases linearly. When comparing minimap2's CPU
time we see that Vulcan’s default setting only requires about 3X more CPU time compared to over 10X
more CPU time required for NGMLR. This highlights Vulcan’s ability to drastically reduce NGMLR
CPU time and maintain comparable CPU time to minimap2, one of the most efficient long-read aligners
that currently exists. The RAM usage of Vulcan 90% cut-off with Nanopore 10X reads is 29.680 GB.

We also show the relative contribution to CPU time for each component in Vulcan (Figure 3B, 3C):
minimap2, samtools, file parsing and edit distance calculation with Python, and NGMLR. As expected,
NGMLR dominates this breakdown when mapping the reads that are above the Vulcan cut-off (60% in
this experiment), the remaining components represent minor contributions to Vulcan’s execution time.

Structural Variant Calling Benchmarking
Next, we highlight NGMLR’s SV-aware mappings enable the improved detection of SV (here deletion
indicated by black lines in IGV) compared to the mapping results from minimap2 (Figure 4A). We see in
this example that minimap2 demonstrates a more scattered pattern of the deletion signal across all three
regions (Figure 4A, 4B, and 4C). These regions include an insertion and a deletion, which induce noisy
alignments from minimap2. In contrast, automatically realigning the reads with Vulcan using NGMLR
shows a more consistent mapping pattern (Figure 4B and 4C). Notably, Vulcan is able to eliminate a false
positive SV call by preferentially selecting a convex gap penalty over the two-piece affine gap penalty
(Figure 4C), highlighting the benefit of trading off increased CPU time (measured in CPU hours) for
increased accuracy (measured as fewer SV false positives).

Benchmarking Structural Variant calling with Vulcan’s mappings on simulated ONT data
To follow up on the previous result, we next benchmarked SV calls based on each of the three mapping
strategies: minimap2, NGMLR, and Vulcan. To perform this evaluation, we simulated Nanopore reads
from the Saccharomyces cerevisiae S288C genome. As we see in Figure 5, Vulcan combined with Sniffles
offers the highest recall and lowest FDR of all three mapping approaches. Next, Figure 5B highlights that
Vulcan has the highest recall for all five SV types. We see that minimap2 has the lowest recall for
duplications on this low coverage simulated long read dataset. However, both NGMLR and Vulcan are
able to capture the duplication with greater than 99% recall. We also see that while translocation and
insertion SV recall is identical for all three mapping approaches, Vulcan mappings help to improve both
inversion and deletion detection. With respect to precision (Figure 5C), Vulcan once again performs best
across all five SV categories, with NGMLR mirroring Vulcan performance in all cases.

Benchmarking Structural Variant calling with Vulcan’s mappings on GIAB human data
Given the promising SV calling results based on Vulcan mappings we have discovered in the simulated
data, we next evaluated SV calling using Vulcan on real Human (hg19) read samples from the GIAB
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project[34]. Similar to the SV experiment with simulated data, we used Sniffles to call SVs called from
Human (hg19) reads mapped from each of the three methods: minimap2, NGMLR, and Vulcan. This
GIAB dataset allows us to evaluate against an established ground truth on real hg19 long-read sequencing
data. We will next describe SV performance for various Nanopore coverages (10X, 20X, 30X), PacBio
CLR (10X, 20X), and PacBio HiFi (10X) datasets.

Specifically, we tested Vulcan on three different coverages across ONT and PacBio data sets with respect
to improving the SV calling ability based on the GIAB SV call sets. Table 1 shows the performance for
Vulcan, NGMLR and minimap2 together with Sniffles to identify SV across the data set. Similar to the
simulated data, we achieve the best SV calling results using Vulcan together with Sniffles. Vulcan
provides the most improvement on lower coverage data sets. For the Nanopore 20X coverage, which is
roughly equivalent to one ONT PromethION Flow cell of a human genome, Vulcan improves F1 score by
3.13% compared to minimap2 based alignments.

