Supplementary material to: "We need biosphere stewardship that protects carbon sinks and builds resilience"

Johan Rockström, Tim Beringer, David Hole, Bronson Griscom, Michael B. Mascia, Carl Folke, Felix Creutzig

Supplementary Figure 1: Interannual variability of the land carbon sink taken from the Global Carbon Project 2019 (1). Lower interannual variability of up to 1.5 GtC/yr characterized the years 1850-1950 while variability between years almost doubled after 1950.

Data used for Figure 1

Biome or		Sink strength	Total sink	Carbon stock	Loss rate
climate zone	Region	[tC/ha/yr]	[GtC/yr]	[GtC]	[%]
Tropical forest				309 (3)	0.45-0.58
	pan-tropical		-1.2 (2)		(3)
	Amazon	-0.4 (4)	-0.5 (4)	151 (3, 5)	
	Africa	-0.7 (4)	-0.5 (4)	77 (3, 5)	
	SE Asia	-0.4 (6)	-0.1 (2)	80 (3, 5)	
Temperate					
forest		-0.3 (7)	-0.7 (2)	199 (3)	0.3 (3)
Boreal forest		-0.2(8)	-0.5 (2, 8)	283 (3)	0.2 (3)
Tropical					
grassland		-0.1 (7)	-0.4 (7)	30 (3)	0.1 (3)
Temperate					
grassland		-0.1 (7)	-0.2 (7)	39 (3)	0.1 (3)
Peatland	All		-0.1 (9)	220 (3)	
	boreal/temperate	-0.2 (10)	-0.1 (9, 11)		0.0 (3)
	Tropical	-0.5 (9)	-0.03 (9)		0.6 (3)
Permafrost			0.6 (12)	1700 (1)	
Mangroves,			-0.2 (13)	11 (14)	0.1 (3)
seagrass,					
marshes					
Ocean			-2.5 (1)	38000 (1)	

Supplementary Table 1: Carbon sinks and stocks in major biomes

Calculation of carbon stocks in major biomes (Figure 1B)

Data sources

- vegetation carbon stocks from Spawn et al. (15)
- soil carbon stocks from Sanderman et al. (16)
- biome classification from Dinerstein et al. (17)
- current land use from HYDE3.2.1 (18)
- low impact areas (LIA) map from Jacobson et al. (19)
- global human modification (GHM) map from Kennedy et al. (20)

Carbon stock calculation

- for each major biomes we calculated total vegetation and soil carbon stocks in natural ecosystems
- we used three different options to map ecosystems that have largely remained in their natural state based on:
 - o HYDE: areas not classified as cropland or grazing land

• $C_{biome} = C_{stocks_{veg+soil}} * (area_{tot} - area_{crop+grazing})$

- o LIA: areas classified as low impact areas
 - $C_{biome} = C_stocks_{veg+soil} * area_{lia}$
- $\circ~$ GHM: areas with a GHM index less or equal to 0.1
 - $C_{biome} = C_stocks_{veg+soil} * area_{ghm \le 0.1}$

Calculation of unmodified shares of major biomes (Figure 1B)

• We calculated the areas of each major biome from (17) with a GHM values of less or equal to 0.1 (20) and then calculated the share of these areas in the total area of each biome.

MAGICC scenario settings

	Value	Explanation		
Emission scenario	RCP2.6			
Simulation timeframe	1850-2100			
Scenario timeframe	1850-2100	MAGICC does not allow changing model		
		parameters during a simulation so we can only		
		run full 1850-2100 simulations with alternative		
		model settings. E.g., it's impossible to simulate		
		the loss of land carbon sinks after 2020.		
CO ₂ fertilization	On or off	We turn off CO ₂ fertilization in the "biosphere		
		loss" scenario". This means that vegetation does		
		can no longer benefit from the increasing CO ₂		
		content through higher photosynthesis rates and		
		water use efficiency. This has a twofold effect:		
		no acceleration in carbon sequestration rates and		
		no increased drought tolerance.		
Vegetation regrowth	Standard or	In the "biosphere loss" scenario we assume that		
	reduced	vegetation is not able to regrow as fast as in the		
		standard simulation "Paris goal". This assumes		
		that land is either constantly used after		
		deforestation/conversion or highly degraded.		
		Therefore, carbon stocks in vegetation and soils		
		are not able to build up again.		
Climate sensitivity	3°	MAGICC applies a climate sensitivity of 3° as		
		the default.		
Restoration scenario	2.4 GtC/yr	Here we use estimates based on Griscom et al.		
	between 2020	(21), and aligned with the mid-point of estimates		
	and 2029, 4.6	by Girardin et al. (22), that maximum NCS		
	GtC/yr from	mitigation constrained to cost-feasible levels to		
	2030	limit warming well below 2°C sums to a total of		
		4.6 GtC additional carbon sequestration per year		
		by 2030. For the decade 2020-2029 we assume a		
		linear increase with an average value of 2.3		
		GtC/yr. We add this flux to the land use		
		emissions input for MAGICC assuming these		
		are additional efforts in the land sector. In this		
		case we can add this additional mitigation flux		
		from 2020 onwards because land use change		
		carbon fluxes come from an external input file		
		that defines these fluxes as decadal values.		

