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S1. MEAN-FIELD MASTER EQUATION

A. The backward rates in the master equation account for conditional probabilities during unbinding

We summarize the rates used in the master equation in Table S1. While in the KMC simulations the backward rates
are unity, in the master equation they include the conditional probabilities of finding the appropriate type of ABP
during unbinding. We thus express them in terms of the domain lengths in the bulk. To validate these expressions, we
compute the effective backward rates in KMC simulations by counting the number of occurrences of each unbinding
case. Fig. S1 demonstrates that the expressions are quantitatively accurate.

Table S1. Forward and Backward rates for ABP in Master Equation (ME) and KMC Simulations

Forward
Rates

ME and
KMC

Backward
Rates

ME KMC

First head of
ABP

kf,1αα kf,1αα = kf,1βα kb
′,1
αα or kb,1αα 1 1

kf,1αβ kb
′,1
αβ or kb,1αβ 1 1

kf,1ββ kf,1ββ = kf,1αβ kb
′,1
ββ or kb,1ββ 1 1

kf,1βα kb
′,1
βα or kb,1βα 1 1

Second head
of ABP

kf,2αα kb
′,2
αα or kb,2αα (Lα − 1)/Lα 1

kf,2βα kb
′,2
βα or kb,2βα 1/Lα 1

kf,2ββ kb
′,2
ββ or kb,2ββ (Lβ − 1)/Lβ 1

kf,2αβ kb
′,2
αβ or kb,2αβ 1/Lβ 1

B. Domain lengths and rates at equilibrium

Given the rates in Table S1, we can solve the master equation (Eq. (5)) at equilibrium to obtain constraints on
the equilibrium rates. At equilibrium, all currents are zero, which results in the following relations between the
equilibrium rates and equilibrium domain lengths, Lα,eq and Lβ,eq.

kf,1αα,eqk
f,2
αα,eq =

Lα,eq − 1

Lα,eq

kf,1ββ,eqk
f,2
ββ,eq =

Lβ,eq − 1

Lβ,eq

kf,1αβ,eqk
f,2
αβ,eqk

f,1
βα,eqk

f,2
βα,eq =

1

Lα,eqLβ,eq

(S1)

Since kf,1αα,eq = kf,1βα,eq and kf,1ββ,eq = kf,1αβ,eq, there are six independent forward rates at equilibrium. We use the
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Figure S1. Validation of the backward rate expressions used in the master equation. The ratios of domain lengths (Lα− 1)/Lα
and (Lβ − 1)/Lβ (blue and red circles) are computed from full bundle configurations in KMC simulations. The effective

backward rates kb
′,2
αα (cyan) and kb

′,2
ββ (black) in KMC simulations are computed as kb

′,2
αα = Nb,2

αα/(N
b,2
αα + Nb,2

βα ) and kb
′,2
ββ =

Nb,2
ββ /(N

b,2
αβ + Nb,2

ββ ). Nb,2
ij is the number of occurrences of unbinding the second head of an ABP, where i and j are the types

of the last two ABPs at the tip.

constraints above but split the third equation in Eq. (S1) into the relations:

kf,1αβ,eqk
f,2
αβ,eq =

Lβ,eq − 1

Lβ,eq(Lα,eq − 1)

kf,1βα,eqk
f,2
βα,eq =

Lα,eq − 1

Lα,eq(Lβ,eq − 1)
.

(S2)

An interpretation of Eq. (S2) is that the effective mechanical penalty in switching from α to β is kf,2αβ,eq/k
f,2
ββ,eq =

1/(Lα,eq − 1), and the bending penalty in switching from β to α is kf,2βα,eq/k
f,2
αα,eq = 1/(Lβ,eq − 1). This is obtained by

dividing equalities in Eq. (S2) by those in Eq. (S1).

We use these constraints on the equilibrium rates to simplify the expression for the entropy production (see SI
Section 4). Using Eq. (S1) and Eq. (S2), we are able to represent the equilibrium condition with four parameters,

Lα,eq, Lβ,eq, kf,1αα,eq, and kf,1ββ,eq.