Fig. 5. Benchmarking SV calls on simulated structural variants (INS: insertions, Del: deletions, TRA:
translocations, DUP: duplications and INV: inversions) with ONT reads simulated from Saccharomyces
Cerevisiae. A: Recall and false discovery rate (FDR) of Sniffles’ SV calling on simulated Nanopore reads with
three different mappers. SV calls on Vulcan mappings offer the highest recall (95%) and lowest FDR (26%). B:
Recall of different SV types from minimap2, NGMLR, and Vulcan mappings with Sniffles’ SV calling on simulated
Nanopore reads. C: Precision of different SV types from NGMLR, Vulcan and minimap2’s mappings with Sniffles’
SV calling on simulated Nanopore reads. NGMLR has similar performance across all SV types, while minimap2 has
a lower precision on inversions and duplications.

We then benchmarked the impact of the normalized edit distance thresholds for the ONT 30x data set
(Table 1). We show that by increasing the cut-off percentile, we realign fewer reads and thus Vulcan
exhibits lower overall CPU time. However, this subsequently results in lower SV recall but higher
precision. We observed the highest SV recall for Vulcan with a 60% cut-off when realigning the top 40%
edit distance reads. SV precision was the highest at a 90% threshold where only the top 10% of the reads
are realigned. Notably, across all thresholds, Vulcan performs the best in terms of F1 score. Vulcan by
default uses a 90% threshold, yielding up to a 3.79% improvement in F1 score on low coverage (10X)
ONT data. However, SV calls based on minimap2 mappings achieved the highest recall on 10x coverage
(0.02% improvement over Vulcan mappings).
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Table 1. Benchmarking SV recall, precision, and
F1 on HG002 Human (hg19) ONT reads at
varying coverages (10X, 20x, 30x). Various
percentile cut-offs for Vulcan were used, including:
60%, 70%, 80%, 90%. SV calls based on Vulcan
mappings achieve the highest F1 score for various
cut-off values.

Nanopore 10x Recall Precision F1

minimap2 78.31% 75.59% 76.93%

NGMLR 77.40% 76.65% 77.02%

Vulcan 60% 74.64% 88.69% 81.06%

Vulcan 70% 76.66% 87.87% 81.88%

Vulcan 80% 77.66% 85.55% 81.42%

Vulcan 90% 78.29% 83.31% 80.72%

Nanopore 20x Recall Precision F1

minimap2 83.55% 76.13% 79.67%

NGMLR 83.39% 76.24% 79.66%

Vulcan 60% 83.78% 77.71% 80.63%

Vulcan 70% 83.91% 78.53% 81.13%

Vulcan 80% 83.50% 79.57% 81.49%

Vulcan 90% 83.55% 80.65% 82.08%

Nanopore 30x Recall Precision F1

minimap2 88.74% 77.37% 82.66%

NGMLR 88.47% 77.79% 82.79%

Vulcan 60% 89.37% 79.11% 83.93%

Vulcan 70% 89.36% 79.87% 84.35%

Vulcan 80% 89.24% 80.71% 84.76%

Vulcan 90% 88.81% 81.40% 84.94%

Table 2. Benchmarking SV recall, precision, and
F1 on HG002 Human (hg19) PacBio reads (CLR
and HiFi) at varying coverages (CLR 10x, 20x,
30x; HiFi 10x). Various percentile cut-offs for
Vulcan were used, including: 60%, 70%, 80%, 90%.
Vulcan achieves the highest F1 score on PacBio CLR
20X and 30X reads, with minimap2 achieving the
highest F1 score on PacBio CLR 10X and PacBio
HiFi 10X reads.

