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SUPPLEMENTARY INFORMATION

Multilayer perceptron (MLP)
Multilayer perceptron (MLP) is a type of feedforward artificial neural network (ANN) that consists of at least three layers
(an input layer, one or more hidden layers, and an output layer) of nodes. Each node is a neuron that produces an output by
computing weighted sum of its inputs and passing through an activation function, which is formulated as

y = φ(Wx+b) (1)

where W denotes the learnable parameters (weights), x represent the input vector, b is the bias vector, and φ is the activation
function.

Except for the output layer which uses linear activation function (φ(z) = z), we used a non-linear activation function called
rectified linear unit (ReLU; φ(z) = max(0,z)). We implemented MLP model with a single hidden layer architecture. The
number of units in the last (output) layer equals to the number of channels or units of spiking activity (see Table 1 in the paper).
The MLP model was implemented using TensorFlow (v2.1.0) deep learning framework1 and trained with Adam optimiser.
Other hyperparameters including number of units (i.e. neurons), number of epochs, batch size, dropout rate and learning rate
were determined through hyperparameter optimisation (described in the next section).

Long short-term memory (LSTM)

Long short-term memory (LSTM), proposed by Hochreiter and Schmidhuber in 19972, is one of the most popular deep learning
architectures and has achieved state-of-the-art performance in a wide range of machine learning problems, especially those
dealing with time-series data3. It addresses the problem of vanishing or exploding gradient commonly found in traditional
recurrent neural networks (RNNs). LSTMs can effectively learn long-term temporal dependencies via a memory cell that
maintains its state overtime and gating mechanism that controls the flow of information into and out of the memory cell. In this
study, we employed a commonly used variant of LSTM architectures which consists of three gates (forget, input, output) and a
single memory cell. The states of LSTM components at timestep t are formulated as:

ft = σ(W f xt +U f ht−1 +b f )
it = σ(Wixt +Uiht−1 +bi)
c̃t = tanh(Wcxt +Ucht−1 +bc)
ot = σ(Woxt +Uoht−1 +bo)
ct = ft � ct−1 + it � c̃t
ht = ot � tanh(ct)

(2)

where x,h, f, i,o,c consecutively represent the input, output, forget gate, input gate, output gate, and memory cell. σ and tanh
denote the logistic sigmoid and hyperbolic tangent activation functions, respectively. The operator � denotes the element-wise
multiplication. Parameters that are learnt during training include input and recurrent weights (W,U) and bias vectors (b).

We used 1-layer LSTM with number of timesteps (i.e. sequence length) empirically set to 3. The last timestep from the
LSTM output was connected to a fully connected layer with number of units equals to the number of channels or units of spiking
activity (see Table 1 in the paper). The LSTM model was implemented using TensorFlow (v2.1.0) and trained with RMSprop
optimiser. Similar to that of the MLP model, other hyperparameters for LSTM model were selected via hyperparameter
optimisation.
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Suplementary Figure 1. Schematic illustration of training and inference phase of deep learning model. (a) Training and
hyperparameter optimisation phase. (b) Inference (evaluation) phase.

Hyperparameter optimisation
Each dataset was divided into three sets: training, validation, and testing (same as described in Method section of the paper).
The training set was used for model training, the validation set was used for hyperparameter optimisation, whereas the testing
set was used for performance evaluation. The schematic of model training, optimisation and evaluation is illustrated in
Supplementary Figure 1. We standardised (i.e. z-transformed) the input (LFP features) and output (ESA, SUA, or MUA
features) to have zero mean and unit variance. The model was trained using root mean squared error (RMSE) loss function. We
used Bayesian optimisation library called Optuna (v1.2.0)4 to optimise the model’s hyperparameter values from predefined
hyperparameter value range (see Supplementary Tables 1 and 2) with 150 iterations. The hyperparameter optimisation was
performed independently for each spiking activity (ESA, SUA, and MUA) and each subject (monkey I, L, and N) from LFP
features (LMP). The resulting optimised hyperparameter values for MLP and LSTM models are listed in Supplementary
Tables 1 and 2, respectively.

Hyperparameter Value range
Optimised hyperparameter for MLP models

Monkey I Monkey L Monkey N
ESA SUA MUA ESA SUA MUA ESA SUA MUA

Number of units {5,10, · · · ,150} 130 115 130 65 140 145 105 135 120
Number of epochs {1,2, · · · ,25} 12 23 17 25 24 17 18 17 25
Batch size {32,64,96} 96 96 64 64 32 32 96 32 96
Dropout rate {0,0.1, · · · ,0.4} 0.2 0.4 0.4 0.1 0.4 0.2 0.3 0.4 0.4
Learning rate {5,10, · · · ,100}×10−4 0.0075 0.001 0.002 0.005 0.0015 0.0025 0.003 0.001 0.002

Suplementary Table 1. Hyperparameter configuration of LFP-based MLP models for inferring ESA, SUA, and MUA from
3 monkeys (I, L, and N). These hyperparameter values were optimised with LMP features as the input.