C. Derivation of the self-consistency conditions

Under non-equilibrium conditions, the currents are non-zero. We need an additional constraint on the domain
lengths to solve the master equation for Lα and Lβ . For this purpose, we derive the following self-consistency
conditions, which are inspired by Ref. [1]. Our derivation closely follows that of Ref. [1] and adapts it to this specific
problem. The aim of this section is to provide a detailed overview for readers who are not familiar with this earlier
work. We consider a chain of ABPs with the sequence of ωlωl−1...ω0, where ωi represents the type of ABP at position
i. The notations introduced below use the following convention. The crosslinker at the tip is the last one in the
sequence, e.g. index i = 0 is at the tip for the sequence of ωlωl−1...ω0, and index i = Z is at the tip for the sequence
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of ωl−1...ω0ωZ . We write down an equation for the probability of finding this sequence at time t, P t(ωlωl−1...ω0):

∂P t(ωlωl−1...ω0)

∂t
= w+

ω0|ω1
P t(ωlωl−1...ω1)

+
∑
ωZ

w−ωZ |ω0
P t(ωlωl−1ωl−2...ω0ωZ)

− (w−ω0|ω1
+
∑
ωZ

w+
ωZ |ω0

)P t(ωlωl−1ωl−2...ω0),

(S3)

w+
ωi|ωj is the rate of addition of ωi to ωj and w−ωi|ωj is the rate of removal of ωi to expose ωj at the tip. In what

follows, we solve Eq. (S3) at steady state:

∂P t(ωlωl−1ωl−2...ω0)

∂t
= 0. (S4)

The right hand side of Eq. (S3) contains probabilities of sequences with lengths l, l+1 and l+2. We simplify Eq. (S3)
by rewriting the last two terms in terms of the probabilities of finding sequences with a fixed length l.

∂P t(ωlωl−1...ω0)

∂t
= w+

ω0|ω1
P t(ωlωl−1...ω1)

+
∑
ωZ

w−ωZ |ω0
P t(ωl|ωl−1ωl−2...ω0)P t(ωl−1ωl−2...ω0|ωl−2ωl−1...ω0ωZ)P t(ωl−2ωl−1...ω0ωZ)

− (w−ω0|ω1
+
∑
ωZ

w+
ωZ |ω0

)P t(ωl|ωl−1ωl−2...ω0)P t(ωl−1ωl−2...ω0),

(S5)

where P (Γx|Γy) is the conditional probability of generating sequence Γx given the sequence Γy. The sequence we
consider is always in the following order ωlωl−1ωl−2...ω0ωZ where ωl is in the bulk and ωZ is at the tip. We then
substitute Eq. (S5) into Eq. (S4) and rearrange to express the possibility of finding ωl in addition to the sequence
ωl−1ωl−2...ω0.

P t(ωl|ωl−1ωl−2...ω0) =
w+
ω0|ω1

P t(ωlωl−1...ω1)

(w−ω0|ω1
+ vω0

)P t(ωl−1ωl−2...ω0)

vω0
≡
∑
ωZ
w+
ωZ |ω0

P t(ωl−1ωl−2...ω0)−
∑
ωZ
w−ωZ |ω0

P t(ωl−1ωl−2...ω0ωZ)

P t(ωl−1ωl−2...ω0)

(S6)

Physically, vω0 is the net growth rate at the tip with crosslinker type ω0. By further rearranging Eq. (S6) and summing
over ω0, we obtain the following expression.∑

ω0

w+
ω0|ω1

P t(ωlωl−1...ω1)−
∑
ω0

w−ω0|ω1
P t(ωlωl−1...ω0) =

∑
ω0

vω0P
t(ωl|ωl−1ωl−2...ω0)P t(ωl−1ωl−2...ω0) (S7)

The left side of Eq. (S7) is vω1
P t(ωlωl−1...ω1), so Eq. (S7) becomes

vω1
P t(ωlωl−1...ω1) =

∑
ω0

vω0
P t(ωl−1ωl−2...ω0)P t(ωl|ωl−1ωl−2...ω0). (S8)

Eq. (S8) is equivalent to Eq. 34 in ref. [1] and connects the probabilities of observing various sequences at the tip.
We now proceed to connect the probabilities associated with observing configurations at the tip to the probabilities

associated with observing configurations in the bulk (or far from the tip). The latter is relevant to us as these are the
eventual correlations that can be observed after the polymer growth.

To proceed, we begin by writing down the following relation,

P t1(Γ1) =
∑
Γ0

W (Γ1,Γ0)P t0(Γ0) (S9)

where we use Γ0 to represent the configuration ωl−1ωl−2...ω0 and Γ1 to represent the configuration ωlωl−2...ω1. P t1(Γ)
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represents the probability of observing a configuration Γ one unit away from the tip, P t0(Γ) represents the probability
of observing a configuration Γ starting at the tip, and W (Γ1,Γ0) ≡ P t(ωl|ωl−1ωl−2...ω0) is a transition matrix.