PacBio CLR 10x Recall Precision F1

minimap2 62.85% 88.88% 73.63%

NGMLR 60.11% 86.44% 70.91%

Vulcan 60% 60.13% 89.41% 71.90%

Vulcan 70% 60.79% 90.12% 72.61%

Vulcan 80% 60.97% 90.13% 72.73%

Vulcan 90% 61.85% 89.93% 73.29%

PacBio CLR 20x Recall Precision F1

minimap2 77.76% 71.85% 74.69%

NGMLR 75.74% 68.36% 71.86%

Vulcan 60% 75.74% 74.69% 75.21%

Vulcan 70% 75.98% 75.32% 75.65%

Vulcan 80% 76.22% 75.65% 75.93%

Vulcan 90% 76.90% 75.08% 75.98%

PacBio CLR 30x Recall Precision F1

minimap2 83.71% 86.25% 84.96%

NGMLR 81.79% 82.41% 82.10%

Vulcan 60% 82.05% 86.31% 84.12%

Vulcan 70% 82.33% 87.12% 84.66%

Vulcan 80% 82.47% 87.60% 84.96%

Vulcan 90% 82.75% 87.49% 85.05%

PacBio HiFi 10X Recall Precision F1

minimap2 81.50% 90.70% 85.85%

NGMLR 78.22% 86.26% 82.04%

Vulcan 60% 77.73% 86.04% 81.68%

Vulcan 70% 77.74% 86.19% 81.75%

Vulcan 80% 76.40% 85.75% 80.81%

Vulcan 90% 76.26% 85.73% 80.72%
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Finally, we investigated Vulcan’s performance with respect to Sniffles structural variant calls on PacBio
CLR and HiFi human datasets (Table 2). PacBio CLR and HiFi reads offer a different error profile
compared to ONT reads, with PacBio HiFi representing the lowest error rate long-reads available to date.
As we see in Table 2, structural variant calls from Vulcan mappings offer the best recall, precision, and
F1 score for 20x coverage PacBio CLR data, improving on both NGMLR and minimap2 based SV calls
by over 2% in F1 score and nearly a 4% improvement over minimap2 and NGMLR precision. The F1
score improvement is due to the SV calls based off of Vulcan offering similar recall to existing
approaches but improved precision. However, when comparing SV recall, we see that Vulcan mappings
offer slightly lower performance compared to minimap2, while meeting or exceeding NGMLR recall. We
also observed that SV calls based on Vulcan mappings offer a slightly increased recall rate when the
normalized edit distance cut-off increases in PacBio CLR read dataset, different from the Nanopore
dataset results. One difference between these two datasets is that the coverage of the PacBio CLR dataset
is lower, and so the Sniffles minimum read support is set lower. Then when increasing the cut-off
percentiles for Vulcan, there remain enough NGMLR mappings to meet or exceed the minimum read
number support for SV calling.

Discussion
In this paper we have introduced Vulcan, a novel long-read mapping tool, that leverages dual-mode
long-read alignment that we have shown improves SV calling. Vulcan uses the edit distance information
across the mapped reads to rapidly identify regions that are better suited for a convex gap penalty vs
two-piece affine gap penalty. The key idea behind Vulcan is that different regions of the genome can
benefit from distinct alignment methods (e.g. due to differences in mutation rate) and thus e.g. improves
SV detection. The latter is often highlighted over mismapped reads, indicated by a higher per read
substitution and Indels rate[2,34]. Throughout the results section we have highlighted the benefits of
using a dual-mode alignment approach compared to minimap2 and NGMLR alone; Vulcan not only
results in long-reads mapped at smaller edit distances, it improves the recall and precision of SV calling
on ONT data.

Our results show that Vulcan runs up to 4X faster than NGMLR alone and produces lower edit distance
alignments than minimap2, on both simulated and real datasets. In addition to improved alignment
(Figure 3), we also show that using Vulcan improves the precision and recall of structural variant calling
for both PacBio CLR and ONT data sets (Table 1, Table 2). Specifically on ONT, Vulcan is able to
achieve up to a 5% improvement in F1 score for SV calls (harmonic mean of recall and precision) over
the other two mappers minimap2 and NGMLR. This result not only highlights the benefit of dual-mode
alignment, it supports our hypothesis that Vulcan can improve SV calling in human genome samples. We
further speculate that Vulcan could improve SNV calling for complex regions. However, the edit distance
selection of the reads would need to be adopted for this task and as the signal would not be that clear we
opted out of benchmarking this. Nevertheless, SNVs detection around breakpoints or within SV will
obviously be improved.
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When designing Vulcan, we opted to focus on precision and computational efficiency. The NM tag is
required according to SAMtools specifications and contains all the information needed to evaluate
alignment quality. Future improvements to this approach may include not counting every difference on
the read (i.e. edit distance), but instead only the start of each edit. The latter would count a longer deletion
as 1 and not by the length of the event as in the current implementation. Therefore, misalignments that
often introduce many smaller events and or substitutions would be more penalized than larger insertion or
deletion. This could slightly improve the selection process of Vulcan, but will lead to longer run times
since the entire alignment would need to be reconstructed per read. This approach would also consume
the majority of the time of our parsing method and thus significantly alter the runtime. Thus, we did not
implement this in the current version of Vulcan, but will continue to investigate other filtering schemas.
The soft clipping also takes place at spit reads that are indicative for SV and thus often form at
breakpoints of SV. The focus here are reads that did not get split due to a SV in this region but rather are
forced into a continuous alignment. Such reads will benefit from a realignment step as is done here with
Vulcan. We currently do not use MAPQ as a filtering criteria due to the fact that MAPQ reports the
confidence of a read in a region (weighted distance of best vs. other potential alignments)[36]. This is
indicative for repeats or other regional properties, but not for misalignments, or misrepresentation of
variants. The issue with correct or wrong representation of SV is more related to the alignment score or
chosen alignment algorithm rather than the region. Most of the time NGMLR will not change the location
of the read compared to minimap2 but the alignment itself. For example, Figure 3 shows the same reads
in the same region but with a better variant representation. Thus, using the normalized edit distance has
shown to be a robust and rapid approximation to detect these alignment artifacts.