Supplementary Table 2: MAGICC scenario overview.

References

- 1. P. Friedlingstein, *et al.*, Global Carbon Budget 2019. *Earth Syst. Sci. Data* **11**, 1783– 1838 (2019).
- 2. Y. Pan, *et al.*, A Large and Persistent Carbon Sink in the World's Forests. *Science* **333**, 988–993 (2011).
- 3. A. Goldstein, *et al.*, Protecting irrecoverable carbon in Earth's ecosystems. *Nat. Clim. Change* **10**, 287–295 (2020).
- 4. W. Hubau, *et al.*, Asynchronous carbon sink saturation in African and Amazonian tropical forests. *Nature* **579**, 80–87 (2020).
- 5. S. S. Saatchi, *et al.*, Benchmark map of forest carbon stocks in tropical regions across three continents. *Proc. Natl. Acad. Sci.* **108**, 9899–9904 (2011).
- 6. L. Qie, *et al.*, Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects. *Nat. Commun.* **8**, 1966 (2017).
- 7. J. Grace, J. S. José, P. Meir, H. S. Miranda, R. A. Montes, Productivity and carbon fluxes of tropical savannas. *J. Biogeogr.* **33**, 387–400 (2006).
- 8. T. Tagesson, *et al.*, Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. *Nat. Ecol. Evol.* **4**, 202–209 (2020).
- 9. J. Leifeld, C. Wüst-Galley, S. Page, Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. *Nat. Clim. Change*, 1–3 (2019).
- 10. J. Loisel, *et al.*, Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum. *Earth-Sci. Rev.* **165**, 59–80 (2017).
- 11. A. V. Gallego-Sala, *et al.*, Latitudinal limits to the predicted increase of the peatland carbon sink with warming. *Nat. Clim. Change* **8**, 907–913 (2018).
- 12. S. M. Natali, *et al.*, Large loss of CO 2 in winter observed across the northern permafrost region. *Nat. Clim. Change* **9**, 852–857 (2019).
- 13. M. U. F. Kirschbaum, G. Zeng, F. Ximenes, D. L. Giltrap, J. R. Zeldis, Towards a more complete quantification of the global carbon cycle. *Biogeosciences* **16**, 831–846 (2019).
- 14. J. B. Kauffman, *et al.*, Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. *Ecol. Monogr.* **90**, e01405 (2020).
- 15. S. A. Spawn, C. C. Sullivan, T. J. Lark, H. K. Gibbs, Harmonized global maps of above and belowground biomass carbon density in the year 2010. *Sci. Data* **7**, 112 (2020).
- 16. J. Sanderman, T. Hengl, G. J. Fiske, Soil carbon debt of 12,000 years of human land use. *Proc. Natl. Acad. Sci.* **114**, 9575–9580 (2017).
- 17. E. Dinerstein, *et al.*, An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. *BioScience* **67**, 534–545 (2017).
- 18. K. Klein Goldewijk, A. Beusen, J. Doelman, E. Stehfest, New anthropogenic land use estimates for the Holocene; HYDE 3.2. *Earth Syst. Sci. Data Discuss.*, 1–40 (2016).

- 19. A. P. Jacobson, J. Riggio, A. M. Tait, J. E. M. Baillie, Global areas of low human impact ('Low Impact Areas') and fragmentation of the natural world. *Sci. Rep.* **9**, 14179 (2019).
- 20. C. M. Kennedy, J. R. Oakleaf, D. M. Theobald, S. Baruch-Mordo, J. Kiesecker, Managing the middle: A shift in conservation priorities based on the global human modification gradient. *Glob. Change Biol.* **25**, 811–826 (2019).
- 21. B. W. Griscom, et al., Natural climate solutions. Proc. Natl. Acad. Sci., 201710465 (2017).
- 22. C. A. J. Girardin, *et al.*, Nature-based solutions can help cool the planet if we act now. *Nature* **593**, 191–194 (2021).