Hyperparameter Value range
Optimised hyperparameter for LSTM models

Monkey I Monkey L Monkey N
ESA SUA MUA ESA SUA MUA ESA SUA MUA

Number of units {5,10, · · · ,150} 135 130 125 140 105 125 150 105 135
Number of epochs {1,2, · · · ,25} 23 12 16 19 19 24 19 17 20
Batch size {32,64,96} 32 64 32 32 64 64 64 64 96
Dropout rate {0,0.1, · · · ,0.4} 0.3 0.3 0.2 0.1 0.2 0.3 0.3 0.2 0.3
Learning rate {5,10, · · · ,100}×10−4 0.0015 0.001 0.001 0.0015 0.0025 0.003 0.001 0.001 0.0015

Suplementary Table 2. Hyperparameter configuration of LFP-based LSTM models for inferring ESA, SUA, and MUA
from 3 monkeys (I, L, and N). These hyperparameter values were optimised with LMP features as the input.
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LFP feature
Average CC

Monkey I Monkey L Monkey N
100 Hz 300 Hz Diff (%) 100 Hz 300 Hz Diff (%) 100 Hz 300 Hz Diff (%)

LMP 0.70 0.70 0 0.75 0.75 0 0.55 0.55 0
Delta 0.34 0.34 0 0.49 0.49 0 0.38 0.38 0
Theta 0.23 0.23 0 0.47 0.47 0 0.14 0.14 0
Alpha 0.22 0.22 0 0.28 0.28 0 0.10 0.10 0
Beta 0.38 0.38 0 0.32 0.32 0 0.32 0.32 0
Gamma 0.47 0.49 4.26 0.50 0.76 52 0.34 0.51 50

Suplementary Table 3. Comparison of average CC across different LFP features from three subjects (monkey I, L, and N).
Diff (%) represents percentage of difference when using cut-off frequency of 300 Hz compared to that of 100 Hz.

LFP feature
Average coefficients

Monkey I Monkey L Monkey N
100 Hz 300 Hz Diff (%) 100 Hz 300 Hz Diff (%) 100 Hz 300 Hz Diff (%)

LMP 0.040 0.039 -2.50 0.183 0.155 -15.30 0.040 0.035 -12.50
Delta 0.006 0.006 0 0.034 0.031 -8.82 0.012 0.011 -8.33
Theta 0.003 0.003 0 0.023 0.021 -8.70 0.006 0.006 0
Alpha 0.003 0.003 0 0.019 0.017 -10.53 0.006 0.005 -16.67
Beta 0.009 0.008 -11.11 0.055 0.050 -9.09 0.012 0.011 -8.33
Gamma 0.015 0.019 26.67 0.049 0.065 32.65 0.012 0.016 33.33

Suplementary Table 4. Comparison of average coefficients across different LFP features from three subjects (monkey I, L,
and N). Diff (%) represents percentage of difference when using cut-off frequency of 300 Hz compared to that of 100 Hz.
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Suplementary Figure 2. Comparison of ESA inference across different LFP features from three subjects. The LFP signals
were obtained by using low pass filter with 300 Hz cut-off frequency. (a–c) Boxplot comparison of average CC across LFP
features from monkey I, L, and N, respectively. Asterisks indicate LFP features whose inference performance differed
significantly from that of LMP (*** p<0.001). (d–f) Bar plot comparison of average coefficients (i.e. weights) across LFP
features from monkey I, L, and N, respectively.
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Suplementary Figure 3. Comparison of inference performance (in terms of average CC) using MLP among different types
of spiking activity across three subjects. (a–c) Boxplot comparison of average CC among ESA, SUA, and MUA from monkey
I, L, and N, respectively. (d) Comparison of average CC among ESA, SUA, and MUA from monkey I over 26 recording
sessions. (e) Boxplot comparison of average CC across 26 recording sessions. Asterisks indicate spiking activity whose
inference performance differed significantly from that of ESA (* p<0.05, *** p<0.001).
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Suplementary Figure 4. Comparison of inference performance (in terms of average CC) using LSTM among different
types of spiking activity across three subjects. (a–c) Boxplot comparison of average CC among ESA, SUA, and MUA from
monkey I, L, and N, respectively. (d) Comparison of average CC among ESA, SUA, and MUA from monkey I over 26
recording sessions. (e) Boxplot comparison of average CC across 26 recording sessions. Asterisks indicate spiking activity
whose inference performance differed significantly from that of ESA (** p<0.01, *** p<0.001).
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Suplementary Figure 5. Comparison of ESA inference performance (in terms of average CC) among different algorithms
across three subjects. (a–c) Boxplot comparison of average CC among MLR, MLP, and LSTM from monkey I, L, and N,
respectively. (d) Comparison of average CC among MLR, MLP, and LSTM from monkey I over 26 recording sessions. (e)
Boxplot comparison of average CC across 26 recording sessions. Asterisks indicate algorithm whose inference performance
differed significantly from that of MLR (* p<0.05, *** p<0.001).