Finally, we note that Vulcan could be used for any combination of long-read mappers that output the edit
distance (NM tag) directly within sam/bam file output. Thus, allowing the inclusion of WinnowMap[37],
LAST[21], LRA[23], or Duplomap[38] may further exploit our observation that variable gap costs for
different read-to-reference mappings provide improved SV calling, while offering improve runtimes
compared to the more computationally expensive long-read mapping approaches.

Potential Implications
A key finding of this manuscript is that the utilization of dual-mode alignment, combining convex gap
costs with two-piece affine gap costs, leads to improvements in alignment edit distance and subsequently
SV identification. Notably, we see that SV calling based on minimap2 mappings has low recall for
duplications, compared to near perfect recovery of duplications with NGMLR and Vulcan. Recently, Jain
et al.[37] discuss that the minimizer selection strategy in minimap2 may lead to a degradation in repeat
detection. Improved SV calling based on Vulcan’s results can be attributed to leveraging the strengths of
the long-read alignment strategies found in minimap2 and NGMLR. Vulcan provides the first approach
for long-read mapping able to track variable mutation rates and predominant mutation types at certain
regions or SV hotspots. The straightforward idea behind Vulcan of adapting alignment gap costs to
specific regions of the genome may be found useful for compensating for highly polymorphic regions
such as HLA, a 14mbp of the human genome and at the center of several recent studies[24]-[26]. Vulcan
takes the first step in leveraging this observation, and we anticipate other mappers for long reads to follow
up on this observation. In conclusion, in this study we have shown that combining different long-read
alignment strategies improves SV recall and precision of human structural variation detection and have
provided a new open-source software tool (Vulcan) that encapsulates these benefits.