The matrix expression in Eq. S9, makes it easier to infer the eventual probability of observing patterns deep in the
bulk of the assembly, away from the tip. Specifically, from Eq. S9, we can obtain an expression for the probability of
observing a particular l length configuration N units away from the tip as

PtN = WNPt0. (S10)

where Pti, denotes the probability vector associated with entries P ti (Γ). In the limit N → ∞, PtN will describe
the probability of observing l length configurations deep in the bulk of the assembly. Pt∞ can be connected to the
properties of the transition matrix W by noting that the eigenvalues of W are ≤ 1 with an unique eigenvector with
maximal eigenvalue 1. Hence, in the limit N →∞, the product WNPt0 is simply equal to maximal eigenvector P̄ (Γ),
components along all other eigenvectors decay away to zero. This eigenvector is the probability P̄ (Γ) of finding a
particular sequence Γ in the bulk.

From Eq S8, it is clear by substitution that P̄ (Γ) satisfies

vtip(Γ)P t(Γ) = v̄P̄ (Γ) (S11)

v̄ is the total growth rate at the tip for all configurations, and vtip(Γi ≡ ωl−i−1ωl−i−2...ωi) = vωi . In what follows,
we use Eq. (S11) to derive the self-consistency conditions specific to our system. We choose two neighboring ABPs
ωmωm−1 for the configuration size, where m ranges from 1 to l. There are four configurations: ωm,α, ωm−1,α,
ωm,β , ωm−1,α, ωm,α, ωm−1,β , and ωm,β , ωm−1,β . We refer to the term on the right hand side of Eq. (S11) as currents
in the main text.

vtip(ωm,α, ωm−1,α)P t(ωm,α, ωm−1,α) ≡Jωm,α,ωm−1,α

=kf,1ααP (α)− kb,1ααP (αα∗) = kf,2ααP (αα∗)− kb,2ααP (α)

vtip(ωm,β , ωm−1,β)P t(ωm,β , ωm−1,β) ≡Jωm,β ,ωm−1,β

=kf,1ββ P (β)− kb,1ββP (ββ∗) = kf,2ββ P (ββ∗)− kb,2ββP (β)

vtip(ωm,α, ωm−1,β)P t(ωm,α, ωm−1,β) ≡Jωm,α,ωm−1,β

=kf,1αβP (α)− kb,1αβP (αβ∗) = kf,2αβP (αβ∗)− kb,2αβP (β)

vtip(ωm,β , ωm−1,α)P t(ωm,β , ωm−1,α) ≡Jωm,β ,ωm−1,α

=kf,1βαP (β)− kb,1βαP (βα∗) = kf,2βαP (βα∗)− kb,2βαP (α)

(S12)

where Jωm,i,ωm−1,j
is the current of ABPs of type j binding after ABPs of type i. Jtot is the sum of the four currents:

v̄ ≡ Jtot = Jωm−1,α,ωm,α + Jωm−1,α,ωm,β + Jωm−1,β ,ωm,β + Jωm−1,β ,ωm,α . (S13)

By combining Eqs. (S11) to (S13), we can obtain the following self-consistency conditions,

Jωm−1,α,ωm,α = P̄ t(ωm,α, ωm−1,α)Jtot

Jωm−1,β ,ωm,β = P̄ t(ωm,β , ωm−1,β)Jtot

Jωm−1,α,ωm,β = Jωm−1,β ,ωm,α = P̄ t(ωm,α, ωm−1,β)Jtot.

(S14)

The current Jωm−1,α,ωm,β is identical to the current Jωm−1,β ,ωm,α because for every switch of a domain of α crosslink-

ers there is a switch to a domain of β crosslinkers. P̄ t(ωm, ωm−1) is the probability of finding a specific configuration
ωmωm−1 in the bulk; it can be expressed in terms of the domain lengths as follows.

P̄ t(ωm,α, ωm−1,α) =
Lα − 1

Lα + Lβ

P̄ t(ωm,β , ωm−1,β) =
Lβ − 1

Lα + Lβ

P̄ t(ωm,α, ωm−1,β) = P̄ t(ωm,β , ωm−1,α) =
1

Lα + Lβ

(S15)
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Figure S2. Comparison of currents and domain length ratios from KMC simulations at various actin polymerization rates.
Both currents and domain lengths are measured from KMC simulations of 106 steps. The simulation parameters are the same
as those used in generating Fig. 2.