10 50 100 300
Cutoff freq (Hz)

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

CC

a ESA (Monkey I)

10 50 100 300
Cutoff freq (Hz)

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

CC

b ESA (Monkey L)

10 50 100 300
Cutoff freq (Hz)

0.00

0.25

0.50

0.75

1.00
Av

er
ag

e 
CC

c ESA (Monkey N)

10 50 100 300
Cutoff freq (Hz)

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

CC

d SUA (Monkey I)

10 50 100 300
Cutoff freq (Hz)

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

CC

e SUA (Monkey L)

10 50 100 300
Cutoff freq (Hz)

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

CC

f SUA (Monkey N)

10 50 100 300
Cutoff freq (Hz)

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

CC

g MUA (Monkey I)

10 50 100 300
Cutoff freq (Hz)

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

CC

h MUA (Monkey L)

10 50 100 300
Cutoff freq (Hz)

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

CC

i MUA (Monkey N)

Suplementary Figure 6. Comparison of inference performance of spiking activity across different cut-off frequencies.
(a–c) Comparison of ESA inference performance for monkey I, L, and N, respectively. (d–f) Comparison of SUA inference
performance for monkey I, L, and N, respectively. (g–i) Comparison of MUA inference performance for monkey I, L, and N,
respectively.
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Suplementary Figure 7. LFP channel importance score (quantified in terms of average CC) for SUA inference across
subjects. (a,c,e) Scatter plot of LFP importance score over inter-electrode distance (µm) from monkey I, L, and N, respectively.
Red solid lines represent linear regression lines used to test whether or not there is a significant linear trend between
inter-electrode distance and LFP channel importance score. Asterisks indicate that there is a significant linear trend (two-tailed
one-sample t-test; * p<0.05, *** p<0.001). (b,d,f) Examples of heatmap of LFP channel importance score for SUA inference
from monkey I (channel 5), monkey L (channel 45), and monkey N (channel 62), respectively. The importance score is mapped
onto a 10×10 grid spatially corresponding to Utah electrode array configuration. White numbers inside the grids denote the
SUA channel being inferred. White boxes on the grid represent unused (unconnected) electrodes. The larger the average CC,
the more important is the channel for the inference.
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Suplementary Figure 8. LFP channel importance score (quantified in terms of average coefficient) for SUA inference
across subjects. (a,c,e) Scatter plot of LFP importance score over inter-electrode distance (µm) from monkey I, L, and N,
respectively. Red solid lines represent linear regression lines used to test whether or not there is a significant linear trend
between inter-electrode distance and LFP channel importance score. Asterisks indicate that there is a significant linear trend
(two-tailed one-sample t-test; * p<0.05). (b,d,f) Examples of heatmap of LFP channel importance score for SUA inference
from monkey I (channel 5), monkey L (channel 45), and monkey N (channel 62), respectively. The importance score is mapped
onto a 10×10 grid spatially corresponding to Utah electrode array configuration. Black numbers inside the grids denote the
SUA channel being inferred. White boxes on the grid represent unused (unconnected) electrodes. The larger the average
coefficient, the more important is the channel for the inference.
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Suplementary Figure 9. LFP channel importance score (quantified in terms of average CC) for MUA inference across
subjects. (a,c,e) Scatter plot of LFP importance score over inter-electrode distance (µm) from monkey I, L, and N, respectively.
Red solid lines represent linear regression lines used to test whether or not there is a significant linear trend between
inter-electrode distance and LFP channel importance score. Asterisks indicate that there is a significant linear trend (two-tailed
one-sample t-test; * p<0.05). (b,d,f) Examples of heatmap of LFP channel importance score for MUA inference from monkey
I (channel 5), monkey L (channel 45), and monkey N (channel 62), respectively. The importance score is mapped onto a 10×10
grid spatially corresponding to Utah electrode array configuration. White numbers inside the grids denote the MUA channel
being inferred. White boxes on the grid represent unused (unconnected) electrodes. The larger the average CC, the more
important is the channel for the inference.
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Suplementary Figure 10. LFP channel importance score (quantified in terms of average coefficient) for MUA inference
across subjects. (a,c,e) Scatter plot of LFP importance score over inter-electrode distance (µm) from monkey I, L, and N,
respectively. Red solid lines represent linear regression lines used to test whether or not there is a significant linear trend
between inter-electrode distance and LFP channel importance score. Asterisks indicate that there is a significant linear trend
(two-tailed one-sample t-test; *** p<0.001). (b,d,f) Examples of heatmap of LFP channel importance score for MUA inference
from monkey I (channel 5), monkey L (channel 45), and monkey N (channel 62), respectively. The importance score is mapped
onto a 10×10 grid spatially corresponding to Utah electrode array configuration. Black numbers inside the grids denote the
MUA channel being inferred. White boxes on the grid represent unused (unconnected) electrodes. The larger the average
coefficient, the more important is the channel for the inference.
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