Methods
The main idea behind Vulcan is that we combine the benefits of two popular long read mapping tools
(here NGMLR and minimap2) for the improved structural variant (SV) calling. To accomplish this, we
first map the reads (sequenced on the Oxford ONT or PacBio platforms) to a reference genome with
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minimap2 (2.17-r941), then identify the large edit distance alignments taken from minimap2 mapping
results and flag them for realignment with NGMLR(0.2.7). As shown in Figure 1, Vulcan is composed of
four main steps: (i) Initial read mapping, (ii) Normalized Edit Distance Calculation, (iii) High
edit-distance remapping (iv) merging mapping results for downstream structural variant calling. The first
step of the pipeline is to map all the reads against the reference using minimap2 and its preset parameters
suitable for either PacBio or Oxford Nanopore long-read sequences. Subsequently, Vulcan uses the edit
distance and scans the reads. The edit distance is the number of substitutions, insertions, or deletions that
are different between the read and its region of the reference[37,39]. The edit distance is captured by the
"NM" tag (mandatory tag in sam format) in reads mappers. We normalize the edit distance with the
overall read length to obtain a ratio that represents the alignment of a given read. By dividing the edit
distance by the alignment length of a read, we can normalize it to calculate the number of mismatches
given an alignment length, i.e. with longer alignments, we tolerate larger edit distances. And normalized
edit distance can be expressed as , where e is the edit distance and l is the alignment length. We𝐸 = 𝑒/𝑙
only keep all the primary mappings and gather the normalized edit distances with SAMtools and
pysam[40]. Note, the secondary mappings typically have larger edit distances as they have a lower
mapping quality than the primary mapping, which may lead to the increase of high edit distance mappings
in the distance profile we generated. With the knowledge of all the normalized edit distance calculated
from minimap2’s mapping result, we can now set a percentile cut-off in agreement with the user’s
preference (90% as the default, based on experimental results). With the selected percentile cut-off, we
can separate reads mapped with minimap2 into two sets: reads that are mapped below the cut-off and
reads that are mapped above the cut-off. If we only use raw edit distance, bamtools[40,41] supports
splitting mapped reads via specific tags. However, with normalized edit distances, we instead use pysam,
a wrapped python interface for htslib[40] to calculate the normalized edit distance and split the mapping
result. We then extract all the reads above the cut-off and re-map them with NGMLR. Thanks to
NGMLR’s ability to accurately remap large edit distance reads, Vulcan is able to improve minimap2’s
high edit distance results (in some cases) into small edit distances read mappings. Finally, we combine the
mapping results, specifically, the mapped reads from minimap2 below the cut-off and the remapped reads
from NGMLR, into a final merged and sorted BAM file. Vulcan was written in Python 3.8 utilizing the
multiprocessing module for multicore support. All versions of software and parameters utilized in this
study are provided in Supplementary Table 1.

Computational Benchmarking
To evaluate Vulcan’s computational performance, we assessed the fold speedup versus NGMLR and also
compared Vulcan to minimap2. We chose subsampled Nanopore real data with 10X coverage as test data.
In this experiment, we assessed our speed-up under different edit distance cut-offs in Vulcan and
compared them with NGMLR and minimap2. We used the /usr/bin/time command in Linux to record the
program’s wall and cpu time. Furthermore, in order to profile the individual steps of Vulcan, we also
counted the time usage per step on Nanopore 10X coverage dataset with 90% and 60% percentile
normalized edit distance cut-off. In the time benchmarking experiment, the read dataset size is roughly
62.6 GB fastq file and contains 6,190,519 reads.

Human Read Dataset Structural Variant Calling Evaluation
We used Vulcan on three long read human genome data sets: Nanopore Ultra Long reads, PacBio HiFi
reads and PacBio CLR reads[34]. We downloaded these three long read types from Genome in a Bottle
project[33], and mapped them to the human reference genome hg19. Furthermore, we used Sniffles to call
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SVs from our mapping result, then compared with the ground truth that GIAB provided through
truvari(v2.0.0-dev)[34].

Sniffles[2] allows users to define the minimum number of reads supported for the structural variation
(SV) calling; we set that parameter as 2 and then use bcftools[42] to further filter the minimum supported
read number to achieve the optimal F1 score. We set the minimum read support to be the same for all
three methods when the coverage and read type is the same, and the optimal F1 score was preferentially
selected for both minimap2 and NGMLR.

The experiment was performed on an Intel(R) Xeon(R) Gold 5218 CPU @ 2.00GHz with 64 threads with
Ubuntu 18.04 LTS. Total RAM 300GB.
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Availability of source code and requirements
● Project name: Vulcan
● Project home page: https://gitlab.com/treangenlab/vulcan
● Operating system(s): Unix
● Programming language: Python
● Other requirements: Python 3.8 or higher, conda 4.10.1
● License: MIT

Data Availability
● The Saccharomyces cerevisiae 288C reference genome for reads and SV simulation, taxonomy

ID 559292 in NCBI taxonomy database, is available at:
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=559292

● Simulated reads are available at: https://rice.box.com/v/vulcandatasimulation.
● The Ashkenazim Trio HG002 raw sequence data, and ground truth sets of structural variations are

available at https://ftp.ncbi.nih.gov/giab/ftp/data/AshkenazimTrio/
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Supplementary Info
Supplementary Table 1: Programs, program versions, and parameters used in this study.