Using Eq. (S14) and Eq. (S15), we obtain Eq. (6). Note that in main text we omit the ω’s in the subscripts of the
currents for clarity. The self-consistency conditions are validated by KMC simulations (Fig. S2).

D. Domain lengths predicted by master equation

Since the equilibrium parameters and the driving parts of the rates are determined, we now use the self-consistency
condition above to solve the master equation (Eq. (5)) for the domain lengths Lα and Lβ under non-equilibrium
conditions.

Lβ =
(Lα − 1)kf,2βα − kf,2αα(Lα(kf,2βα + 1)kf,1αα + Lα − 1)

kf,2βαk
f,1
αα(Lαk

f,2
αα((1 + kf,2αβ )kf,1αα − (Lα − 1)kf,2αβ k

f,1
ββ )− (Lα − 1)(1 + kf,2αβ + Lαk

f,2
αβ k

f,1
ββ ))

Lα =
(Lβ − 1)kf,2αβ − k

f,2
ββ (Lβ(kf,2αβ + 1)kf,1ββ + Lβ − 1)

kf,2αβ k
f,1
ββ (Lβk

f,2
ββ ((1 + kf,2βα )kf,1ββ − (Lβ − 1)kf,2βαk

f,1
αα)− (Lβ − 1)(1 + kf,2βα + Lβk

f,2
βαk

f,1
αα))

(S16)

We compute the domain lengths from Eq. (S16) numerically and compare them with those measured from KMC
simulations in Fig. 2. We solve Eq. (S16) using standard numerical routines in MATHEMATICA [2].

For very low values of kgrow ≈ 10−4 nm/s, the system is close to equilibrium and consequently the fluxes are also
very small and their values are very sensitive to numerical errors. Under these conditions, it becomes tough to verify
the mean-field approximation numerically. However, as we note in Fig. 2 (inset) the values of average domain lengths
seem to be converging to their expected equilibrium values as kgrow is reduced. Hence, we expect the mean-field
approximation to be valid close to equilibrium as well.

E. Dependence of the crossover in domain lengths on the binding affinities of ABPs

We have demonstrated that the master equation accurately predicts the domain lengths. Now we use it to investigate
the dependence of the crossover in domain lengths on the equilibrium binding affinities of ABPs. We focus on the
case in which binding of the α crosslinker is favored at equilibrium (i.e., Lα,eq > Lβ,eq) and tune the equilibrium

binding affinities kf,1ij,eq of ABPs to delineate the range over which the crossover occurs (Fig. S3). Beyond this range,
either Lα is still larger than Lβ in fast growing bundles, or Lα is already smaller than Lβ very close to equilibrium.
We find that the crossover of domain lengths is deferred to a faster growth speed when the binding affinity of the β

crosslinker, kf,1ββ,eq, is weakened, in agreement with previous simulation results in Ref. [3].
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Figure S3. The dependence of domain length ratio Lα/Lβ on the equilibrium binding rates kf,1αα,eq/k
f,1
ββ,eq. Blue and red regions

represent Lα > Lβ and Lα < Lβ , respectively. Black dots and dashed lines mark the crossover of domain lengths, where

Lα = Lβ . Simulation parameters are the same as those used in generating Fig. 2 except kf,1ββ,eq, which is varied. Domain length
ratios are computed from the master equation.

S2. DERIVATION OF EQ. (8-9)

The entropy production along the edge that links states i and j with forward rate kij and backward rates kji can

be written as Jij log
kijPi
kjiPj

, where Jij is the flux along this edge. This allows us to express the entropy production rate

of this process as

σ̇ = JN−1,α,N,α log
kf,1ααk

f,2
αα

kb,1ααk
b,2
αα

+ JN−1,β,N,β log
kf,1ββ k

f,2
ββ

kb,1ββk
b,2
ββ

+ JN−1,α,N,β log
kf,1αβ k

f,2
αβ k

f,1
βαk

f,2
βα

kb,1ββk
b,2
ββk

b,1
βαk

b,2
βα

. (S17)

We then use the relation between domain lengths and currents in Eq. (6) to re-write Eq. (S17) as:

σ̇ = Jtot

(
Lα − 1

Lα + Lβ
log

kf,1ααk
f,2
αα

kb,1ααk
b,2
αα

+
Lβ − 1

Lα + Lβ
log

kf,1ββ k
f,2
ββ

kb,1ββk
b,2
ββ

+
1

Lα + Lβ
log

kf,1αβ k
f,2
αβ k

f,1
βαk

f,2
βα

kb,1ββk
b,2
ββk

b,1
βαk

b,2
βα

)
. (S18)

To further simplify the expression above, we insert Eq. (S1) and obtain the following expression for entropy production
rate,

σ̇ = Jtot

 2

Ltot

∑
i∈α,β

Li log dki +
1

Ltot

∑
i∈α,β

Li log
Li
Li,eq

− 1

Ltot

∑
i∈α,β

(Li − 1) log
Li − 1

Li,eq − 1

 . (S19)

The first term in the parenthesis in Eq. (S19) contains the driving parts, which we call ∆µ as in Eq. (8). The two
other terms represent the energy used in changing the morphology, which we refer to as εdiss as in Eq. (9). Thus, the
entropy production rate can be written in the following format, consistent with the expression used in Ref. [4] and
also in Eq. (7).

σ̇ = Jtot(∆µ− εdiss). (S20)
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S3. DERIVATION OF EQ. (1)

In this section, we derive Eq. (1) of the main text. Our derivation closely follows those in Refs. [5, 6]. As in the
main text, we focus of experimentally accessible currents Jα and Jβ related to the net rate at which the different
crosslinkers are assimilated into the bundle. In particular, using the notation in Fig. S4, we have

Jα = [j(1) + j(4) + j(5) + j(8)]/2

Jβ = [j(2) + j(3) + j(6) + j(7)]/2,
(S21)

where we use j(ε) to denote the current along the edge ε.

Eq. (S21) can be written in matrix form as

J(n) =
∑
ε

j(ε)d(ε, n) (S22)

where d(n, ε) are elements in a matrix d that describes how each of the generalized currents depends on the edge
currents. For the specific case described above in Eq. (S21), the d matrix can be written as:

dT =
1

2

(
1 0 0 1 1 0 0 1
0 1 1 0 0 1 1 0

)
(S23)

Before proceeding further, we outline the structure of the proof. We attempt to derive Eq. (1) by deriving constraints
on the fluctuations of Jα and Jβ (or equivalently J(n) in Eq. (S22)). To do so we first express J(n) in terms of the edge

currents j̃(ε) such that j̃(ε) are guaranteed to satisfy current conservation, and they satisfy J(n) =
∑
ε j̃(ε)d(ε, n).

Then, we use the findings of Ref. [5] which showed that the large deviation rate functions associated with the
fluctuations in the various edge currents satisfy the following inequality,

I(j) ≤
∑
ε

(j(ε)− jπ(ε))
2 σπ(ε)

4[jπ(ε)]2
, (S24)

where I(j) is the rate function of the edge currents, jπ is the average current of the edge and σπ(ε) is the entropy
production of edge ε. Note that the entropy production along the edge ε that links states i and j with forward rate

kij and backward rates kji can be written as σπ(ε) = jπ(ε) log
kijPi
kjiPj

. The sum of entropy production along all the

edges should result in the total entropy as in Eq. (S18). Finally, by writing Eq. (S24) in terms of the generalized
currents J(n), we obtain our central result.

We now proceed by first “inverting” Eq. (S22) and defining a set of edge currents:

j̃(ε) =
∑
n

J(n)G(n, ε) (S25)

where G is a pseudoinverse of the matrix d. Note that since G and d are pseudoinverses of one another, we have∑
ε

j̃(ε)d(ε, k) =
∑
n,ε

J(n)G(n, ε)d(ε, k) =
∑
n,ε,ε′

j(ε′)d(ε′, n)G(n, ε)d(ε, k) =
∑
ε′

j(ε′)d(ε′, k) = J(k) (S26)

Eq. (S26) suggests that the sets of currents j̃ do not have to be identical to j. We construct a specific matrix G

below in Eq. (S34) which ensures that the resulting sets of currents j̃ meet the following two requirements: first, the

sets of j̃ satisfy current conservation; second, the resulting sets of j̃ at steady state match j at steady state. We can
then use the arguments in Ref. [5, 6] to substitute Eq. (S25) into Eq. (S24) and obtain a bound on the large deviation
rate function associated with the generalized currents, I(J)