Program Version Usage Parameters

Vulcan 1.0.2 read mapping vulcan[] -t threads

minimap2 2.17-r941 simulated ONT read mapping minimap2 -x map-ont -a

minimap2 2.17-r941 Human ONT read mapping minimap2 -x map-ont -a -z 600,200

minimap2 2.17-r941 Human PacBio HiFi read
mapping

minimap2 -a -k 19 -O 5,56 -E 4,1 -B 5 -z 400,50 -r 2k –eqx –secondary=no

minimap2 2.17-r941 Human Pacbio CLR read
mapping

minimap2 -x map-pb -a –eqx -L -O 5,56 -E 4,1 -B 5 –secondary=no -z 400,50 -r
2k -Y

NGMLR 0.2.7 read mapping NGMLR -x[ont | pacbio] –bam-fix

Sniffles 1.0.12 SV calling sniffles -s 2

bcftools 1.7 VCF filtering bcftools view -i
(INFO/SVLEN>=50|INFO/SVLEN<=-50|INFO/SVLEN=0|INFO/SVLEN=1)&(I
NFO/RE={read_num})

Truvari v2.0.0-dev SV benchmarking truvari bench -b {GIAB_vcf} -c {sorted_gzipped_vcf} -f {reference_genome}
–passonly–giabreport –pctsim=0 –multimatch –includebed {GIAB_bed} -o
{benchmarking_output}

SURVIVOR 1.0.7 SV simulation SURVIVOR simSV {reference_genome} {parameter_file} 0.01 0
{output_prefix}

Supplementary Table 2: Accuracy, Precision and F1 score of simulated data.

Nanopore Simulated 10X Recall Precision F1

minimap2 81% 62% 70.24%

NGMLR 92% 62% 74.24%

Vulcan 80% 95% 74% 83.13%

Supplementary Figure 1: Wall time benchmarking of Vulcan, NGMLR and minimap2 on Nanopore
10X datasets
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A wall time benchmarking has been performed to compare the performance of three different methods. From the
chart we can infer that Vulcan takes less than 2/5 time than NGMLR. The experiment was performed on a Nanopore
10X subsmaple real dataset from the GIAB project.

Supplementary Figure 2: CPU time benchmarking of Vulcan, NGMLR and minimap2 on PacBio
20X datasets

Vulcan achieves an approximately linear acceleration with the increase of the cut-off percentile. With a 90%
percentile cut-off, Vulcan only takes about 1/4 of NGMLR’s runtime. The experiment was performed on a PacBio
CLR 20X subsmapled real dataset from the GIAB project.
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Todd J. Treangen, Ph.D
Assistant Professor, Computer Science
Rice University, Houston, TX
www.treangenlab.com

Tuesday, Jul 22, 2021

Dear Dr. Zauner

Many thanks for the opportunity to resubmit our manuscript titled “Vulcan: Improved long-read
mapping and structural variant calling via dual-mode alignment” to GigaScience. I am happy to
report that we have wrapped up all revisions and experiments in response to the extensive
reviewer feedback. Specifically, we have modified the time benchmarking approach in the
experiment and improved the manuscript taking into account each of the reviewers comments.

Summary of our new time benchmarking additions:
● A new time benchmarking section has been added to the manuscript to convey a more

accurate runtime comparison between Vulcan, minimap2 and NGMLR. As reviewer #1
suggested, we added wall time comparison with Nanopore dataset (10X coverage) in
supplementary. We have used the GNU time program (/usr/bin/time) to track Vulcan,
minimap2 and NGMLR’s runtime and report them on the paper.

● However, the outcome of the wall time comparison does not match the description of the
reviewer. On the Nanopore 10X dataset, Vulcan represents only a 3X slowdown in
runtime of minimap2 and has an approximately 3X speed up over NGMLR. On the real
PacBio dataset, CPU time of Vulcan is 2X times slower than minimap2 while
representing over 4X speed up compared to NGMLR (just as our paper described with
real PacBio dataset).

● As mentioned in the detailed response, we believe that wall clock based time
benchmarking is compromised by a myriad of factors (CPU and IO speed, other running
processes, etc), which likely is the reason for the difference in our reported results.

In the section below, we include our point-by-point responses to all the reviewer comments (in
black), in addition to highlighting all changes to the revised manuscript (in blue). We look
forward to hearing back from you.

Sincerely,

Todd J Treangen, on behalf of all the co-authors
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