I(J) ≤
∑
ε

(∑
n

J(n)G(n, ε)− Jπ(ε)G(n, ε)

)2
σπ(ε)

4[jπ(ε)]2
. (S27)

Now we consider the system at steady state, with Jπ denoting the vector of average generalized currents and L denoting
the covariance of generalized currents. The rate function I(J) can be expanded around the average generalized
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Figure S4. Schematic showing all the possible transitions of the actin bundle system. We index the graph edges from 1 to 8.

currents, Jπ, as

I(J) ≈ I(Jπ) +D [I(J)|Jπ] · J̃ +
1

2
J̃T ·H [I(J)|Jπ] · J̃ (S28)

Here J̃ is a vector with elements (J(n)− Jπ(n)), and D [I(J)|Jπ] is the vector containing the derivatives of the rate
function I(J) with respect to the current J. Since the rate function is at its minimum at Jπ, I(Jπ) and D [I(J)|Jπ]
equal zero. H [I(J)|Jπ] is the Hessian matrix of I(J) evaluated at Jπ which can be related to the covariance matrix
L by [7]

H [I(J)|Jπ] = L−1. (S29)

Eq. (S28) and Eq. (S29) then allow us to rewrite Eq. (S27) as

J̃T · L−1 · J̃ ≤ J̃T ·GSGT · J̃ (S30)

Here G is the matrix form of G(n, ε) with n indicating the row and ε indicating the column, GT is its transpose and
S is a diagonal matrix with elements σπ(ε)/2|jπ(ε)|2. Since Eq. (S27) is valid for any arbitrary fluctuation about the

mean, GSGT −L−1 has to be positive semi-definite, which is to say that all of its eigenvalues have to be non-negative.
For a 2 × 2 matrix, this is equivalent to

Tr(GSGT − L−1) ≥ 0, Det(GSGT − L−1) ≥ 0. (S31)

To finish the proof, we need to fix the matrix G. The choice of G is guided by the fact that the inequality in
Eq. (S27) is only valid when the currents j̃ are conserved currents, which means the sum of the currents that go
through each node is zero. This gives the following constraints on the edge currents j̃i (with the notation as specified
in Fig. S4).

j̃(1) = j̃(5), j̃(3) = j̃(7), j̃(2) = j̃(4) = j̃(6) = j̃(8). (S32)

These constraints require that the elements in G have the following relations.

G(i, 1) = G(i, 5), G(i, 3) = G(i, 7), G(i, 2) = G(i, 4) = G(i, 6) = G(i, 8) (S33)
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where i = 1 or 2 are the first and second row of G and represent the contributions of α and β components of the
generalized currents to the edge currents.

The following G matrix written in terms of Lα and Lβ satisfies all the constraints and is also a psuedoinverse of
the d matrix:

G =
1

(Lα + Lβ)

(
Lα + Lβ − 1 1 −1 1 Lα + Lβ − 1 1 −1 1

−1 1 Lα + Lβ − 1 1 −1 1 Lα + Lβ − 1 1

)
. (S34)

Substituting the above equation into GSGT and collecting the terms with ln dkα/β gives us the matrix δµ in the
main text. The rest is the matrix D in main text.

S4. DERIVATION OF THE LINEAR RESPONSE LIKE IDENTITY

A fluctuation dissipation like form can also be obtained as in Eq. (13) of the main text. In this section, we derive

Eq. (13) using the matrix GSGT we determined in Section S3. First, we multiply the matrix GSGT by the vector J
on both sides:

JTGSGTJ = jTSj = σ̇/2 (S35)

with JT = (Jα, Jβ) and jT = (j1, j2, ..., j8). The entropy production can be further rewritten as:

σ̇ = Jtot(∆µ− εdiss) = 2JT (dk−D[p]) (S36)

where the microscopic force vector dk and the relative entropy term D[p] are defined as

dk =

(
log dkα
log dkβ

)
D[p] =

(
D(P (α)||P eq(α))
D(P (β)||P eq(β))

) (S37)

with

D(P (i)||P eq(i)) =
Li − 1

2Li
(log

Li − 1

Li
− log

Li,eq − 1

Li,eq
) +

1

2Li
(log

1

Li
− log

1

Li,eq
) (S38)

We then arrive at:

JTGSGTJ = JT (δµ−D)J = JT (dk−D[p]) (S39)

So when δµ−D = L−1, we obtain Eq. (13) in the main text.

S5. THE THERMODYNAMIC BOUND FOR DRIVING IS IMPROVED BY CONSIDERING
INDIVIDUAL CURRENTS INSTEAD OF THE TOTAL CURRENT IN THE TUR

We plot the second law bound and the TUR bound (Eq. (16)) in Fig. 5. The TUR bound is much better than
the second law bound because it encodes the kinetic information of the process. It deviates from simulation results
at intermediate polymerization rate kgrow = 1 nm/s. For further improvement, we adapt the MTUR bound [8]
to this process. We define the fluxes of adding α and β ABPs as Jα = Jωm−1,α,ωm,α + Jωm−1,β ,ωm,α and Jβ =
Jωm−1,α,ωm,β + Jωm−1,β ,ωm,β .The MTUR bound given by Eq. (15) is the same as considering the scalar observable

Jtot′ = cosφJα + sinφJβ and then maximizing 2〈Jtot′ 〉
2

tJtot〈δJ2
tot′〉

by varying φ. We demonstrate below the derivation and

plot the tanφ values that optimize the bound as a function of kgrow.
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Figure S5. Coefficient tanφ at various actin polymerization rates kgrow. The parameters are the same as in Fig. 5.

Inserting the expression of Jtot′ into the bound of 2〈Jtot′ 〉
2

tJtot〈δJ2
tot′〉

, we obtain

∆µ > εdiss +
2(Jα + tanφJβ)2

tJtot(〈δJα2〉+ tan2 φ〈δJβ2〉+ 2 tanφ〈δJαδJβ〉)
(S40)

We take the derivative of Eq. (S40) against tanφ and find that the maximum value is achieved when

tanφ =
−〈δJαδJβ〉Jα + 〈δJα2〉Jβ
−〈δJαδJβ〉Jβ + 〈δJβ2〉Jα

. (S41)

We substitute Eq. (S41) for tanφ in Eq. (S40) and obtain the following MTUR bound for the bundling process.

∆µ > εdiss +
2(J2

α〈δJβ
2〉 − 2〈δJαδJβ〉JαJβ + J2

β〈δJα
2〉)

tJtot(−〈δJαδJβ〉2 + 〈δJα2〉〈δJβ2〉)
. (S42)

This is equivalent to Eq. (15), where we simplify the expression using

J =

(
Jα
Jβ

)
,dk =

(
log dkα
log dkβ

)
and D[p] =

(
D(P (α)||P eq(α))
D(P (β)||P eq(β))

)
. (S43)

Fig. S5 shows the value of tanφ in Eq. (S41) at various kgrow. This coefficient is obtained by maximizing the bound in
Eq. (S40) at each data point. It provides information about the strength of the correlation between the two currents.
We compare this bound with the one given by the TUR (Eq. (16)) in Fig. 5 and discuss their performance in the
main text.

To further analyze how the variance and covariance of fluxes modulate the value of tanφ and the amount of driving
used to maintain the correlation between fluxes, we rearrange the expression of tanφ as follows.

tanφ =
Jα
Jβ

[
−〈δJαδJβ〉
JαJβ

+
〈δJα2〉
Jα

2

] [
−〈δJαδJβ〉
JαJβ

+
〈δJβ2〉
Jβ

2

]−1

(S44)

Fig. S5 shows that the ratio between currents Jα/Jβ has the same non-monotonic dependence on actin polymer-
ization rate as tanφ. This is consistent with Eq. (S44). On the other hand, the normalized variance and covariance
of currents −〈δJαδJβ〉/JαJβ , 〈δJα2〉/J2

α and 〈δJβ2〉/J2
β have similar orders of magnitude for a given kgrow (Fig. S7),

suggesting that the value of tanφ is weakly dependent on the second and the third terms on the right side of Eq. (S44).
We conclude that tanφ, as well as the strength of the correlation between fluxes is mainly determined by the ratio
between the two currents.
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Figure S6. The ratio between the two currents Jα/Jβ computed from KMC simulations (blue points) and predicted by the
master equation (black curve).
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Figure S7. Normalized variance and covariance computed from KMC simulations. Blue and red points are the variance
normalized by the corresponding current (〈δJ2

β〉/J2
β and 〈δJ2

α〉/J2
α) computed from simulations. Green points are the covariance

normalized by the magnitude of the two currents (−〈δJαδJβ〉/JαJβ).
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